Effects of User Similarity in Social Media

Ashton Anderson (Stanford) Dan Huttenlocher (Cornell) Jon Kleinberg (Cornell) Jure Leskovec (Stanford)

User-to-user evaluations

Evaluations are ubiquitous on the web:

- People-items: most previous work
 - Collaborative Filtering
 - Recommendation Systems
 - E.g. Amazon
- People-people: our setting

Indirect

Where does this occur on a large scale?

- $\bullet \ WIKIPEDIA: \ \text{adminship elections}$
 - Support/Oppose (120k votes in English)
 - Four languages: English, German, French, Spanish
 - stack**overflow**
 - Upvote/Downvote (7.5M votes)

■ Epinions 😮 🗑 😮

- Ratings of others' product reviews (1-5 stars)
- 5 = positive, 1-4 = negative

Goal

Understand what drives human evaluations

Overview of rest of the talk

- 1. What affects evaluations?
 - We will find that status and similarity are two fundamental forces
- 2. This will allow us to solve an interesting puzzle
 - Why are people so harsh on those who have around the same status as them?
- 3. Application: Ballot-Blind Prediction
 - We can accurately predict election outcomes without looking at the votes

Roadmap

- 1. What affects evaluations?
 - Status
 - Similarity
 - Status + Similarity
- 2. Solution to puzzle

3. Application: Ballot-blind prediction

Definitions

- Status
 - Level of recognition, merit, achievement in the community
 - Way to quantify: activity level
 - Wikipedia: # edits
 - Stack Overflow: # answers
- User-user Similarity
 - Overlapping topical interests of A and B
 - Wikipedia: cosine of articles edited
 - Stack Overflow: cosine of users evaluated

How does **status** affect the vote?

Natural hypothesis: $\Pr[+] \sim f(S_B)$ "Only attributes (e.g. status) of B matter"

How does **status** affect the vote?

Natural hypothesis: $\Pr[+] \sim f(S_B)$ "Only attributes (e.g. status) of B matter"

We find
$$\Pr[+] \sim f(S_A - S_B)$$

Attributes of **both** evaluator and target are important

"Is B better than me?" is as important as "Is B good?"

Relative Status vs. P(+)

- Evaluator A evaluates target B
- P(+) as a function of $\Delta = S_A S_B$?
- Intuitive hypothesis: monotonically decreases

Reality

Intuitive hypothesis

How does **similarity** affect the vote?

Two natural (and opposite) hypotheses:

1. \uparrow similarity \Rightarrow \downarrow P(+)

"The more similar you are, the better you can understand someone's weaknesses"

2. \uparrow similarity \Rightarrow \uparrow P(+)

"The more similar you are, the more you like the person"

Which one is it?

Similarity vs. P(+)

Second hypothesis is true: ↑ similarity 📫 ↑ P(+)

Large effect

How do similarity and status interact?

Subtle relationship: relative status matters a lot for lowsimilarity pairs, but doesn't matter for high-similarity pairs

Status is a proxy for more direct knowledge

Similarity controls the extent to which status is taken into consideration

Who shows up to vote?

We find a selection effect in who gives the evaluations (on Wikipedia):

If $S_A > S_B$, then A and B are highly similar

Wikipedia

What do we know so far?

1. Evaluations are diadic: $Pr[+] \sim f(S_A - S_B)$

2. \uparrow similarity \Rightarrow \uparrow P(+)

3. Similarity controls how much status matters

4. In Wikipedia, high-status evaluators are similar to their targets

Roadmap

1. How user similarity affects evaluations

2. Solution to puzzle

3. Application: Ballot-blind prediction

Recall: Relative Status vs. P(+)

Intuitive hypothesis

Reality

Why?

Solution: similarity

On Stack Overflow and Epinions, no selection effect and a different explanation

Roadmap

1. How user similarity affects evaluations

2. Solution to puzzle

3. Application: Ballot-blind prediction

Application: ballot-blind prediction

Task: Predict the outcome of a Wikipedia adminship election without looking at the votes

Why is this hard?

1. We can only look at the first 5 voters

2. We aren't allowed to look at their votes

General theme: Guessing an audience's opinion from a small fraction of the makeup of the audience

Features

- Number of votes in each Δ-sim quadrant (Q)
- 2. Identity of first 5 voters (e.g. their previous voting history)
- Simple summary statistics (SSS): target status, mean similarity, mean Δ

* Note now we are predicting on a per-instance basis, so it makes sense to use per-instance features

Our methods

Global method (M1):

$$\Pr[E_i = 1] = P_i + d(\Delta_i, sim_i)$$

Personal method (M2):

$$\Pr[E_i = 1] = \alpha * P_i(\Delta_i, sim_i) + (1 - \alpha) * d(\Delta_i, sim_i)$$

- E_i : ith evaluation
- P_i : voter i's positivity: historical fraction of positive votes
- $d(\Delta_i, sim_i)$: global deviation from overall average vote fraction in (Δ_i, sim_i) quadrant
- $P_i(\Delta_i, sim_i)$: personal deviation
- α : mixture parameter

Baselines and Gold Standard

- Baselines:
 - B1: Logistic regression with Q + SSS

B2:
$$\Pr[E_i = 1] = P_i + SSS$$

• Gold Standard (GS) cheats and looks at the votes

Results

Implicit feedback purely from audience composition

Summary

Thanks!

Questions?