
Internal Implementation ∗

Ashton Anderson
Computer Science

Department
Stanford University

ashton@cs.stanford.edu

Yoav Shoham
Computer Science

Department
Stanford University

Microsoft Israel R&D Center
Herzliya Pituach, Israel

shoham@stanford.edu

Alon Altman
Computer Science

Department
Stanford University

epsalon@stanford.edu

ABSTRACT
We introduce a constrained mechanism design setting called
internal implementation, in which the mechanism designer
is explicitly modeled as a player in the game of interest.
This distinguished player has the opportunity to modify the
game before play. Specifically, the player is able to make
reliable binding commitments of outcome-specific monetary
transfers to the other players in the game. We characterize
the power of internal implementation for certain interesting
classes of games, and show that the impact of internal imple-
mentation on the utility of the players’ and the social welfare
is often counterintuitive; for example, the social welfare can
be arbitrarily worse after an internal implementation.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Multiagent Systems

General Terms
Economics, Theory

Keywords
Game Theory, Constrained Mechanism Design, Implemen-
tation

1. INTRODUCTION
AI, along with other areas of computer science, has em-

braced mechanism design as an essential tool for the design
of games that incentivize agents to behave in a globally desir-
able way. Traditional mechanism design has imagined that
the designer has unlimited freedom in designing the game.
But in real multi-agent systems settings, this is often not the
case [6]. For example, it may be infeasible for the designer
to change the number of players or the players’ strategy
spaces. In recent years, a rich literature called constrained
mechanism design has developed to address this fact, which

∗This work was supported by NSF grant IIS-0205633-001
and in part by an NSERC grant.

Cite as: Internal Implementation, Ashton Anderson, Yoav Shoham,
and Alon Altman, Proc. of 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010), van der Hoek,
Kaminka, Luck and Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp.
XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

is characterized by settings in which a designer is given a
game and has limited ways of modifying it. Previous work
has explored the power of different constrained mechanism
designers: for example mediators and strong equilibrium are
explored in [3, 5] and the power of contracts is studied in
[1]. But in all of these settings, the designer is an external
central planner. What happens if the designer is a player in
the game of interest? Our work concentrates on this setting:
we explicitly model the mechanism designer as a player in
the game. It is perhaps best understood in connection with
two pieces of work, one in AI and one in game theory.

The first is Monderer and Tennenholtz’s k-implementation
[2] setting, where an external interested party can reliably
commit to outcome-based payments to the players in the
game. They assume rationality only in the weakest possible
sense: players do not play dominated strategies. This as-
sumption is common to virtually all of game theory. They
say an outcome is implemented if after the outcome-based
commitments, it is the dominant-strategy equilibrium in the
game. Clearly, given enough capital this external party can
implement any outcome, so the interesting question is what
is the least amount of capital k that the interested party
has to pay to implement a particular outcome? Interest-
ingly, they show that some outcomes can be implemented
with no capital at all – the reliability of the interested party
alone is sufficient to implement an outcome. The outcomes
for which this is the case are exactly the Nash equilibria of
the game.

We extend the notion of k-implementation by explicitly
modeling the interested party as one of the players in the
game, whom we call the implementor (hence internal imple-
mentation). The implementor is given the same power as
Monderer and Tennenholtz’s external interested party: the
power to commit to arbitrary outcome-based transfers to
the other players. We make the same rationality assump-
tion, that players do not play dominated strategies.

The second, proposed and studied by Moulin [4], takes
a slightly different approach: players may use action-based
money-burning as a cooperative tool. That is, if a player is
allowed to make binding action-based commitments to burn
money, can he improve the (completely mixed) equilibria of
the game for both players? He characterizes games which
admit such “self-punishments” that result in a Pareto im-
provement over the equilibria in the original game.

Moulin’s setting differs from ours in three important ways.
First, the solution concept considered is completely mixed



equilibrium, which lies on the opposite end of the spectrum
from the dominant-strategy equilibrium concept we assume
in this paper. In the same vein as Monderer and Tennen-
holtz, we want to make as little assumptions as possible with
regard to the rationality of the players. Secondly, the offers
are action-specific instead of outcome-specific, and thirdly
the offers are money-burning instead of transfers. Moulin
shows that under completely mixed-equilibrium these last
two differences do not matter, in that his results would be
the same if his assumptions matched ours. But for other
solution concepts these choices make a difference.

We tackle the question of what outcomes can be opti-
mally implemented for the benefit of the implementor. In
this work, we present surprising results demonstrating that
the power of implementation can bestow arbitrary gains for
the implementor, while either arbitrarily decreasing or in-
creasing social welfare and the utility of other players.

The paper is laid out as follows: in Section 2 we set our
definitions and model. In Section 3 we present our main
results and observations. We discuss a few of the many
interesting directions for future research in Section 4 and
conclude in Section 5.

2. DEFINITIONS AND MODEL
In this section we state our definitions and model. The

game theory definitions mostly follow [2].

Game theory
A game G is a triple (N,X,U) where N = [n] is the set of
players, X = X1× . . .×Xn, where Xi is the set of strategies
available to player i, and U is a tuple (U1, . . . , Un), where
Ui : X → R is the payoff function of player i. We assume
transferable utility, so that the payoffs of the players are
represented in the same currency. Where the players and
their strategies are understood, we will use G(U) to denote
a game in strategic form. A subscripted −j refers to the set
N\{j} of all players except j.

Let xi, yi be strategies of player i in the game G(U). We
say that xi dominates yi if Ui(xi, x−i) ≥ Ui(yi, x−i) for ev-
ery x−i ∈ X−i and there exists some x−i ∈ X−i such that
a strict inequality holds. yi is a dominated strategy if there
exists xi ∈ Xi that dominates it. xi is a dominant strategy
if it dominates all strategies yi(6= xi) ∈ Xi.

Let G be a game with payoff function vector V . X̄i(V )
will denote the set of non-dominated strategies for player i in
the game G(V ), and X̄(V ) = X̄1(V )× . . .× X̄n(V ). Ḡ(V ) is
the non-dominated game (N, X̄, V ), where V is understood
to mean the restriction of the payoff function to the smaller
strategy space X̄.

The pure safety value of i in the game G(U) is the largest
amount i can guarantee herself regardless of how the other
players in the game play using pure strategies (also known
as the pure minimax value), and is denoted αi(G(U)) =
maxxi minx−i Ui(xi, x−i). The non-dominated pure safety
value of i in the game G(U) is equal to the pure safety
value of i in the non-dominated game Ḡ(U): ᾱi(G(U)) =
αi(Ḡ(U)). This is the largest amount i can guarantee herself
if the players in the game avoid playing dominated strate-
gies. Clearly ᾱi(G(U)) ≥ αi(G(U)) for all i, G, and U .

Let G be a game. For each player i ∈ N , we define a
deviation matrix Di, where Di(x) = maxyi∈Xi(Ui(yi, x−i)−
Ui(xi, x−i)) for every outcome x ∈ X. Di(x) is the difference
in i’s utility between i’s best response to x−i and x. Di(x)

is the amount of utility i can gain by deviating from x. If x
is a Nash equilibrium, then Di(x) = 0 for all i.

The social welfare of an outcome x ∈ X in game G is the
sum of the payoffs in that outcome: SWx(G) =

P
i∈N Ui(x).

The social welfare of a game G is the sum of each player’s
non-dominated pure safety value: SW (G) =

P
i∈N ᾱi(G).

Our setting
Definition 1. An internal implementation Ij is a set of

offer matrices {Zi}i 6=j where j ∈ N is the implementor and
each Zi is a non-negative matrix the same size as X which
represents the outcome-specific offers from j to i.

Note that the implementor specifies a non-negative offer
matrix Zi for each player i 6= j, where non-negative here
simply means each entry is non-negative. The special case
where all Zi’s are all-zeros matrices is called the trivial im-
plementation. When G is a two-player game, we will drop
the subscript on the single offer matrix and refer to it simply
as Z. Ij denotes the space of all possible implementations
with implementor j.

Definition 2. The game G′ induced by implementation
Ij from game G is written G′ = Ij(G), where G′ = (N,X,U ′),
and U ′ is specified by U ′i = Ui + Zi for i 6= j and U ′j =
Uj −

P
i 6=j Zi.

Thus an induced game is simply the base game transformed
by an implementation.

Definition 3. Let Ij be an implementation in game G,
and let x = (x1, . . . , xn) ∈ X be a pure outcome. x is said
to be internally implemented in dominant strategies by Ij if
each xi is the dominant strategy in Xi for all i 6= j in the
induced game Ij(G).

Note that the definition does not require the implemen-
tor j to have a dominant strategy, since j is free to select
whichever action he wants. We define Ωj ⊂ Ij as the space
of all internal implementations of an outcome in dominant
strategies for player j. We also include the trivial implemen-
tation in Ωj .

Example 1. .

G :

C D

C 7, 7 0, 9
D 9, 0 3, 3

In this example, let player 1 (row player) be the implemen-
tor. One possible implementation she has is to implement
the outcome (C,C). Since player 2 has a profitable devia-
tion of 2 from (C,C) (to (C,D)), she will have to promise at
least 2 in (C,C). To make C a dominant strategy for player
2, she will also need to cover player 2’s deviation of 3 from
(D,C) to (D,D). Thus the implementation I1 is:

Z :

C D

C 2 + ε 0
D 3 + ε 0

which transforms the game to:

I1(G):

C D

C 5− ε, 9 + ε 0, 9
D 6− ε, 3 + ε 3, 3



Note that the implementor is free to choose whichever
outcome she wants in the strategy she made dominant for
her opponent. Although in this example she would derive
greater utility by choose (D,C) instead of (C,C), we still
consider I an implementation for (C,C) (and (D,C)) be-
cause she is free to choose either. In general, an implemen-
tation Ij that implements an outcome x = (xj , x−j) also
implements every other outcome (xk, x−j) for all k.

A major goal of this paper is to examine what a player can
achieve given the ability to transform the game to one whose
outcome is“clear”, using minimal rationality assumptions on
the players to define clear. As mentioned in Section 1, we
only assume that players do not play dominated strategies.
Because of this weak assumption of rationality, the result
of implementations that do not implement an outcome in
dominant strategies is unclear. Therefore, our main object
of study in this paper will be internal implementations that
implement an outcome in dominant strategies. An outcome
is said to be implemented in the game induced by an imple-
mentation if it implements x in dominant strategies.

When x is implemented in dominant strategies Ij , the
amount j actually has to pay is k =

P
i 6=j Zi(x), and we re-

fer to Ij as an internal k-implementation of x. We make the
obvious but important remark that the implementor doesn’t
have to pay all of the offers, only the offers in the imple-
mented outcome.

In k-implementation, the question is not which outcome
the external agent can implement, since the external agent
can implement any outcome with a sufficiently high value of
k (by promising the players a large amount in the desired
outcome). Instead, the value of interest for an outcome x
is the smallest number k for which a k-implementation of x
exists. The same is true for the implementor in internal im-
plementation, thus for every outcome x ∈ X we define k(x)
to be the smallest number k for which there exists an internal
k-implementation of x in dominant strategies. Although the
implementor can promise all other players a large amount
in the desired outcome, the implementor cannot profitably
internally implement all outcomes. Therefore the value of
most interest to us in this setting is maxx∈X Uj(x)− k(x).

An important note we must make is that in this paper
we focus solely on pure strategies, and pure safety levels.
That is, we do not allow for mixed strategies for the players,
even when those can generate a better safety level (as in
Matching Pennies) or dominate a pure strategy. A simple
way to extend our work to mixed strategies is to apply our
results to the mixed extension of the original game, with the
caveat that the implementor must be able to offer transfers
based on the other players’ mixed strategies and not only
based on their realizations.

The set of optimal implementations for j in game G is

I∗j (G) = argmax
Ij∈Ωj

ᾱj(Ij(G))

Note that the max is taken over Ωj , for reasons discussed
above. The reason we maximize αj(Ij(G)) instead of simply
the payoff in the implemented outcome is that for games
with an implemented outcome x, the implementor’s non-
dominated pure safety value reduces to the payoff in x, and
for the few games that do not have any implementations
except the trivial implementation, the non-dominated pure
safety value is a conservative value that is in line with our
minimal rationality assumptions.

The set of games transformed by an optimal implementa-
tion is written G∗j = {G∗ | I∗j (G) = G∗}, where I∗j ∈ I∗j .
Note that the set of optimal implementations is infinite,
since the non-realized offers can be arbitrary without af-
fecting the implementor’s payoff.

The payoff achieved by the implementor in these optimal
implementations will be denoted by

βj(G) = max
Ij∈Ωj

ᾱj(Ij(G))

The internal implementation value for player j in game G
is

IIVj(G) =
ᾱj(G∗j )

ᾱj(G)

where G∗j ∈ G∗j .
For a class of games G, the internal implementation of this

class of games is defined to be

IIV (G) = sup
G∈G,i∈N

IIVi(G)

Obviously IIVi(G) ≥ 1, because for the trivial implemen-
tation Z = 0, IIVi(G) = 1. Since we are maximizing over
the set of non-negative offer matrices, the IIV can only be
greater.

In two-player games we say that player 1 is the row player
and player 2 is the column player.

3. PROPERTIES OF INTERNAL IMPLEMEN-
TATION

As their names imply, k-implementation and internal k-
implementation are closely related. The following result for-
mally establishes that k-implementation is a strict subset of
internal k-implementation.

Theorem 1. Let G = (N,X,U) be a game, x ∈ X be
some outcome, and j ∈ N be the implementor. Then there
exists an internal k-implementation of x by j if and only if
there exists a k-implementation of x in G′ = (N\{j}, X ′, U ′),
where X ′ = X1 × . . .×Xj−1 ×{xj}×Xj+1 × . . .×Xn, and
U ′ is the restriction of the payoff vector U to the smaller
strategy space X ′.

Proof. (⇒): Let x ∈ X be an outcome. Assume there
exists an internal k-implementation of x by j in dominant
strategies. Let {Zi}i 6=j be the offer matrices corresponding
to this internal implementation. The exact same offer ma-
trices could be used by an external agent to k-implement x
in the subgame G′.

(⇐): Assume there exists a k-implementation of x in G′.
Then again, there exist offers that can be represented in offer
matrices {Zi}i 6=j for each player i in the game G′. These
same offer matrices constitute an internal k-implementation
of x in G.

Corollary 1. For a fixed outcome x = (x1, . . . , xn), im-
plementor j can internally k-implement x with:

k(x) =
X
i 6=j

Di(x)

Corollary 2. Let x∗ ∈ X be defined as follows:

x∗ ∈ argmax
x∈X

(Uj(x)− k(x))



An implementation that internally implements x∗ in domi-
nant strategies is an optimal implementation.

Proof. For each outcome x, the payoff j gets from in-
ternally implementing x in dominant strategies is Uj(x) −P

i6=j Di(x). An implementation which implements the out-
come that maximizes this value must be an optimal imple-
mentation.

Following the above discussion, constructing an imple-
mentation to implement x∗ in dominant strategies is straight-
forward. Each Zi is as follows: Zi(x

∗) = Di(x
∗) + ε and in-

surance offers Z(x∗i , x−i) = Di(x
∗
i , x−i) + ε for all outcomes

(x∗i , x−i) to make x∗ dominant, and 0 elsewhere.

Note this last result implies that finding an optimal im-
plementation is algorithmically trivial: to find the outcome
which maximizes Uj(x)−k(x) we simply compute it for every
outcome.

We wish to characterize exactly what powers the imple-
mentor has in our setting. What does the ability of making
outcome-specific transfers give the implementor? Observe
that when the implementor makes a transfer, he is both re-
moving some of his own utility and increasing the utility of
another player. In Moulin’s work, there was only disposal of
utility. In k-implementation, the players’ utilities are only
going up, since the external interested party can only in-
crease the players’ utilities. Internal k-implementation com-
bines both.

However, removal of the implementor’s utility is not a
source of power. (This is in contrast with Moulin’s setting,
where it is the only source of power.) This is because it
doesn’t help create dominant strategies for the other play-
ers in the game, since it doesn’t affect their payoffs. We are
not assuming that they use iterated removal of dominated
strategies, or any other stronger notion of rationality, but
only that players don’t play dominated strategies. There-
fore, removal of the implementor’s utility only hurts the im-
plementor, and is incorporated into the model to balance
the power he derives from being able to increase the utilities
of the other players.

In Section 2, we explained that we restrict our attention
to internal implementations of some outcome in dominant
strategies. The next result shows that for two-player games,
this doesn’t restrict implementation power at all since an in-
ternal implementation of an outcome in dominant strategies
is optimal over the whole set of implementations.

Theorem 2. Let G be a two-player game with implemen-
tor j. Then there exists an implementation I∗j ∈ Ωj which
is optimal over Ij:

ᾱi(I
∗
j (G)) = max

Ij∈Ij

ᾱi(Ij(G))

Furthermore, the offer matrix Z can be completely speci-
fied by two non-negative numbers ki and li, where ki is the
amount j has to actually transfer to i and li is the size of
each non-realized payment j has to offer i.

Proof. Without loss of generality let player 1 be the im-
plementor. Let I1 ∈ I1 be any implementation for player
1, and let G′ = I1(G) be the game induced by I1. ᾱ1(G′)
is the implementor’s payoff for this implementation, and by
definition this payoff is player 1’s pure safety level in Ḡ′.
Let (x̃1, x̃2) be an outcome that guarantees player 1 this

value: U1(x̃1, x̃2) = ᾱ1(G′). This outcome always exists
because we are using the pure safety level. Notice that
U1(x̃1, x̃2) ≤ U1(x̃1, x

′
2) for all x′2 ∈ X2, by definition of

(x̃1, x̃2). We now wish to show that player 1 can achieve
ᾱ1(G′) with an implementation I ′1 ∈ Ωj that implements an
outcome in dominant strategies. There are two cases: either
x̃2 is a best response to x̃1 or it isn’t.

In the first case, x̃2 is a best response to x̃1. Let I ′1 =
{Z}, where Z(x̃1, x̃2) = ε, Z(x′1, x̃2) = D2(x′1, x̃2) + ε for
all x′1( 6= x̃1) ∈ X1, and 0 everywhere else. Note that all
of these insurance offers can be set to the largest of them
(call it l2) without affecting player 1’s payoff (since they are
unrealized). By construction, (x̃1, x̃2) is dominant in I ′1(G),
and as ε → 0, β1(I ′1(G)) → β1(I1(G)). Here, k2 = 0 and l2
is defined above. This covers the first case.

Now assume that x̃2 is not a best response to x̃1. Then
there is some other outcome x̂2 that is a best response to x̃1.
Now construct I ′1 exactly as before except for (x̃1, x̂2) instead
of (x̃1, x̃2): Z(x̃1, x̂2) = ε, insurance payments Z(x′1, x̂2) =
D2(x′1, x̂2) + ε for all x′1( 6= x̃1) ∈ X1. Similarly to before,
(x̃1, x̂2) is dominant in I ′1(G), and as ε → 0, β1(I ′1(G)) →
U1(x̃1, x̂2). Since U1(x̃1, x̂2) ≥ U1(x̃1, x̃2) = β1(I1(G)), we
are done.

Thus in two-player games, the weak rationality assump-
tion doesn’t restrict the player’s implementation power at
all.

We will now discuss a sufficient structure of internal im-
plementations of an outcome in dominant strategies. Let Ij

be such an implementation with implementor j, and let x
be the implemented outcome. For every i 6= j, xi needs
to be dominant in the game induced by Ij . Therefore,
Zi(x) = Di(x) + ε, and Zi(xi, x

′
−i) = Di(xi, x

′
−i) + ε for

all outcomes (xi, x
′
−i) such that x′−i 6= x−i are sufficient.

For all other outcomes y, we can take Zi(y) = 0. Thus,
we only have two kinds of offers: one, in x, will actually
be realized. We will refer to this as ki. The other offers,
those in outcomes (xi, x

′
−i) such that x′−i 6= x−i, are needed

to ensure that xi is dominant in the game induced by Ij .
They insure player i against any possible deviation by any
of the other players, and for this reason we will refer to them
as insurance offers. Let li be the largest insurance offer to
player i. Since insurance offers aren’t realized, they can be
arbitrarily high without affecting the implementor’s utility.
Thus we can set all insurance offers to li and xi will still be
dominant.

These implementations can be summarized by two vec-

tors of numbers ~k = (k1, . . . , kn) and ~l = (l1, . . . , ln). ~k
roughly represents how “far” the implemented outcome (call
it x) is from being a Nash equilibrium in the original game,
since

P
i ki is the sum of profitable deviations from x that

the other players have in the original game. On the other
hand, li is the amount j has to offer in Πk|Xk|/Xi outcomes
in order to make xi ∈ Xi a dominant strategy for player

i. ~l can be thought of as the distance x is from being a
dominant-strategy equilibrium after being transformed to a
Nash equilibrium. Note that kj and lj are both 0 and are
included only for simplicity.

Next we characterize the internal implementation value of
certain interesting classes of games.

Theorem 3. 1. Let Z be the class of two-player zero-
sum games. Then



IIV (Z) = 1

2. Let G be a game such that the highest payoffs for all
players coincide in the same outcome. Then βi(G) =
maxUi for all i ∈ N . Thus, if we let C be the class of
such “common-maximum” games,

IIV (C) =∞

3. Let T be the class of 2× 2 games. Then

IIV (T ) =∞

Proof. 1. Fix G to be a zero-sum game. Without loss
of generality, let player 1 be the implementor. For ev-
ery outcome (xi, xj) ∈ X, player 1’s cost to internally
implement (xi, xj) in dominant strategies is:

= U1(xi, xj)−
„

max
xk∈X2

(U2 (xi, xk)− U2(xi, xj))

«
= U1(xi, xj)−

„
min
xk

(U1 (xi, xj)− U1(xi, xk))

«
= U1(xi, xj)−

„
U1(xi, xj)−min

xk

U1(xi, xk)

«
= min

k
U1(xi, xk)

Thus player 1’s payoff from an optimal implementation
is:

β1(G) = max
x1∈X1

min
x2∈X2

U1(x1, x2)

β1(G) = α1(G)

and thus IIV1(G) = ᾱ1(G)/ᾱ1(G) = 1 (since in zero-
sum games, αi(G) = ᾱi(G)). A symmetric argument
applies to player 2, and this proof naturally extends to
constant-sum games.

2. In any common-maximum game the outcome with the
highest payoffs for all players is clearly a Nash equi-
librium. Therefore, it is internally implementable for
every player for 0 cost, and all that is needed are in-
surance offers. Taking any common-maximum game
with a parameterized maximum payoff x → ∞ for all
players yields the result.

3. Let G be the following Prisoner’s Dilemma.

C D

C x,x 0,x+ 1
D x+ 1,0 1,1

In this game, ᾱ1(G) = 1 since (D,D) is the dominant
outcome, and β1(G) = x − ε by internal implemen-
tation of (D,C). Thus IIV1(G) = x, and as x → ∞,
IIV1(G)→∞. Since the game is symmetric, the same
argument holds for player 2. The same result natu-
rally extends to games with larger strategy spaces and
games with more players.

The result IIV (Z) = 1 confirms the intuition that when
the interests of two players are strictly opposed, there are
no profitable internal implementations. Whatever gains are
to be won from internal implementation power are lost to
compensate the other player’s loss. In contrast, βi(G) for
any G ∈ C and any i ∈ N is simply the maximum payoff
in the game. In this class of “common-maximum” games,
where the interests of the players are strongly (though not
completely) aligned, every player achieves their maximum
possible βi(G) no matter who implements.

The previous results are evidence of the extreme power
of internal implementation. This implies that in general,
in strategic situations where one player can transform the
game by making outcome-specific transfers, the implemen-
tor stands to profit a lot. But the following result shows,
counterintuitively, that in some games a player would prefer
another player have internal implementation power rather
than have it themselves.

Theorem 4. There exists a bimatrix game G with players
i, j such that ᾱi(I

∗
j ) > ᾱi(I

∗
i ), where I∗k ∈ I∗k for k = i, j.

Proof. Let G be the following game:

L R

U 50,100 0,0
D 101,-50 1,51

ᾱ1(G) = 1 and ᾱ2(G) = 51. An optimal implementation is
I∗1 = {Z} where ZD,L = 102 and Z = 0 elsewhere, and the
resulting payoff in the induced game I∗1 (G) is (50, 100). The
best implementation for player 2 is the trivial implementa-
tion I∗2 = {0} where 0 is the zero matrix, and it results in
the same payoff as in G. Since 100 > 51, player 2 would
benefit more from player 1’s optimal implementation more
than any implementation she could make.

Since the increase in the implementor’s payoff as a result
of implementation can be arbitrarily high, the same is true
for the increase in the social welfare as a result of implemen-
tation. However, the social welfare can also decrease, even
arbitrarily low.

Theorem 5. Let j be the implementor. There exist G
and G∗, where G∗j ∈ G∗j , such that

SW (G∗j )− SW (G)→ −∞
Proof. Let G be the following game.

L R

U 3,x− 1 0,x
D 6,−1 1,4

In G, (D,R) is the dominant-strategy equilibrium and leads
to payoffs (1, 4) and hence SW (G) = 5. But an optimal
implementation for the row player is I∗1 = {Z} where Z is
the following offer matrix:

L R

U 1 + ε 0
D 6 0

which transforms the game to the induced game G′:

L R

U 2− ε,x+ ε 0,x
D 0,5 1,4



and the dominant-strategy equilibrium is now (U,L) for a
payoff of (2 − ε, x + ε) and thus SW (G′) = 2 + x. Taking
the limit x→ −∞ yields the result.

Now we wish to briefly consider how varying the setting
studied in this paper affects the power of the implementor.
There are two main components of our setting that we can
vary: the first is the assumptions made on the rationality
of the players, and the second is the exact specification of
the ability of the implementor. We chose to assume only
that players don’t use dominated strategies and that the
implementor can offer outcome-specific transfers, but other
choices can be made. We make two interesting observations
about particular settings.

The first result is in the setting where the implementor
can make action-based self-punishments (utility burning).
As mentioned above, if we keep our rationality assump-
tion the same in this setting, the implementor can’t im-
plement anything because self-punishments don’t affect the
other players’ payoffs. To make this interesting, we need
to strengthen our rationality assumption. We consider the
weakest possible strengthening: players assume other play-
ers don’t use dominated strategies. This is tantamount to
allowing the players two rounds of iterated removal of domi-
nated strategies (first they remove everyone else’s dominated
strategies, then they remove their own strategies that are
now dominated). An implementation in this setting will be
referred to as a self-punishing implementation, and consists
of action-based self-punishments. The following result es-
tablishes that this setting is exactly equivalent to the special
case of internal 0-implementations (where the implementor
doesn’t make any realized payments).

Theorem 6. Let G be a two-player game, and let x ∈ X
be an outcome in G. Then there exists a self-punishing im-
plementation of x in G if and only if there exists an internal
0-implementation of x in G.

Proof. Without loss of generality, let player 1 be the
implementor.

(⇒): Assume there is a self-punishing implementation of
x = (x1, x2) in G. Note that by definition any self-punishing
implementation must result in x2 being a dominant strategy
for player 2 after the self-punishments. In particular, this
means x2 is a best response to x1. Now consider the subgame
G′ = (N ′, X ′, U ′), where N ′ = {2}, X ′ = {x1} × X2, and
U ′ is the restriction of the payoff vector U to the smaller
strategy space X ′. Since x2 is a best response to x1, x
is a Nash equilibrium of this subgame. Thus there is a 0-
implementation (in the k-implementation sense) of x in G′.
By Theorem 1, there is also an internal 0-implementation of
x in G.

(⇐): Assume there is an internal 0-implementation of x in
G. This means there are non-realized (insurance) offers that
make x2 dominant. Therefore x2 is a best response to x1 (if
it wasn’t, then there would be no way of making x2 dominant
without an offer in x). If player 1 commits to x1 by offering
large action-based self-punishments in all x′1( 6= x1) ∈ X1,
this would constitute a self-punishing implementation of x
in G.

The second result is that our rationality assumption (i.e.
only assuming players don’t play dominated strategies) is
not a limiting factor in the power of internal implementa-
tion. Specifically, if we strengthen our rationality assump-
tion to the one above (two rounds of iterated removal of

dominated strategies), internal implementation is no more

powerful. Let ¯̄G denote the game G after two rounds of iter-
ated removal of dominated strategies, and let ¯̄αi be i’s pure
safety value in this game.

Theorem 7. Let G be a two-player game with implemen-
tor j, and let Ij ∈ Ωj be an implementation. Then:

¯̄αj(Ij(G)) = ᾱj(Ij(G))

where ¯̄αj(Ij(G)) is j’s pure safety value in
¯̄
G′ (G′ =

Ij(G)).

Proof. Without loss of generality j = 1. Assume there
is an internal k-implementation of x using the strengthened
assumption of rationality. Then by definition, after imple-
mentation the opponent must have a best response to the
implementor’s non-dominated strategies, and Z(x1, x2) =
k. A regular internal implementation with Z(x1, x2) = k,
Z(x′1, x2) = D2(x′1, x2) + ε for all x′1 ∈ X1 and 0 every-
where else is an internal k-implementation of x. Since this
holds for all x, it holds in particular for x∗ (where x∗ is an
optimal outcome to internally implement), and the result
follows.

4. FUTURE WORK
The results presented already offer insight into the power

of internal implementation, but there are a lot of potentially
rich directions to pursue. Here we highlight a few such di-
rections that we are particularly interested in.

In the current work we made very weak assumptions about
the rationality of the players (we only assumed that play-
ers do not play dominated strategies). In contrast, Moulin
[4] made very strong assumptions by assuming players play
completely mixed equilibria. In between these two extremes
lies a spectrum of assumptions that one could make about
the rationality of the players. It would be interesting and
useful to understand how a player’s ability to transform
the game to his advantage varies with the rationality as-
sumptions of the players. Does such an ability increase
monotonically with the rationality of the players? Another
axis which would be interesting to explore is the particu-
lar abilities we give to the implementor. Moulin’s setting
has action-specific self-punishments, and in ours we have
outcome-specific transfers. We think it would be beneficial
to investigate how “implementation power”, or its analog,
varies along these two axes. Also related to this question is
to address the issue of incorporating mixed strategies into
our model, which we only briefly addressed.

The basic internal implementation setting presented in
this paper is inherently “unfair”, in that only one player
has internal implementation power. What if more than one
player is given internal implementation power? It seems
natural to consider the case in which more than one player
has the ability to change the game being played, and we
believe it would be interesting to model this. Consider the
following setting: given a game G, player j is given inter-
nal implementation power, and she transforms the game to
G′ with some implementation Ij . Then, another player k
transforms this game to G′′ with some implementation Ik,
and so on. There are many interesting questions in this set-
ting. Does this process converge? To what? How sensitive
or robust is it to the order in which the players implement?



This setting is a form of bargaining and connections to the
existing bargaining literature should be explored.

Finally, since internal implementation assumes transfer-
able utility, it is naturally related to coalitional game theory
and its related concepts such as the core. Such links should
be explored in future research.

5. CONCLUSIONS
In this paper, we introduced the simple and natural inter-

nal implementation setting, which fits into the literature on
constrained mechanism design but differs from it by explic-
itly modeling the designer as part of the game of interest. We
showed that internal implementation is in general very pow-
erful, despite making the weakest possible assumption on
the rationality of the players. However, it is surprisingly not
always preferable to have internal implementation power:
we showed an example where one player does not have a
profitable internal implementation, yet would profit greatly
if the other player in the game had internal implementation
power. We also showed the internal implementation value
for several interesting classes of games, and examined its
effects on players’ utilities and social welfare.
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