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ABSTRACT
We study the patterns by which a user consumes the same item re-
peatedly over time, in a wide variety domains ranging from check-
ins at the same business location to re-watches of the same video.
We find that recency of consumption is the strongest predictor of
repeat consumption. Based on this, we develop a model by which
the item from t timesteps ago is reconsumed with a probability pro-
portional to a function of t. We study theoretical properties of this
model, develop algorithms to learn reconsumption likelihood as a
function of t, and show a strong fit of the resulting inferred function
via a power law with exponential cutoff. We then introduce a notion
of item quality, show that it alone underperforms our recency-based
model, and develop a hybrid model that predicts user choice based
on a combination of recency and quality. We show how the pa-
rameters of this model may be jointly estimated, and show that the
resulting scheme outperforms other alternatives.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statistics—
Stochastic Processes; H.1.m [Information Systems]: Models and
Principles

Keywords
Repeat consumption; recency; quality; copying process

1. INTRODUCTION
We all have our favorite things: restaurants we eat at regularly,

songs and artists we listen to frequently, books and authors we read
over and over again, websites we visit daily. We manage these fa-
vorites carefully, perhaps finding that an old standby has lost its
novelty and must be shelved for a while, or perhaps evolving our
tastes and making more permanent changes. Our consumption pat-
terns over time are characterized by a mixture of preferential and
novelty-seeking behaviors.
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In this paper, we seek to understand the dynamics of repeat con-
sumption through study of a wide variety of domains ranging from
YouTube videos to restaurant searches to public “checkins” at phys-
ical locations. In our setting, a user must select a resource from
a universe of both new and previously consumed candidates. We
do not consider how a user selects among novel candidates, and
we do not consider the process that determines when to select a
novel candidate versus a known quantity. We focus specifically on
understanding repeat consumption: given that a user will select a
previously-consumed item, which item will it be?

Our intuition suggests that a user’s selection of an item to recon-
sume depends on two key factors. First, the item has some inherent
quality or attractiveness (quality), and second, the user has some
past history with the item (recency).

In fact, recency of previous consumption emerges in our work as
the most critical factor in characterizing repeat consumption. We
find empirically that the sequences of users’ consumptions in our
data exhibit very strong recency effects, and we develop a cache-
based analysis technique to measure them.

A key question is how the current attractiveness of reconsuming
an item depends on multiple past consumptions of it. These past
consumptions could interact with one another in a complex man-
ner, perhaps producing a super-linear attractiveness as consuming
this item becomes habitual, or perhaps producing a sub-linear at-
tractiveness as over-consumption leads to ennui. In fact, we show
that the attractiveness of an item due to a series of historical con-
sumptions is well-approximated by a linear combination of con-
tributions from each past consumption, where each contribution
depends only on the recency of the consumption, and these con-
tributions are monotonically decreasing in recency according to a
particular form. We develop techniques to characterize the nature
of these individual contributions, and show that over a wide range
of data sources the empirical likelihood of consumption drops in-
verse polynomially in the number of intervening consumptions of
other items up to a certain critical point, at which point the decay
becomes exponential.

Next, we identify inherent item quality as a second key factor in
characterizing repeat consumption. We present a general technique
to learn a user-independent item quality score that interacts with the
recency score described above. We do not consider personalized
notions of item quality, although this appears to be an interesting
possible direction for future work.

Our primary contribution is a single model that combines factors
of recency and quality into an overall prediction of likelihood of
reconsuming each of a set of candidates. This model is shown to
have significantly higher accuracy than a number of alternatives.

A model based on recency alone. Our recency-based model may
be seen as a variant of “copying” models. The model is empirically



accurate, but also admits theoretical analysis; we prove theorems
that characterize its limiting behavior as the number of consump-
tions goes to infinity. We abstract the incorporation of new items
by assuming that the user chooses to consume a new item with
probability ↵, and with remaining probability chooses to repeat a
prior consumption. The item to be consumed again is chosen from
i steps ago with probability proportional to w(i) for some function
w. We show that in this model, if the value of w drops quickly,
then exactly one item will be consumed infinitely often, although
this “winning” item may depend on the random choices of the pro-
cess. On the other hand, if w drops slowly, then the user will con-
tinuously cycle through a period of interest in novel items before
eventually discarding them forever. We find that all empirical val-
ues w(i) from our estimation procedures correspond to this latter
state, suggesting that “familiarity breeds contempt” is an accurate
characterization of the parameter regime in which people typically
operate. Further, fitting w using a power law with exponential cut-
off as described above results in a model requiring only three pa-
rameters that provides explanations nearly identical in quality to
the model produced by pointwise inference of w at all possible lo-
cations.

Note that our model is different from the copying models intro-
duced by Simon [17] in that the choice of items in our model is de-
termined by a combination of frequency and recency. Our estima-
tion procedure learns the marginal increase in likelihood of copying
an item that occurred more recently, compared to another item that
occurred often but long ago.

To close our study of recency in repeat consumption, we raise
two questions regarding the accuracy of our proposed process.

First, we ask whether our copying process accurately captures
the mechanisms by which human consumption is biased to repeti-
tion of recently consumed items. We imagine there is a complex
interplay between becoming bored or satiated with an item, versus
enjoying the familiarity of the same item. In our copying model, the
likelihood of consuming an item that occurred 3 time-steps ago, 4
time-steps ago, and 11 time-steps ago is w(3) + w(4) + w(11), a
simple linear combination, while as described above there might be
more complex mechanisms that cause the resulting likelihood to be
some more complicated function w0

(3, 4, 11). We develop some
tests to display inaccuracies in our model, and show that these tests
show surprisingly small deviations between copying and actual hu-
man behavior for some difficult instances.

Related to this question, we also ask whether the first exposure
to an item will have significantly different properties than later ex-
posures. Perhaps a user who first encounters a fantastic new song
will listen to it multiple times with an appreciation of its bold new
sound; later, this user might repeatedly consume the same song
with an appreciation of its familiarity, and a nostalgic memory of
the initial exposure. These two processes might behave fundamen-
tally differently. We study this question and find that first exposures
are in fact qualitatively different, but that the magnitude of the dif-
ference is limited in terms of likelihood to reconsume.
Comparing recency to quality. Next, we consider a quality-based
model, where the likelihood of consuming item e is proportional
to a per-item quality score s(e). We show how the function s
may be estimated in a manner similar to the one used for w above,
and we empirically compare the performance of the recency-based
model versus the quality-based model. Our results show that re-
cency alone is significantly more accurate than quality alone.
Combining recency and quality. Finally, we present a natural hy-
brid model in which an item e occurring i steps ago is chosen with
probability proportional to w(i) · s(e), for some unknown func-
tions w and s which must be jointly estimated. While we could

simply measure the marginal distributions of item choice as a func-
tion of recency and item ID, and use these measurements as w and
s respectively, we show that these marginals will in general (and
in practice) significantly underperform the correct learned forms of
the hidden functions w and s.

Note that items are chosen with probability proportional to the
combined score w(i) · s(e), but the constant of proportionality de-
pends on the user’s environment. A user faced with many unattrac-
tive alternatives may be likely to return to a medium-quality restau-
rant she visited two weeks ago, while another user faced with a
highly attractive slate of recently-visited candidates may have neg-
ligible probability of returning. Our estimation procedure naturally
accounts for the nature of the competing alternatives in determining
how w and s should be modified based on a piece of evidence.

Our inference procedure for this model is based on alternating
gradient descent of the quality-based scores and the recency-based
weights. We compare likelihoods of this procedure with recency
alone, quality alone, and two other natural candidate models, and
show that our combined scheme is able to learn weights with sig-
nificantly better likelihoods over real data. This finding matches
our intuition that it is impossible to understand repeat dynamics
without incorporating both inherent quality and recency.

2. RELATED WORK
The problems of how and why people repeatedly consume cer-

tain goods or engage in repeated experiences have been approached
from several angles in various disciplines. In [16], the authors
conduct a qualitative investigation into why people engage in re-
peated hedonic experiences at all. They relate that many of their
interview subjects had trouble expressing in words how positive
their re-experiences sometimes are, and often “resorted to physical
movements like lifting their arms and bodies up to convey an up-
lift in emotion and mood”. Research such as this suggests that the
sheer pleasure that sometimes accompanies reconsumption makes
it a worthwhile subject, as enabling people to reconsume more of-
ten, or in more domains, could increase their enjoyment of life.
Hedonic psychology. Determining how people make consumption
decisions for personal enjoyment has become the domain of an en-
tire sub-field of psychology unto itself, called hedonic psychology,
which has been spearheaded by Daniel Kahneman [11,15]. He and
his collaborators showed that people’s retrospective evaluations of
their enjoyment of song sequences differed from their evaluations
of their enjoyment of the same sequences at consumption time—
simplifying a bit, people prefer exploitation at consumption time,
but remember enjoying exploration more after the fact [15].

If repeatedly consuming an item in a hedonic setting is to be
used as an indicator of enjoyment, a basic prerequisite question
to understand is: how does the utility of consuming something
vary as a function of how many times it has been consumed in
a row? In [9], the authors investigate this relationship for vari-
ous food items over long-term time periods. More generally, the
study of “variety-seeking” behavior has a long history in psychol-
ogy [12–14].

The classic exploration versus exploitation tradeoff that emerges
again in our setting has been studied in depth in the optimization
literature. In [6], the authors study how the tradeoff is mediated in
the brain. In [7], the authors develop a model to explain how users
choose products in a setting where users influence each other and
users get bored of consuming the same products over time.
Brand choice. The work with the most similar style of analysis to
ours is from the brand choice literature, in which scholars have been
interested in explaining individual consumer purchasing patterns



since the 1950s [4]. The basic problem is to explain a sequence of
consumer purchasing decisions over time within a narrow product
category [5, 10, 22]. An important step was taken in [3], in which
Bass introduced the idea that consumer choice can be a stochastic
process, whereas previously it was either implicitly or explicitly
assumed that every purchase could be explained deterministically.
A major difference from our work is that most of the brand choice
literature assumes a very small set of brands consumers can choose
from, whereas in our setting the candidate set of items is often large
or essentially unbounded, making brand choice models impractical
for our purposes.
Repeat queries in web search. There is a rich line of work fo-
cused on understanding repeat behavior on the web: re-searching
queries, web site revisitation, and refinding patterns have all been
explored in the information retrieval and the web mining commu-
nities. Some of the earliest work on these topics was carried out by
Teevan et al. [18,19], who studied query logs to find repeat queries.
They found that more than 40% of the queries are repeat queries.
In our work we also use direction queries in maps and Wikipedia
clicks to study, and we find a comparable percentage of repeat be-
havior in our domains. The notion of re-finding information with
repeat queries was explored by Tyler and Teevan [21], who identi-
fied different types of re-finding tasks.
Repeat website visits. Turning to repeat website visits, a large-
scale analysis of revisitation patterns was carried out by Adar, Tee-
van, and Dumais [1], who classified websites based on how often
they attract revisitors. The relationship between the content change
in Web pages and people’s revisitation to these pages was also ex-
plored in [2]. In most of the previous work on repeat behavior on
the web, the main emphasis was on empirical analyses, whereas
we are mainly concerned with developing a parsimonious model to
explain the repeat behavior we observe in our domains of interest.

3. DATA

3.1 Datasets
To study consumption patterns over time, we collected data de-

scribing individual consumption histories in a variety of settings,
ranging from YouTube video-watching to restaurant searching to
public check-ins. We tried to study the largest and most diverse
group of datasets possible, to ensure that our analyses and models
reflect properties of consumption behavior in general, rather than
the idiosyncrasies of any particular domain.

All of our datasets are of the following form: a single line con-
tains a single user’s complete consumption history in chronologi-
cal order, where each consumption activity is annotated with the
item consumed, the time of consumption, and possibly some meta-
data about the item consumed. Some of our datasets are publicly
available, so others can reproduce our work. Since our focus is on
aggregate behavior, no user identities are present in our data, and
precautions were taken so that they cannot be recovered from the
data. We describe each of the datasets in detail below.

BRIGHTKITE. BrightKite is a (now defunct) location-based so-
cial networking website (www.brightkite.com) where users
could publicly check-in to various locations. The item consumed
in this case is the check-in location given by its anonymized iden-
tity and geographical coordinates. This dataset is publicly available
at snap.stanford.edu/data/loc-brightkite.html.

GPLUS. In Google+ (plus.google.com), users can check-
in to physical locations, and can also choose to make a check-in
public. This dataset consists of all public check-ins made by users
on Google+, and is publicly available through an API. Here, each

Dataset #users #unique frac unique time
items / user span

BRIGHTKITE 51.4K 773K 0.55 2008–2010
GPLUS 18.4K 1.81M 0.51 2006–2013

MAPCLICKS 431K 216K 0.62 2006–2013
SHAKESPEARE 6403 26 0.31 1589–1613

WIKICLICKS 852K 529K 0.88 2005–2013
YES 15.8K 75.2K 0.79 2010–2011

YOUTUBE 696K 1.44M 0.83 2011–2013

MAPCLICKS-FOOD 298K 36.9K 0.68 2011–2013
YOUTUBE-MUSIC 694K 497K 0.78 2011–2013

Table 1: Some details of the datasets.

item is again the check-in location visited by a user, and consists of
the identity of the location if available (for example, the name of a
restaurant) and its geographical coordinates.

MAPCLICKS. This is a dataset comprised of clicks on businesses
on Google Maps. We take all the map clicks on business entities
(say, restaurants, movie theaters) issued by an anonymized user; the
interpretation is that a click on a business entity implies a form of
consumption intent. The consumed item is the anonymized identity
of the business entity. For privacy purposes, we only consider enti-
ties clicked by at least 50 distinct users and only keep users with at
least 100 such clicks. A subset of this data is MAPCLICKS-FOOD,
where we restrict our attention to clicks on restaurant entities.

SHAKESPEARE. As an illustration of a dataset with repetitions,
but which was not generated by consumptions, we consider the text
of Shakespeare’s works (available at shakespeare.mit.edu)
as a baseline. Here, each sentence is considered to be a user and
each letter in the text is considered to be an item; we assume that
the letters are generated at consecutive timestamps. The purpose
of comparing with this baseline is to distinguish genuine properties
of consumptive behavior from artifacts of examining sequences of
repeated items.

WIKICLICKS. This dataset comprises all the clicks on English
Wikipedia content pages by Google users; the interpretation is that
a click corresponds to the consumption (viewing) of the page. Again,
for privacy purposes, we only look at Wikipedia pages clicked by
at least 50 distinct users and users with at least 100 clicks.

YES. This data consists of radio playlists from hundreds of ra-
dio stations in the United States, obtained from (a now defunct)
radio station delivery site yes.com through their public API (the
dataset is available at www.cs.cornell.edu/~shuochen/
lme/data_page.html). We consider each radio station a user
and the sequence of songs they played as the consumption history.

YOUTUBE. This dataset comprises videos watched on YouTube.
We consider the last 10,000 videos watched by an anonymized user
with at least 100 video watches. We only consider videos watched
for more than half of their length as consumptions. The actual data
consists of an anonymized identity of the video, where for privacy
reasons, we once again restrict ourselves to videos watched by at
least 50 distinct users. A subset of this data is YOUTUBE-MUSIC,
where we restrict our attention to music videos.

Summary statistics of all the datasets are provided in Table 1.

3.2 Characteristics
We first outline some basic characteristics of our data. Figure 1

shows the complementary cumulative density function (CCDF) of
the number of the consumptions and the number of unique con-
sumptions (all curves are plotted as a fraction of the maximum
number of unique consumptions) in all the datasets. First, note that
the number of unique consumptions has a heavy tail, except for
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Figure 1: Distribution of the number of items and the number of
unique items consumed, expressed as a fraction of the maximum.

YES since radio stations tend to heavily repeat a small number of
popular songs. Both the number of items and the number of unique
items are much higher for low-cost activity like video watching
as opposed to restaurant/business intents. Also, the difference be-
tween the total consumption and unique consumption curves shows
that most users exhibit significant repeat consumption.

Figure 2 shows the CCDF of the number of times an item was
consumed in various datasets. We observe that, except the base-
lines, the item consumption is heavy-tailed and quantitatively simi-
lar across our datasets. (The tail behavior of YES is because of data
collection artifacts and YOUTUBE was capped at 1,000 videos per
user.)

Figure 3 shows the distribution of fraction of repeat consump-
tion for all the datasets. In YOUTUBE, for example, the concentra-
tion around the peak at 0.10 indicates that for most users, approx-
imately 10% of their consumptions are reconsumptions. The var-
ious datasets display strikingly different levels of reconsumption;
this is encouraging evidence that our datasets span the spectrum of
reconsumption behavior, and hence that our resulting analyses and
models will be as general as possible. Despite the significantly dif-
ferent means and variances, it is possible to fit these curves with a
Poisson distribution with different parameters. As we will see later,
our models are able to capture this wide ranging variety of repeat
consumption behavior across different datasets.

3.3 Popularity
Now we consider the effect of an item’s popularity on its con-

sumption. Here, we mean popularity at an individual level, so
that a user’s favorites are more “popular” than things she consumes
only once. Are popular items—those that a user has already con-
sumed many times—likely to be repeatedly consumed again in the
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Figure 2: Distribution of the number of times an item is consumed.
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Figure 3: Distribution of the fraction of repeat consumptions.

future? One theory is that “past performance predicts future re-
sults”; if a user consumed an item many times in the past, in the
absence of any additional information, we should expect it to be
likely to be consumed again. However, a plausible alternative the-
ory is that users are variety-seeking: once they have consumed an
item enough times, they prefer exploring for new things over ex-
ploiting what they already know. (Another plausible hypothesis is
that even non-variety-seeking users must satiate even their favorite
items at some point: one often does not want to listen to the same
song, or watch the same video, or eat at the same restaurant many
times in a row. We will examine this more directly in the following
section.) To answer this empirically, we examine the probability of
consuming an item as a function of its popularity in an individual’s
sequence examined so far. Figure 4 shows the curves for a few
datasets. We observe a strong popularity effect: if an item is pop-
ular (rank is low), then the probability of consuming it again next
is high. We do not observe variety-seeking behavior when we con-
sider the rank of popularity; the probability of reconsuming an item
is monotonically decreasing in its rank. In Section 4.1, we consider
a consumption model that is purely based on item popularity.

3.4 Satiation
As mentioned above, it’s plausible that users eventually tire of

their favorite items. In previous work, researchers have either ob-
served or modeled user satiation or boredom resulting from over-
consumption of an item [5, 7, 13, 14]. We check to see whether
we also observe satiation in our datasets by computing the empiri-
cal probability of continuing a run of repeated consumptions of the
same item as a function of the length of the run. In Figure 5, we
show this curve for several of our datasets.

If users are satiating on items, we expect to see some k for which
the probability of continuing runs decreases as the run length ex-
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Figure 5: Lack of satiation in MAPCLICKS, BRIGHTKITE, and
GPLUS.

ceeds k. Instead, however, this function is monotonically increas-
ing in k, indicating that our datasets are not domains in which sati-
ation plays an important role.

3.5 Recency
Finally, we discuss a pervasive pattern exhibited in all of our

datasets: recency, the tendency for more recently-consumed items
to be reconsumed than items consumed further in the past. It isn’t
entirely straightforward to quantify the amount of recency exhib-
ited by a set of consumption histories—one must account for the
underlying item distribution, and be able to interpret any result-
ing statistics, etc. To address these issues, we devise the following
cache-based analysis technique. In what follows, we process con-
sumption sequences one at a time.

We consider a cache of size k and an input sequence of items (a
consumption history). We use the cache to process the sequence,
where if an item is present in the cache, it is considered to be a “hit”,
otherwise it is a “miss”. For cache replacement, we use the optimal
offline policy, i.e., replace the cache item that occurs furthest in the
future. For a reasonable choice of k, the ratio of hits to misses is
then correlated with the degree to which recency in exhibited in the
sequence; the more prevalent recency is, the higher the proportion
of hits we expect to see. However, note that the ratio of cache hits
to misses depends on the number of unique items present in the
sequence—the fewer unique items present, the more recent recon-
sumptions must be, due to a pigeonhole principle effect. Thus, to
compare between sequences and datasets with different numbers of
unique items, we use a “normalized hit ratio” as our measure of re-
cency, where we divide by the upper bound on the cache hit-to-miss
ratio (i.e., the hit-to-miss ratio an infinite cache would have). Note
that this upper bound is equal to 1�u/c, where u is the number of
unique items and c is the total number of consumptions.

However, on its own this measure is still difficult to interpret.
To establish a baseline to compare the normalized hit ratio against,

we compute the same ratio for randomly permuted versions of the
original sequences. Any differences between the hit ratio on the
original sequences and permuted sequences can then be attributed
to differences in recency, since the distribution of items consumed
in both sets of sequences is the same. We also compute a sepa-
rate baseline to account for the most heavily consumed items: we
calculate and report the fraction of hits when the cache is fixed to
always contain the top k most frequently consumed items.

Figure 6 shows these curves as a function of the cache size k
for MAPCLICKS and BRIGHTKITE, and for comparison, SHAKE-
SPEARE and YES. Clearly, MAPCLICKS and BRIGHTKITE ex-
hibit a lot of recency: the normalized hit ratio is much higher on
the original sequences than the permuted versions. Interestingly,
caching on the permuted sequences is still higher on this measure
than the stable top-k cache, suggesting that temporally “local” pref-
erences (recently consumed items) are more important than tempo-
rally “global” preferences (all-time favorites). For SHAKESPEARE,
since the consumption is contrived, there is no recency (the real and
permuted curves are near-identical), which both validates our mea-
sure as capturing the amount of repeat consumption, and shows
that the separations in MAPCLICKS and BRIGHTKITE are non-
trivial. In the YES dataset, the real and permuted curves are differ-
ent for an interesting reason: radio stations actually enforce anti-
recency behavior, since they do not want to repeat the same songs
too soon, lest their listeners tire of them and listen to something
else. The behavior of caching for all the other datasets are in line
with MAPCLICKS and BRIGHTKITE. This analysis indicates that
the consumption of items strongly exhibit recency, which we will
model in Section 4.1.
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Figure 6: Normalized hit ratio as a function of cache size for four
different datasets. Recency is clearly present in MAPCLICKS and
BRIGHTKITE, and absent from SHAKESPEARE and YES.

4. CONSUMPTION MODELS
We now propose a family of models that incorporate our empir-

ical findings of recency and popularity to explain repeat consump-
tion behavior. Our goal in this section is to develop a mathematical
framework that is simple yet powerful enough to explain the pat-
terns of reconsumption present in the data.



Our framework begins with a fixed vocabulary E of items. The
consumption history for a user u is a sequence X

u

= x1, . . . with
each x

i

2 E. At each time step, the user picks the next item to
consume using some function of the consumption history; differ-
ent choices of this function give rise to different models. For the
recency-based model, we will also be interested in its limiting be-
havior, specifically whether one item ever starts to dominate the
consumption history or not. In what follows, let I(·) denote the
binary indicator function.

4.1 Description of the models
We first present a quality model, which we will treat as a base-

line, where reconsumption is a function of item quality. We then
develop a recency-based model, following our observations in Sec-
tion 3.5. Finally, we present a hybrid model that combines both
recency and quality.
Quality model. A natural attempt at a theory of reconsumption
would be to posit that the quality of an item is the primary factor
that determines consumption behavior. (Note that popularity is a
particular aspect of quality.) Here we formalize this intuition as a
simple quality model, which will be a baseline to compare against.

To model the effect of quality, we associate a score s(e) with
each item e 2 E. At each point in time, the next item is chosen
with probability proportional to its score. Formally, the probability
that we select an item e is given by s(e)/

P
e

02E

s(e0).

Recency model. Consider the following copying model: at time i,
the user chooses to reconsume one of the previous items x1, . . . , xi�1

probabilistically. Let w(i � j) be the weight associated with con-
suming an item previously seen at time j < i. Therefore w(1) is
the weight for repeating the previously consumed item, w(2) is for
going two items back, and so on. At time i the user selects an item
in location i � j with probability proportional to w(i � j). The
probability of selecting an item e at time i is given by

P
j<i

I(x
i

= e)w(i� j)
P

j<i

w(i� j)
.

Hybrid model. We can combine the effects of quality and recency
in a simple hybrid model of user consumption. As before, let w(i)
denote the weight given to copying items from i steps prior and
let s(e) denote the quality of an item e. In the hybrid model, the
probability of selecting item e at time i is:

P
j<i

I(x
j

= e)w(i� j)s(x
j

)

P
j<i

w(i� j)s(x
i�j

)

.

4.2 Learning model parameters
We now describe how to learn the various model parameters. Re-

call that in the quality model, each item is selected with probability
proportional to its score. Given a set of events, the maximum like-
lihood score is proportional to the overall popularity of the item.
More formally, given a consumption sequence x1, . . . , xk

the max-
imum likelihood scores are:

s(e) =
1

k

kX

i=1

I(x
i

= e).

Recall that the recency model is parameterized by the weights w(1),
w(2), . . . that govern the probability that an item is copied from
1, 2, . . . steps back in the process. The difficulty in learning the
weights is that for a copying occurrence we do not observe the po-
sition that an item was copied from. For example, consider the
sequence a, b, a, a. Since we only observe the sequence, we do

not know if the last a was copied from the previous position (with
probability proportional to w(1)) or from the first position (with
probability proportional to w(3)).

The hybrid model has the same difficulty, but must also incorpo-
rate a set of parameters s(e) corresponds to the scores of each dis-
tinct item e in the sequence. We now describe how to estimate the
weight parameters w(·) and the score parameters s(·). The recency
model fixes the score parameters to be uniform and updates only
the recency weights. The hybrid model alternates updates of both
parameter sets. Notice that one could also fix the recency weights
to be uniform and update the per-item scores. This is subtly differ-
ent from the quality model discussed above. In the quality model,
the distribution of item counts is known in advance, and each item
is selected from this distribution. In the model in which recency
weights are fixed to be uniform but scores are updated, the model
is assumed to have access to only items that have already been seen
so far, so the appropriate scores may deviate from the final quali-
ties. Moreover, the probability of selecting an item grows as it gains
popularity in a sequence. We present results for both approaches,
but as estimation of the quality model is trivial, we will set it aside
for now, and focus on estimating the recency and hybrid models.

Consider a sequence of items x1 . . . xk

. Such a sequence will
contain some positions in which an item occurs for the first time.
Let R ⇢ [k] be the “repeat” indices in which an item recurs, and let
F = [k]\R be the positions in which items occur for the first time.
As our focus is on the dynamics of repeat consumption, we will
experiment with generative processes that are handed a sequence
for which the items of F are already filled in a priori, and the items
of R must be chosen. We will assume that a different process un-
known to us has populated the items at the indices of F . Further,
we will assume that the generative process considers each posi-
tion i 2 R in order, selects an item based on the current prefix
x1, . . . , xi�1, and then continues.

Once the scores and weights have been fixed, our generative pro-
cess selects x

i

by copying it from some x
j

with j < i with proba-
bility proportional to w(i� j)s(x

j

), the product of recency weight
and quality score of the candidate item.

Let I(j) be some binary predicate of an index j, returning 0 if
false and 1 if true. For a fixed index i, we define

A
i

(I) =
X

j<i

I(j)w(i� j)s(x
j

).

Then the log-likelihood of a sequence x1, . . . , xk

is given by:
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The weight gradient of the log-likelihood is:
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and the score gradient is:
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We iteratively (and alternately) update the weights and scores by
gradient ascent to maximize likelihood. The log-likelihood is not
concave in s(·) and w(·) simultaneously, hence what we obtain is
a local maximum.

4.3 Tipping behavior
In this section we study the limiting behavior of the models. In

particular, we ask if one item ever starts to dominate the consump-
tion history. For the quality model, since each choice is indepen-
dent, it is easy to see that every item appears infinitely often. In
contrast, for the recency model, we obtain a sharp dichotomy in re-
sulting consumption behavior depending on how strong the recency
effect is: the consumption process “tips” if the recency-based func-
tion puts enough mass on the most recent items, but does not tip if
the mass is more evenly spread out.

Formally, we say that a consumption process tips if there is a
time ⌧ such that only one item is ever consumed after time ⌧ , i.e.,
9⌧8j > 0 : x

⌧+j

= x
⌧

. Observe that any process initialized with
only a single item will necessarily tip, thus we will assume that
prior to the beginning of the process there is an initial consumption
history H = h1, h2, . . ., with each h

i

2 E. Let h = |H| and let
p
⌧

be the probability of the process tipping starting at time ⌧ .
To simplify notation, we will use w

i

to denote w(i) and denote
by W

i

the sum of the first i weights, W
i

=

P
ji

w
j

, with the
special case of W1 =

P1
j=1 wj

. We show that the probability of
the process tipping depends crucially on w(·). More precisely, if
the infinite sum of the weights, W1 =

P1
i=1 wi

converges, then
with constant probability the process tips. On the other hand, if the
infinite sum diverges, then with constant probability at least two
items are repeated infinitely often. We state this precisely below.

LEMMA 1. If w
i

� w
i+1 for all i and W1 < 1, then p

⌧

�
exp

⇣
�(⌧ + h+ 1)

W

2
1

w1W⌧+h

⌘
= ⌦(1).

PROOF. One way for the process to start tipping at ⌧ is for the
item at position ⌧ +1 to be copied from position ⌧ , then at position
⌧ + 2 for it to be copied from either ⌧ or ⌧ + 1, and so on. Let E

j

be the event that the item at position ⌧ + j is copied from one of
the items ⌧ , ⌧ + 1, . . . , ⌧ + j � 1, and let q

j

= Pr[E
j

]. We can
express q

j

as:

q
j

=

P
j

i=1 wiP
⌧+h+j

i=1 w
i

=

W
j

W
⌧+h+j

.

Since the weights are non-increasing, the q
j

’s are non-decreasing:

q
j+1 � q

j

=

W
j+1

W
⌧+h+j+1

� W
j

W
⌧+h+j
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W
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�W
j

W
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j+1 +W

j

)W
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�W
j

(w
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)

W
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=

w
j+1W⌧+h+j

� w
⌧+h+j+1Wj

W
⌧+h+j+1W⌧+h+j

� 0,

where the last inequality follows since w
j+1 � w

⌧+h+j+1 and
W

⌧+h+j

� W
j

.
If all of the events E1, E2, . . . occur, then the process tips. Hence,

p
⌧

� Pr[E1 ^ E2 ^ · · · ] =
1Y

j=1

q
j

.

We will lower bound p
⌧

, which will complete the proof.
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⌧
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W
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Here the first inequality follows since log(1 � x) � �↵x, for
0  x  1� 1/↵, and since the q

j

’s are non-decreasing, the ratio
P

⌧+h+j

i=j+1 w
i

W
⌧+h+j

is maximized at j = 1. Therefore the maximum is no more than:
P

⌧+h+1
i=2 w

i

W
⌧+h+1

= 1� w1

W
⌧+h+1

 1� w1

W1
.

Hence taking ↵ =

W1
w1

ensures that the inequality holds always.

LEMMA 2. If w
i

� w
i+1 for all i and W1 = 1, then in

expectation every item is copied infinitely many times.

PROOF. Fix an item at position ⌧ , and let c
⌧

be the number of
times the item x

⌧

is copied during the process. The expected num-
ber of copies is:

E[c
⌧

] =

1X

j=1

w
j

W
⌧

+

P
j

k=1 wk

.

We define a set of breakpoints `1, `2, . . . such that the sum of the
weights in each interval (`

k

, `
k+1] is at least W

⌧

. Note that sinceP
i

w
i

diverges, there is an infinite number of such breakpoints.
Formally, we have `0 = 0, `1 = ⌧ , and `

i

is the minimum integer
such that

`iX
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w
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> W
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.

We then break up the expectation as:
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where the second inequality follows by the definition of `
i

, and the
first from the fact that

`sX
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w
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`t)  2sW

⌧

.

Since the above infinite sum diverges, every item is copied an infi-
nite number of times in expectation and the process does not tip.

Next we consider the important special case when the w(·) follows
a power law distribution, i.e., w

i

/ i�↵. Note that Lemma 1 al-
ready shows that the process will tip with constant probability when
↵ > 1. Here, we prove a tighter lower bound.

LEMMA 3. If w
i

/ i�↵ and ↵ > 1, then p
⌧

� ⌦(

(⌧+h)2�↵�1
2�↵

).

PROOF. We proceed as in the case of Lemma 1 and pick up the
proof at the first inequality:
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. Furthermore, for any s:
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Therefore, setting s = ⌧ + h:
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Here, for the first inequality we used the fact that there is a constant
c
↵,s

such that (s+ j)↵�1 � 1 � (s+ j)↵ · c
↵s .

5. EXPERIMENTS
Now that we have developed our models of repeat consumption

and have analyzed them mathematically, we turn to running exper-
iments to test how well they explain repeat consumption patterns in

Rank
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Figure 7: The distribution of the quality scores for GPLUS and
YOUTUBE.

real data. Our goal is to explain the repeat consumption, so our in-
ference of weights for the models, and our likelihood computations
to follow, are computed only on repeat consumption events, not the
first consumption of an item. We begin by showing how we fit the
different models, and then analyze the results.
Quality model. Figure 7 shows the distribution of popularities of
different items for the GPLUS and YOUTUBE datasets. Other than
the YES dataset which has a popularity skew to the first 100 ranks
(with radio playing the top-100 songs), the other datasets are qual-
itatively similar. Not surprisingly they exhibit heavy-tailed weight
distributions.
Recency models. Figure 8 shows the inferred values of the weights
learned by the recency model described in Section 4.1 for the GPLUS
and YOUTUBE datasets; the distributions are qualitatively similar
for the other datasets and for the hybrid model. We will discuss the
form of these inferred weights in detail below, but first we address
a natural question about our formulation.

In our model, an idealized user who decides to perform a re-
peat consumption will copy from the previous slot with probability
proportional to w(1). If the previous slot represents the first expo-
sure of the user to this item, then it is possible that in practice the
likelihood of copying it will be different than if the user has been
exposed to the item many times in the distant past, because of the
difference between repeating a truly novel experience, versus go-
ing back again to an old favorite. To evaluate this hypothesis, the
same plots also show results from alternate methods of inferring
the weights. The weights represented by the p2 plot use only the
second occurrence (i.e., the first copying event) of every item in the
sequence. In this case, there is no doubt where the item was copied
from (the latent variables are deterministic), and thus the weights
can be estimated by simple counting. Similarly, for the p3 plot we
only used the first three occurrences (first two copy events) to fit
the weights.

The figures show that the weights are largely identical whether
considering only the first copy events, or all copy events, so the fit
of the weights is robust to the level of prior exposure of the user to
each item being copied.
Model likelihoods. To compare the different models, we compute
the likelihoods that they assigned to the datasets. Table 2 shows
the log-likelihood numbers, where we normalize the highest log-
likelihood (achieved in all cases by the hybrid model) to 1. The first
column shows results for the model that takes likelihood of a past
item to be proportional to its total popularity in the dataset, inde-
pendent of recency. The second column shows results for a model
that applies our gradient-based recency weight update algorithm
after fixing per-item scores to the popularity of an item. The third
column shows our hybrid model with weights fixed to uniform and
only per-item scores updated by gradient descent. The fourth col-
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Figure 9: The distributions of recency weights when consumption
sequences are randomly permuted.

umn is the recency only model (i.e., hybrid model with scores fixed
to uniform). The full hybrid model is run for each dataset, and used
to normalize the reported log-likelihoods. For computational effi-
ciency reasons, we learn recency weights over the previous 200 po-
sitions only. Clearly, the recency only model is the second best and
the improvements by the hybrid model over the recency model are
significant for MAPCLICKS and BRIGHTKITE. The model which
optimizes per-item scores without recency outperforms the model
that fixes the per-item scores to be item popularity over all datasets.
It is also interesting to note that fixing the scores to popularity re-
sults in a poorer model when compared to fixing the scores to be
uniform, suggesting popularity is hard to use, even when combined
with recency, to explain reconsumption. Given this, are the scores
obtained by the hybrid model vastly different from popularity? For
MAPCLICKS, the Kendall rank correlation is 0.44, suggesting that
the correlation between them is low, and the learned scores have
the potential to be an interesting signal of item quality above and
beyond the raw consumption count of an item.

s(·) = popularity popularity learned uniform
w(·) = - learned uniform learned

BRIGHTKITE 0.375 0.617 0.637 0.936
GPLUS 0.587 0.801 0.794 0.877

MAPCLICKS 0.383 0.931 0.414 0.989
WIKICLICKS 0.503 0.724 0.687 0.945

YOUTUBE 0.636 0.677 0.924 0.962

Table 2: Log-likelihood of different models by dataset, normalized
by log-likelihood of the hybrid model (which is 1.0). The column
labels indicate if s(·) and w(·) are fixed or learned.

Parsimony. Next, we investigate if the weights learned by our
models can be compressed in any meaningful way without signif-
icant performance loss. We study the recency only model for this
purpose; the results are qualitatively similar for the hybrid model.
In Figure 10 we show the fit of the weights in the YOUTUBE dataset
to a power law with exponential cutoff (PLECO) [8] model. Re-
call that the PLECO model can be described as Pr[x] / (x +

�)�↵e��x, where ↵ controls the slope of the fat tail and � controls
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Figure 10: The recency weights for YOUTUBE and the best
PLECO fit.

Dataset ↵ 1/� �

BRIGHTKITE 1.8 670 10
MAPCLICKS 1.42 1000 10

GPLUS 1.95 1250 7
SHAKESPEARE 0.15 83 10

WIKICLICKS 1.01 2222 5
YOUTUBE 1.16 2000 10

Table 3: The best fit parameters for the PLECO model for different
datasets. The YES dataset was not a good fit for the PLECO model.

the point of transition to an exponentially small tail. The fit in the
figure is remarkably accurate; it is difficult to distinguish between
the original data and the fit curve. This mathematical form is easily
derived from existing models that produce power law distributions,
by adding some constant forgetting probability with which the ide-
alized user “forgets” an item before copying it. See [20] for more
details on these types of processes.

In contrast, we plot the model fits for both GPLUS and YOUTUBE
when sequences were randomly permuted in Figure 9; the function
of the weights can no longer be described by a power-law fit, with
or without exponential cutoff. We show the parameters ↵,�, and �
for the datasets in Table 3.

In Table 4, we show the log-likelihood numbers where we nor-
malize the log-likelihood obtained by the recency model for each
dataset to 1; overall higher numbers are better. We show the like-
lihoods for the best fit PLECO model and the recency model trun-
cated at top 50 weights. The PLECO model typically behaves on
par with the best recency model, even though it can be fully spec-
ified by only three parameters, rather than 50 or more parameters,
one for each weight in the model.

6. ADDITIVITY
Now that we have empirically analyzed the data, and formulated

and analyzed our models, we close with a discussion of additivity,
an important characteristic of the models.

Dataset Recency@50 PLECO

BRIGHTKITE 0.654 0.926
GPLUS 0.710 0.987

MAPCLICKS 0.668 0.921
WIKICLICKS 0.971 0.999

YOUTUBE 0.917 0.997

Table 4: The relative log-likelihood of different parsimonious mod-
els, with the log-likelihood of the recency model set to 1.0.



All of our models crucially assume additivity in the following
sense: if there are several previous instances of the current item,
their contributions are assumed to be additive. For example, con-
sider our recency model generatively: if item e occurs at positions
t � i and t � j, then the probability that it is copied to position t
is proportional to the sum of the two individual contributions w(i)
and w(j). While this is a plausible assumption to make, it is not
immediately clear that this should hold true empirically; it is pos-
sible for it to be violated in either direction. For example, it could
be that multiple consumptions have a super-additive effect on fu-
ture consumptions, so that there is a positive interaction between
consumptions. On the other hand, one could imagine scenarios in
which multiple consumptions interact negatively to produce subad-
ditive behavior; this would be the case in domains where people
quickly grow tired of items.

To test the additivity assumption, we perform the following em-
pirical experiment. We define w(i, j) to be the weight associated
with copying an item given that it was consumed exactly i and j
steps ago. We can empirically estimate this quantity by considering
the empirical fraction of times an item occurred if it was consumed
exactly i and j steps ago, and those were the only two previous
consumptions. Then, by comparing this w(i, j) with w(i) +w(j),
using the w(·) we learned in our recency model, we can measure
the magnitude of the deviations from additivity. Since consump-
tion behavior immediately following the first time an item has been
consumed may qualitatively differ from subsequent consumptions,
we also calculate modified weights ŵ(i, j), which is the same em-
pirical fraction as before except now we consider it over events
where the item has been consumed any number of times in the
past, but i and j are by far the most recent (in our experiments,
i and j are at most 10 and the next most recent consumption cannot
be more recent than 25 steps ago). The log-odds ratios of w(i, j)
and w(i) +w(j) computed on WIKICLICKS are shown in the left-
hand panel of Figure 11, and the log-odds ratios of ŵ(i, j) and
w(i) + w(j) are shown in the right-hand panel.

Figure 11: Log-odds ratios of w
i,j

(left) and ŵ
i,j

(right) to w
i

+w
j

from WIKICLICKS data.

The first observation is that both figures show very little devia-
tion from pure additivity. The likelihood of copying from one of
two recent occurrences is close to the sum of the weights, and in
fact the log odds almost never deviates outside [�1, 1]. The gen-
eral dataset on the right is even closer to pure additivity, with logs
odds ratios rarely deviating outside [0, 0.5]. The data on the left
represents the third copy of an item that has never been consumed
before, and was recently consumed twice; this indicates there is a
small but observable extent to which initial consumption behaves
differently than later consumption. This finding is consistent across
all of our datasets.

Our initial hypothesis was that sequential consumption would
yield the largest deviations from additivity. The log-odds ratio for
sequential consumptions is shown in the diagonal elements of the

figures. It is clear in both cases that these occurrences are in fact
well-predicted by the additive model.

Furthermore, we observe that almost all deviations from true ad-
ditivity are super-additive, in which multiple occurrences are more
likely to generate a copy than their individual contributions alone
would indicate. We conjecture that this can be explained by a per-
sonal preference argument. Since users are at least somewhat het-
erogeneous in the items they prefer, conditioning on repeated con-
sumptions may simply result in more popular items, increasing the
likelihood that the same item occurs again. To check this, we run
the same experiment on randomly permuted user sequences. The
ŵ(i, j) vs. w(i) +w(j) log-odds ratios for the real data computed
over BRIGHTKITE are shown on the left-hand side of Figure 12
and the same log-odds ratios for the randomly permuted data are
on the right-hand side.

Figure 12: Log-odds ratios of ŵ(i, j) to w(i) + w(j) from
BRIGHTKITE data. Original sequences on left; randomly permuted
sequences on right.

First, observe that, as in WIKICLICKS, the diagonal elements
show a slight tendency towards sub-additivity, as does the first col-
umn of the BRIGHTKITE graph. In both cases, these represent
consecutive consumption; we expect that this phenomenon may
be explained by artifacts of the data caused by user behaviors like
reloading busy pages, resulting in spurious sequential events being
recorded.

On the right-hand side of the figure, we can see that even af-
ter destroying the recency effects by randomly permuting user se-
quences, we still observe the off-diagonal superadditivity we ob-
served before. This confirms our hypothesis that even the limited
superadditivity we have seen is explained at least in part by a user-
specific popularity of individual items, supporting our view that
the additive model is quite accurate in capturing a wide range of
recency behaviors.

7. CONCLUSIONS
We studied the dynamics of repeat consumption over a range of

datasets, and showed a number of consistent patterns. First, we
developed an additive model of recency, and showed how to infer
parameters for this model. Second, we showed that over a range of
datasets, the inferred values are well-fit by a power law with expo-
nential cutoff, requiring only three parameters, and producing high
likelihood of observed data. Third, we explored the limitations of
our additive model of recency, and showed that while first occur-
rences do behave differently than later occurrences, nonetheless,
the additive model is a surprisingly good fit to data. Finally, we
proposed a hybrid model that combines both recency and quality,
showed how to infer parameters for this model, and demonstrated
that it outperforms models based purely on the quality of each item
or the recency of its occurrence.
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