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repeat consumption
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a lot of consumption is repeat consumption

what factors determine what we reconsume?

given a set of previously-consumed 
candidates, predict which item a user 

will choose to reconsume
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consumption data
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BrightKite: location checkins

G+: public location checkins

MapClicks: clicks on Google Maps businesses

MapClicks-Food: clicks on Google Maps 
restaurants
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consumption data
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WikiClicks: all clicks on English Wikipedia 
pages by Google users

YouTube: last 10K video watches of users

YouTube-Music: YouTube restricted to 
music videos
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baselines

5

Yes: radio playlists from hundreds of 
US radio stations* 

(to compare against non-individual 
consumption data)

Shakespeare: full text of Shakespeare’s 
works, with each letter considered an item 
(to compare against data with repetitions)

* available at http://www.cs.cornell.edu/~shuochen/ 
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the dynamics of repeat consumption

1. empirical analysis

2. models

3. experiments
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the dynamics of repeat consumption

1. empirical analysis

2. models

3. experiments
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empirical analysis
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what are the empirical traits of reconsumed items?
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individual popularity: are users 
generally exploiting or exploring?

popularity
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popularity
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more frequently consumed items are 
more likely to be reconsumed
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recency
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how does the recency of consumption affect 
the likelihood of reconsumption?

to answer this question, we use a 
cache-based analysis technique
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recency
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consider a cache of size k=3:
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recency
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process a consumption history using 
optimal offline caching (replace item 

that occurs furthest in the future)
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recency
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a b b c d e b a c d cd

consumption history:

Thursday, April 10, 14



recency
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a b b c d e b a c d cd

consumption history:

a

Hits: 0 Misses: 1
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recency
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a b b c d e b a c d cd

consumption history:

a b

Hits: 0 Misses: 2
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recency
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a b b c d e b a c d cd

consumption history:

a b

Hits: 1 Misses: 2
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recency
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a b b c d e b a c d cd

consumption history:

a b

Hits: 1 Misses: 3

c
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recency
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a b b c d e b a c d cd

consumption history:

a b

Hits: 1 Misses: 4

d
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recency
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a b b c d e b a c d cd

consumption history:

e b

Hits: 1 Misses: 5

d
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recency
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a b b c d e b a c d cd

consumption history:

e b

Hits: 2 Misses: 5

d
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recency
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a b b c d e b a c d cd

consumption history:

e b

Hits: 3 Misses: 5

d
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recency
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a b b c d e b a c d cd

consumption history:

a b

Hits: 3 Misses: 6

d
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recency
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a b b c d e b a c d cd

consumption history:

a c

Hits: 3 Misses: 7

d
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recency
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a b b c d e b a c d cd

consumption history:

a c

Hits: 4 Misses: 7

d
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recency
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a b b c d e b a c d cd

consumption history:

a c

Hits: 5 Misses: 7

d
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recency
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the hit ratio is an indication of the degree to which 
recency is displayed in a consumption history
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recency
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Real consumption sequences display 
a significant amount of recency
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recency
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Baseline datasets don’t display recency 
(Yes even shows anti-recency)
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empirical analysis
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user-level item popularity generally positive predictor

recency is the strongest effect
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the dynamics of repeat consumption

1. empirical analysis

2. models

3. experiments
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models
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goal: develop a simple mathematical 
framework powerful enough to explain patterns 

of reconsumption we observe in real data 
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models
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first, fix vocabulary      of itemsE

a consumption history for user     is 
where each  

Xu = x1, . . .

xi 2 E

u

at each step, user picks next item to consume 
using some function of consumption history
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quality model
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natural hypothesis: item quality 
dictates consumption behavior

associate score          for each           , and at each 
step next item is chosen proportionally to its score:

s(e) e 2 E

P (xi = e) = s(e)/
X

e02E

s(e0)
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recency model
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since recency is the strongest empirical effect, 
we formulate a copying model based on it

at every step i, user copies item at position i-j 
proportional to weight w(i-j) 
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recency model

36

since recency is the strongest empirical effect, 
we formulate a copying model based on it

at every step i, user picks item at position i-j 
proportional to weight w(i-j) 

a b b c d e b a c d cd ?consumption history

recency model
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recency model

37

since recency is the strongest empirical effect, 
we formulate a copying model based on it

at every step i, user picks item at position i-j 
proportional to weight w(i-j) 

a b b c d e b a c d cd ?consumption history

weights w
w(1) w(2) w(3) w(4) w(5) w(6) w(7) w(8) w(9) w(10) w(11) w(12) 

recency model
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recency model

38

since recency is the strongest empirical effect, 
we formulate a copying model based on it

at every step i, user picks item at position i-j 
proportional to weight w(i-j) 

a b b c d e b a c d cd ?consumption history

w(2) w(5) w(8) 

e.g.: 
P (xi = d) ⇠ + +

recency model
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recency model
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since recency is the strongest empirical effect, 
we formulate a copying model based on it

at every step i, user picks item at position i-j 
proportional to weight w(i-j) 

P (xi = e) =

P
j<i I(xi = e)w(i� j)
P

j<i w(i� j)

recency model
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recency model

we assume additivity in weights

thought experiment: learn weights, and 
compare additivity prediction to actual 

likelihoods from copying 
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recency model

very small deviations from additivity
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hybrid model
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combination of recency and quality

P (xi = e) =

P
j<i I(xj = e)w(i� j)s(xj)P

j<i w(i� j)s(xi�j)

w(2) w(5) w(8) 

e.g.: 
P (xi = d) ⇠ + +( ) ·

s(d)
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learning model parameters
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quality model: simply the 
empirical fraction of occurrences

s(e) =
1

k

kX

i=1

I(xi = e)
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learning model parameters
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recency and hybrid models: 
maximize likelihood with stochastic gradient ascent

LL = log

 
Y

i2R

P
j<i I(xi = xj)w(i� j)s(xj)P

j<i w(i� j)s(xj)

!
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weight update:

score update:

@LL

@w(�)

=

X

i2R

(
s(xi)

Ai(xi=xj)
� s(xi)

Ai(1)
if x

i

= x

i��

,

� s(xi)
Ai(1)

otherwise

@LL

@s(e)

=

X

i2R

(
1� Ai(xj=e)

Ai(1)
if x

i

= e,

�Ai(xj=e)
Ai(1)

otherwise.

alternating updates to local maximum (not jointly convex)

learning model parameters
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the dynamics of repeat consumption

1. empirical analysis

2. models

3. experiments
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experiments
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scores for quality model
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experiments
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learned recency weights
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experiments
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log-likelihood per item of models, normalized 
by log-likelihood of hybrid model (which is 1.0)
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experiments
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hybrid always wins, but recency model is close
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experiments
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recency beats quality
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experiments
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learning per-item quality scores always beats 
setting scores to be equal to popularity
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experiments
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recency without scores > 
recency using popularity as quality scores
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experiments
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learned quality scores are quite different from 
popularity (Kendall-Tau coefficient of 0.44)
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experiments
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can our weights be compressed?

currently, we learn a weight for each 
possible previous position 
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experiments
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weights follow power law with exponential cutoff

Pr[x] / (x+ �)�↵

e

��x

Thursday, April 10, 14



experiments
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log-likelihood of variants of recency model 
(full recency model set to 1.0)

similar results for hybrid model
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conclusion
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studied repeat consumption across many domains

found recency and quality to be strong empirical 
effects in characterizing reconsumption

developed quality, recency, and hybrid models

validated these models on lots of real data
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thanks!

59

Thursday, April 10, 14



60

Thursday, April 10, 14



61

Thursday, April 10, 14



recency
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two problems:

1. hit ratio depends on number of unique 
items in the sequence

2. some number of hits is expected
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recency
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solutions:

1. use normalized hit ratio: divide hit ratio 
by               , the upper bound on hit ratio

2. compare to normalized hit ratios on 
randomly shuffled version of sequences

1� u/c

another baseline: compare to optimal stable cache (fraction of 
consumptions accounted for by top k items)

Thursday, April 10, 14



satiation

64
no evidence of satiation in our data
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