
Logarithmic Space and NL-Completeness

CSC 463

March 25, 2020

Motivation

I Many things that people care about in real life can use much
memory: genomes, the web graph etc.

I Main memory in a computer is typically much smaller than
memory available on disk.

I We want to see if there are algorithms for certain problems
that use small amounts of main memory, so that large
amounts of data can be manipulated on a computer without
storing all of it at once in main memory.

The Computational Model

I Input with n bits already takes linear space to store, so we
must precisely define what we mean when we say that an
algorithm takes sublinear space.

I We consider a two-tape Turing machine where one tape is a
read-only tape containing the input, and another tape is a
“work” tape that can be freely used.

I Only the space used on the work tape counts towards the
space complexity.

I Define L = SPACE (log n), and NL = NSPACE (log n).

The Computational Model: Examples

I Intuitively, an algorithm using O(log n) space in this model
stores a fixed number of pointers, independent of n, and
manipulates them in some way.

I Example: Given an n-bit string s, deciding if s has more
ones than zeros is a problem in L. Keep two counters
count0, count1 for the number of zeros and ones in s and test
if count1 > count0. These take O(log n) space in total.

PATH is in NL

I Let PATH be the problem to checking if a directed graph
has a directed path from starting vertex s to end vertex t.

I We know that PATH ∈ P using algorithms such as depth-first
search or breadth-first search. However, while these
algorithms are efficient, they also use O(n) space.

I We can reduce the space complexity to non-deterministic
logarithmic space.

Path is in NL

I The algorithm stores up to three variables vcur , vnext , l .

1. Start with vcur = s, vnext = ∅, l = 0.
2. Choose vnext nondeterministically from a vertex pointed to

from vcur and let l := l + 1.
3. If vnext = t, accept. Otherwise, if l < n, set vcur = vnext and

repeat Step 2.
4. If l == n, reject since a shortest s − t path uses less than n

additional vertices.

I A branch of this algorithm is guaranteed to find an s − t path
if one exists.

I This uses O(log n) space on a nondeterministic machine.

I Savitch’s theorem implies that PATH ∈ DSPACE (log2 n).
However, this saving in space comes at the expense of much
increased time.

NL-Completeness

I It is believed that PATH for directed graphs cannot be done
in deterministic log-space. We define the notion of
NL-Completeness using log-space reducibility.

I We say a function f : Σ∗ 7→ Σ∗ is logspace computable if
there is a three-tape Turing machine M with

1. One input read-only tape that can move left or right.
2. One work tape of size O(log n) that can move left or right.
3. A write-only output tape that can only move right.

such that given an input w , M halts with f (w) on its output
tape.

I Equivalently, given inputs (x , i), there is a two-tape Turing
machine using O(log n) space that computes the i th bit of
f (x).

NL-Completeness

I We say that A is logspace reducible to B (A ≤L B) if there is
a logspace computable function f such that

w ∈ A↔ f (w) ∈ B.

I If A ≤L B and B ∈ L, so is A ∈ L.

I If A ≤L B and B ≤L C , then A ≤L C .

I Proof Sketch: Given two logspace computable functions f , g ,
their composition h = g(f (x)) is logspace computable since a
logspace Turing machine can store single bits of f (x) on its
work tape.

I A language B is NL-Complete if B ∈ NL and A ≤L B for all
A ∈ NL.

PATH is NL-Complete

I We have already shown that PATH ∈ NL. So now we need to
show that given any A ∈ NL, there is a logspace computable
function showing A ≤L PATH.

I We will use the ideas of Savitch’s theorem to help us prove
this.

I A configuration of a log-space Turing machine M that decides
A can be specified by:
I A cell position on its reading tape and the symbol that is being

read
I The contents of the work tape

All together this takes O(log n) space if input has size n.

PATH is NL-Complete

I Recall that configuration graph GM of M is a graph where the
vertices are its configurations, and there is a directed edge
(c1, c2) if c2 can be obtained from c1 by a transition of M.

I We will assume that M has starting configuration c0 and a
unique accepting configuration caccept . M accepts its input if
and only if GM has a path from c0 to caccept

I To complete the argument, we need to argue that GM can be
computed from a description of M in logspace.

PATH is NL-Complete

I We create the graph GM by first listing its vertices, then its
edges.

I The vertices can be listed in logspace since every potential
configuration has size O(log n) and can tested if it is a legal
configuration for M.

I Each edge can be listed in log space since given two
configurations (c1, c2), one can test if c2 can follow from c1 in
O(log n) space.

I All together, this shows that GM can be created in logspace
for a machine M deciding A ∈ NL, and hence there is a
reduction A ≤L PATH.

I Corollary: NL ⊆ P.

NL = coNL

I Define coNL as the set of languages where the complement
A ∈ NL.

I We do not expect NP = coNP, so it is perhaps surprising
that NL = coNL.

I To prove this, we need to show that PATH ∈ NL : checking if
there is no s − t path in a directed graph is in NL.

I Since PATH is coNL-Complete, showing PATH ∈ NL implies
NL = coNL.

NL = coNL: Proof Part 1

I To show PATH ∈ NL, we firstly consider a problem where we
are given more information.

I Suppose we have a directed graph G , vertices s, t, and a
number c, where c is the number of vertices reachable from s,
and we want to check if there is no s − t path.

I Let R ⊆ V be the set of reachable vertices from s.

I A non-deterministic algorithm can guess R in log-space by
checking if each vertex v lies in R or not, and verify that the
guess was correct by checking |R| = c .

I Once R is obtained and we have verified t /∈ R, we know for
sure that there is no s − t path.

I Note that check path(s, u, l): checking if there is an s − u
path of length ≤ l for any l ≤ |V | can be done in NL.

NL = coNL: Pseudocode Part 1

test_no_path(G = (V,E), s, t, c):1

d = 02

for u in V:3

guess_u = T or F nondeterministically4

if guess_u = T:5

check_path(s, u, |V|)6

if u = t: reject7

else: d = d + 18

at this point, we have guessed a subset9

of vertices reachable from s10

if d != c: reject11

else: accept12

I Hence with the additional variable c , we can certify if there is
no s − t path in NL.

13

14

NL = coNL: Proof Part 2

I Now we need to show that we can compute c, the number of
reachable vertices in logspace. We do this using a technique
called inductive counting.

I Let Ri be the set of vertices in G reachable from s with a
path of length ≤ i . Define R0 = {s} and ci = |Ri |. We want
to compute c = c|V |.

I Observation: v ∈ Ri+1 iff there is an edge (u, v) for some
u ∈ Ri .

I We can use this observation to compute ci+1 from ci .

NL = coNL: Pseudocode Part 2

compute_c(G, s, t):1

old_c = 12

for i = 0 to (|V|-1):3

new_c = 1 ## new_c = c_{i+1}, old_c = c_i4

for each v != s in V:5

d = 06

for u in V:7

guess_u = T or F nondeterministically8

if guess_u = T:9

check_path(s,u,i)10

d = d + 111

if (u, v) is an edge:12

new_c = new_c + 113

break14

if d != old_c: reject15

old_c = new_c16

return new_c17

NL = coNL: Completing the proof

I In the i th iteration of the outer for loop, if v ∈ Ri+1, some
branch finds u ∈ Ri where (u, v) ∈ E (G), so v is counted in
ci+1.

I Otherwise, if v /∈ Ri+1, then some branch certifies there is no
edge between any vertex in Ri and v since we know ci , so that
branch ensures v is not counted in ci+1.

I Since there is a branch where each iteration correctly
computes ci+1, then compute c correctly returns c|V |, and it
can be done in NL.

NL = coNL: Completing the Proof

I So to design an algorithm for PATH given inputs G , s, t, we
run compute c(G , s, t) to obtain c|V | and then
test no path(G , s, t, c|V |).

I Both parts can be done in NL, so overall PATH ∈ NL.

I Therefore, by coNL-completeness of PATH, we conclude
NL = coNL.

I This means that we can simplify proofs for showing problems
are in NL or complete for NL by showing that their
complements are in NL or complete for NL. Eg. 2SAT ∈ NL
iff 2SAT ∈ NL.

I In general, NL = coNL implies that
NSPACE(s(n)) = coNSPACE(s(n)) for space-constructible
s(n) ≥ log n.

