Understanding the Origins of Bias in Word Embeddings

Marc-Etienne Brunet Colleen Alkalay-Houlihan Ashton Anderson Richard Zemel

Introduction

Graduate student at U of T (Vector Institute)

Work at the intersection of Bias, Explainability, and Natural Language Processing

Collaborated with Colleen Alkalay-Houlihan

Supervised by Ashton Anderson and Richard Zemel

Many Forms of Algorithmic Bias

For example:

- Facial Recognition
- Automated Hiring
- Criminal Risk Assessment
- Word Embeddings

Many Forms of Algorithmic Bias

For example:

- Facial Recognition
- Automated Hiring
- Criminal Risk Assessment

How can we **attribute** the **bias** in word embeddings **to** the individual **documents** in their training corpora? > Background Method Overview Critical Details Experiments

Word Embeddings: Definitions in Vector Space

lead · er /'lēdər/ Đ noun 1. the person who leads or commands a group, organization, or country. "the leader of a protest group" synonyms: chief, head, principal, boss; More cleaning /'klēniNG/ noun noun: cleaning the action of making something clean, especially the inside of a house. "the housekeeper will help with the cleaning"

Word Embeddings: Definitions in Vector Space

Word Embeddings: Definitions in Vector Space

lead·er

/ˈlēdər/ 🐠

noun

 the person who leads or commands a group, organization, or country. "the leader of a protest group" synonyms: chief, head, principal, boss; More

cleaning /ˈklēniNG/ •

noun: cleaning

the action of making something clean, especially the inside of a house. "the housekeeper will help with the cleaning"

Problematic Definitions in Vector Space

lead · er /ˈlēdər/ Đ noun 1. the person who leads or commands a group, organization, or country. "the leader of a protest group" synonyms: chief, head, principal, boss; More cleaning /'klēniNG/ noun noun: cleaning the action of making something clean, especially the inside of a house. "the housekeeper will help with the cleaning"

Problematic Definitions in Vector Space

Definitions encode relationships between words

Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, Adam Kalai (NeurIPS 2016)

How can we **measure** bias in word embeddings?

Implicit Association Test (IAT)

Implicit Association Test (IAT)

Implicit Association Test (IAT)

Aylin Caliskan, Joanna J. Bryson, Arvind Narayanan (Science 2017)

Measuring Bias

WEAT on popular corpora matches IAT study results

		IAT		WEAT	
Target Words	Attribute Words	effect size	p-val	effect size	p-val
Flowers v.s. Insects	Pleasant v.s. Unpleasant	1.35	1.0E-08	1.5	1.0E-07
Math v.s. Arts	Male v.s. Female Terms	0.82	1.0E-02	1.06	1.8E-02

Aylin Caliskan, Joanna J. Bryson, Arvind Narayanan (Science 2017)

Measuring Bias

WEAT on popular corpora matches IAT study results

	Attribute Words	IAT		WEAT	
Target Words		effect size	p-val	effect size	p-val
Flowers v.s. Insects	Pleasant v.s. Unpleasant	1.35	1.0E-08	1.5	1.0E-07
Math v.s. Arts	Male v.s. Female Terms	0.82	1.0E-02	1.06	1.8E-02

"Semantics derived automatically from language corpora contain human-like biases"

Aylin Caliskan, Joanna J. Bryson, Arvind Narayanan (Science 2017)

Background
Method Overview
Critical Details
Experiments

How can we **attribute** the **bias** in word embeddings **to** the individual **documents** in their training corpora?

From Word2Bias

Differential Bias

Idea: Consider the differential contribution of each document

$$X = \sum_{i=1}^{n} X^{(i)} \qquad \tilde{X} = X - X^{(k)}$$

$$\Delta B = B(w(X)) - B(w(\tilde{X}))$$

Bias Gradient

 $\nabla_X B(w(X)) = \nabla_w B(w) \nabla_X w(X)$

Background Method Overview > Critical Details Experiments

Computing the Components

Fast & Easy: Math, Automatic Differentiation, or two evaluations of B(w).

Slow & Hard: Differentiate through an entire training procedure:

- Leave-one-out retraining? (*time-bound*)
- Backprop? (*memory-bound*)
- Approximate using Influence Functions Koh & Liang (ICML 2017)

Computing the Components

Fast & Easy: Math, Automatic Differentiation, or two evaluations of B(w).

Slow & Hard: Differentiate through an entire training procedure:

- Leave-one-out retraining? (time-bound)
- Backprop? (*memory-bound*)
- Approximate using Influence Functions Koh & Liang (ICML 2017)

Computing the Components

Fast & Easy: Math, Automatic Differentiation, or two evaluations of B(w).

Slow & Hard: Differentiate through an entire training procedure:

- Leave-one-out retraining? (*time-bound*)
- Backprop? (*memory-bound*)
- Approximate using Influence Functions Koh & Liang (ICML 2017)

Influence Functions

Give us a way to approximate the change in model parameters

Influence Functions

$$\tilde{\theta} \approx \theta^* - \frac{1}{n} H_{\theta^*}^{-1} \sum_{k \in \delta} \left[\nabla_{\theta} L(\tilde{z}_k, \theta^*) - \nabla_{\theta} L(z_k, \theta^*) \right]$$

Inverse Hessian (GloVe: 2VD x 2VD matrix)

$$V = |\mathsf{vocab}| \quad w_i \in \mathbb{R}^D$$

2VD can easily be > 10⁹

Applying Influence Functions to GloVe

Applying Influence Functions to GloVe

Gradient of
Pointwise
Loss
$$\nabla_w L(X_i, w) = \left(\underbrace{\underbrace{0, \dots, 0}_{W_i} \underbrace{D(X_i, w)}_{VD \text{ dimensions}}, \underbrace{D(V-i)}_{VD \text{ dimensions}}\right)$$

Hessian becomes **block diagonal!**

(V Blocks of D by D)

Allows us to apply influence function approximation to one word vector at a time!

Algorithm: Compute Differential Bias

 $w^*, u^*, b^*, c^* = \text{GloVe}(X) \# \text{Train embedding}$ for doc in corpus do $\tilde{X} = X - X^{(k)}$ # Subtract coocs from doc k for word *i* in doc \cap WEAT words # Only need change in WEAT word vectors $\tilde{w}_i = w_i^* - \frac{1}{V} H_{w_i}^{-1} \left[\nabla_{w_i} L(\tilde{X}_i, w) - \nabla_{w_i} L(X_i, w) \right]$ end for

 $\Delta_{\text{doc}} B \approx B_{\text{weat}}(w^*) - B_{\text{weat}}(\tilde{w})$ end for

Algorithm: Compute Differential Bias

 $w^*, u^*, b^*, c^* = \text{GloVe}(X) \# Train embedding$ for doc in corpus do $\tilde{X} = X - X^{(k)}$ # Subtract coocs from doc k for word *i* in doc \cap WEAT words # Only need change in WEAT word vectors $\tilde{w}_i = w_i^* - \frac{1}{V} H_{w_i}^{-1} \left[\nabla_{w_i} L(\tilde{X}_i, w) - \nabla_{w_i} L(X_i, w) \right]$ end for $\Delta_{\rm doc}B \approx B_{\rm weat}(w^*) - B_{\rm weat}(\tilde{w})$

end for
Algorithm: Compute Differential Bias

 $w^*, u^*, b^*, c^* = \text{GloVe}(X) \# \text{Train embedding}$ for doc in corpus do $\tilde{X} = X - X^{(k)}$ # Subtract coocs from doc k for word *i* in doc \cap WEAT words # Only need change in WEAT word vectors $\tilde{w}_i = w_i^* - \frac{1}{V} H_{w_i}^{-1} \left[\nabla_{w_i} L(\tilde{X}_i, w) - \nabla_{w_i} L(X_i, w) \right]$ end for $\Delta_{\text{doc}} B \approx B_{\text{weat}}(w^*) - B_{\text{weat}}(\tilde{w})$

end for

Algorithm: Compute Differential Bias

 $w^*, u^*, b^*, c^* = \text{GloVe}(X) \# Train embedding$ for doc in corpus do $\tilde{X} = X - X^{(k)}$ # Subtract coocs from doc k for word *i* in doc \cap WEAT words # Only need change in WEAT word vectors $\tilde{w}_i = w_i^* - \frac{1}{V} H_{w_i}^{-1} \left[\nabla_{w_i} L(\tilde{X}_i, w) - \nabla_{w_i} L(X_i, w) \right]$ end for $\Delta_{\rm doc}B \approx B_{\rm weat}(w^*) - B_{\rm weat}(\tilde{w})$

end for

Algorithm: Compute Differential Bias

 $w^*, u^*, b^*, c^* = \text{GloVe}(X) \# \text{Train embedding}$ for doc in corpus do $\tilde{X} = X - X^{(k)}$ # Subtract coocs from doc k for word *i* in doc \cap WEAT words # Only need change in WEAT word vectors $\tilde{w}_i = w_i^* - \frac{1}{V} H_{w_i}^{-1} \left[\nabla_{w_i} L(\tilde{X}_i, w) - \nabla_{w_i} L(X_i, w) \right]$ end for $\Delta_{\rm doc}B\approx B_{\rm weat}(w^*)-B_{\rm weat}(\tilde{w})$

end for

Background Method Overview Critical Details > Experiments

Objectives of Experiments

- 1. Assess the accuracy of our influence function approximation
- 2. Identify and analyse most bias impacting documents

WEAT

Differential Bias

Differential Bias

$\Delta_d B$	Bias Decreasing
-0.52	Hormone Therapy Study Finds Risk for Some
-0.50	For Women in Astronomy, a Glass Ceiling in the Sky
-0.49	Sorting Through the Confusion Over Estrogen
-0.36	Young Astronomers Scan Night Sky and Help Wanted
	Ads

$\Delta_d B$	Bias Increasing
0.38	Kaj Aage Strand, 93, Astronomer At the U.S. Naval
	Observatory
0.32	Gunman in Iowa Wrote of Plans In Five Letters
0.29	ENGINEER WARNED ABOUT DIRE IMPACT OF
	LIFTOFF DAMAGE
0.29	Fred Gillett, 64; Studied Infrared Astronomy
0.27	Robert Harrington, 50, Astronomer in Capital

	$\Delta_d B$	Bias Decreasing
	-0.52	Hormone Therapy Study Finds Risk for Some
	-0.50	For Women in Astronomy, a Glass Ceiling in the Sky
	-0.49	Sorting Through the Confusion Over Estrogen
	-0.36	Young Astronomers Scan Night Sky and Help Wanted
		Ads

$\Delta_d B$	Bias Increasing
0.38	Kaj Aage Strand, 93, Astronomer At the U.S. Naval
	Observatory
0.32	Gunman in Iowa Wrote of Plans In Five Letters
0.29	ENGINEER WARNED ABOUT DIRE IMPACT OF
	LIFTOFF DAMAGE
0.29	Fred Gillett, 64; Studied Infrared Astronomy
0.27	Robert Harrington, 50, Astronomer in Capital

$\Delta_d B$	Bias Decreasing
-0.52	Hormone Therapy Study Finds Risk for Some
-0.50	For Women in Astronomy, a Glass Ceiling in the Sky
-0.49	Sorting Through the Confusion Over Estrogen
-0.36	Young Astronomers Scan Night Sky and Help Wanted
	Ads

$\Delta_d B$	Bias Increasing
0.38	Kaj Aage Strand, 93, Astronomer At the U.S. Naval
	Observatory
0.32	Gunman in Iowa Wrote of Plans In Five Letters
0.29	ENGINEER WARNED ABOUT DIRE IMPACT OF
	LIFTOFF DAMAGE
0.29	Fred Gillett, 64; Studied Infrared Astronomy
0.27	Robert Harrington, 50, Astronomer in Capital

Document Impact Generalizes

WEAT₁ (Science v.s. Arts Gender Bias)

	remove bias increasing docs	baseline (no removals)	remove bias decreasing docs
GloVe	-1.27	1.14	1.7
word2vec	0.11	1.35	1.6

Removal of documents also affects word2vec, and other metrics!

Limitations & Future Work

- Consider **multiple biases** at simultaneously
- Use metrics that depend on **more words**
- Consider bias in **downstream tasks** where embeddings are used
- Does this carry over to **BERT**?

Recap

- Bias can be quantified; correlates with known human biases
- We can identify the documents that most impact bias, and approximate impact
- These documents are qualitatively meaningful, and impact generalizes

$\Delta_d B$	Bias Decreasing
-0.52	Hormone Therapy Study Finds Risk for Some
-0.50	For Women in Astronomy, a Glass Ceiling in the Sky
-0.49	Sorting Through the Confusion Over Estrogen
-0.36	Young Astronomers Scan Night Sky and Help Wanted
	Ads

Thank you!

Poster # 146

Marc

Colleen

mebrunet@cs.toronto.edu

arXiv: 1810.03611

Ashton

Rich

References

- T. Bolukbasi, K.-W. Chang, J. Zou, V. Saligrama, and A. Kalai. Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In 30th Conference on Neural Information Processing Systems (NIPS), 2016.
- A. Caliskan, J. J. Bryson, and A. Narayanan. Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334):183–186, 2017.
- P. W. Koh and P. Liang. Understanding Black-box Predictions via Influence Functions. In Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 1885–1894, 2017.

"...results raise the possibility that all implicit human biases are reflected in the statistical properties of language."

Aylin Caliskan, Joanna J. Bryson, Arvind Narayanan (Science 2017)

Impact on Word2Vec

Removal of Documents Identified by our Method

	Decrease (0.7%)	Baseline	Increase (0.7%)
GloVe	-1.27	1.14	1.7
word2vec	0.11	1.35	1.6

Word Embeddings

Compact vector representation (like a dictionary for machines)

Learned from LARGE corpora.

Used in many NLP tasks:

- Sentiment Analysis
- Text summarization
- Machine Translation

dic·tion·ar·y

noun

a book or electronic resource that lists the words of a language (typically in alphabetical order) and gives their meaning, or gives the equivalent words in a different language, often also providing information about pronunciation, origin, and usage.

"I'll look up 'love' in the dictionary"

synonyms: lexicon, wordbook, glossary, vocabulary list, vocabulary, word list, wordfinder "half of the words in his text were not in the dictionary"

"dictionally": [1.33, -0.48, 0.98, -2.33...], "dictionary": [1.23, -0.52, 1.01, -2.14...], "dictions": [1.04, -0.63, 0.87, -2.23...], ...

\mathbf{S}	science	science, technology, physics, chemistry, einstein, nasa, experi-
		ment, astronomy
Т	arts	poetry, art, shakespeare, dance, literature, novel, symphony,
		drama
А	male	male, man, boy, brother, he, him, his, son
В	female	female, woman, girl, sister, she, her, hers, daughter

Psychology, Bias, and Embeddings

One study examined a dozen well- known human biases: all present

Others examined the geometry of

- Class
- Race
- Gender

Austin C. Kozlowski, Matt Taddy, James A. Evans (2018)

Word Embeddings

What are they?

- A compact vector representation for words
- Learned from a very large corpus of text
- Preserves syntactic and semantic meaning through vector arithmetic (**very useful**)

Applications:

- Sentiment analysis
- Document classification / summarization
- Translation
- Temporal semantic trajectories

"King" - "Man" + "Woman" ≈ "Queen"

A Motivating Example

Presumptuous Translation

Presumptuous Translation

Presumptuous Translation

 Armenian
 English
 French
 Detect language
 Image: Constraint of the second second

Translate

Turn on instant translation

0

Armenian	English	French	Detect language	*	\leftrightarrow	English	Armenian	French	•	Translate	
Նա բուժքույր է: Նա ինժեներ է:						She is a nurse. He is an engineer.					
•) = •	,			21	9/5000	☆ (C	•				1

Why does this happen?

Armenian English French Detect language English Armenian French ÷., Translate Նա բուժ քույր է: Նա ինժեներ է: × He is a nurse. She is an engineer. ☆ □ • < •) == -34/5000 Translate Turn on instant translation ଧ୍ୟ English Armonian Franch Armonian English French Detect Jangua

Նարուժքույր է: Նարնժեներ է:	×	She is a nurse. He is an engineer.	
4) 2 9/5	5000	☆ □ ● <	1

Word Co-Occurrences

	engineer	nurse	leader	pretty	(all)
Ratio of he:she co-occurrences	6.25	0.550	9.25	3.07	3.53

The New York Times Annotated Corpus (1987-2007, approx. 1B words, context window: 8)

GloVe: Global Vectors for Word Representations

$$J(X, w, u, b, c) = \sum_{i=1}^{V} \sum_{j=1}^{V} f(X_{ij})(w_i^T u_j + b_i + c_j - \log X_{ij})^2$$

X: co-occurrence Matrix $\{w_i\}$: set of word vectors $\{u_j\}$, b, c: other model parameters

$$f(x) = \begin{cases} (x/x_{max})^{\alpha} \text{ if } x < x_{max} \\ 1 \text{ otherwise} \end{cases}$$

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014.

Bad Analogies

: King : Man :: Queen : Woman

: Paris : France :: London : England

 Man : Computer_Programmer :: Woman : Homemaker

Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, Adam Kalai (NeurIPS 2016)

WEAT

Target Word Sets: S = {physics, chemistry...} ≈ Science T = {poetry, litterature...} ≈ Arts

Attribute Word Sets:

A = {he, him, man... } ≈ *Male* **B** = {she, her, woman} ≈ *Female* Measures relative association between four concepts

$$f(w, A, B) = \underset{a \in A}{\overset{\text{mean}}{\underset{s \in S}{\text{mean}}}} cos(\vec{w}, \vec{a}) - \underset{b \in B}{\overset{\text{mean}}{\underset{s \in S}{\text{mean}}}} cos(\vec{w}, \vec{b})$$

Effect Size =
$$\frac{\underset{s \in S}{\overset{\text{mean}}{\underset{w \in S}{\text{mean}}}} f(s, A, B) - \underset{t \in T}{\overset{\text{mean}}{\underset{w \in S}{\text{mean}}}} f(t, A, B)}{\underset{w \in S \cup T}{\overset{\text{mean}}{\text{mean}}}} f(w, A, B)}$$

Applying IF to GloVe

GloVe Loss :

$$J(X, w, u, b, c) = \sum_{i=1}^{V} \sum_{j=1}^{V} f(X_{ij})(w_i^T u_j + b_i + c_j - \log X_{ij})^2$$

Our "datapoints" are NOT documents, but rather the entries of X. So one document removal: $\tilde{X} = X - X^{(k)}$, perturbs multiple "datapoints".

IF Approx:
$$\tilde{\theta} \approx \theta^* - \frac{1}{n} H_{\theta^*}^{-1} \sum_{k \in \delta} \left[\nabla_{\theta} L(\tilde{z}_k, \theta^*) - \nabla_{\theta} L(z_k, \theta^*) \right]$$

$$\tilde{w}_{i} \approx w_{i}^{*} - \frac{1}{V} H_{w_{i}}^{-1} \begin{bmatrix} \nabla_{w_{i}} L(\tilde{X}_{i}, w^{*}) - \nabla_{w_{i}} L(X_{i}, w^{*}) \end{bmatrix}$$
Computed once
per WEAT word
Computed once
per WEAT word
Computed once
Computed once
per WEAT word
Computed once
Comp

Notice that for all *i* where $\tilde{X}_i = X_i$, $\tilde{w}_i = w_i^*$

Influence Functions (IF)

$$R(z,\theta) = \frac{1}{n} \sum_{i=1}^{n} L(z_i,\theta) \qquad \theta^* = \underset{\theta}{\operatorname{argmin}} R(z,\theta)$$

 δ : Set of perturbed data points