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Abstract

Linear and semidefinite programming are highly successful approaches for obtaining good
approximations for NP-hard optimization problems. For example, breakthrough approximation
algorithms for MAX CuT and SPARSEST CUT are based on semidefinite programming.

Perhaps the most prominent NP-hard problem whose exact approximation factor is still
unresolved is VERTEX COVER. PCP-based techniques of Dinur and Safra [7] show that it is not
possible to achieve a factor better than 1.36, and on the other hand no known algorithm does
better than the factor of 2 achieved by the simple greedy algorithm. Furthermore, there is a
widespread belief that SDP techniques are the most promising methods available for improving
upon this factor of 2.

Following a line of study initiated by Arora et al. [3], our aim is to show that a large family
of LP and SDP based algorithms fail to produce an approximation for VERTEX COVER better
than 2. Lovasz and Schrijver [20] introduced the systems LSy, LS, and LS, that naturally
capture large classes of LP and SDP relaxations. The strongest of these systems, LS, captures
the celebrated SDP-based algorithms for MAX CuUT and SPARSEST CUT mentioned above.

We prove an integrality gap of 2—o(1) for VERTEX COVER SDPs resulting from tightening the
standard LP relaxation with €(y/logn/loglogn) rounds of LS. While tight integrality gaps
for VERTEX COVER were known for the weaker LS system [22], previous results did not preclude
a polynomial-time 2 — Q(1) approximation algorithm based on LS., even when restricted to
only two rounds of LS, tightenings.

*Funded in part by NSERC



1 Introduction

A wertezx cover in a graph G = (V, E) is a set S C V such that every edge e € E intersects S
in at least one endpoint. The minimum VERTEX COVER problem asks what size the minimum
vertex cover in G is. Determining how well we can approximate VERTEX COVER is one of the
outstanding open problems in the complexity of approximation: while VERTEX COVER has a
trivial 2-approximation algorithm, no better approximation algorithms are known.

This contrasts with the situation for another famous problem, MAX CuUT: for many years, the
best approximation algorithms known obtained no better than (0.5 4+ o(1))-approximations until
the seminal paper of Goemans and Williamson [11] which used semidefinite programming (SDP)
to obtain a 0.878-approximation algorithm. Since then semidefinite programming has been applied
to various NP-hard optimization problems and has become an important technique. Indeed, for
many problems the best approximation algorithms rely on semidefinite programming relaxations.
In fact, as stated in a recent survey by Lovdsz [19], semidefinite programming is believed to be the
most promising technique for attacking the VERTEX COVER problem.

However, in ’95 Kleinberg and Goemans [18] showed that the standard SDP for VERTEX COVER
has an integrality gap of 2—o(1). Subsequently, Charikar [6] showed that the integrality gap remains
2—0(1) even if we add additional triangle inequality constraints. Hatami, Magen and Markakis [13]
strengthened this further, showing that this state of affairs remains even when we add the so-called
pentagonal inequality constraints.

Indeed, the state of the art is such that SDP-based algorithms for VERTEX COVER must settle
for competing in “how big” the “little oh” term is in the 2 — o(1) factor. Halperin [12] gives
a (2 — loglog A/log A) approximation, where A is the maximal degree of the graph. The best
approximation algorithm currently known for arbitrary graphs is due to Karakostas [15] who obtains
a (2 — Q(1/y/log n))-approximation algorithm using a stronger SDP relaxation.

Nevertheless, it is consistent with the known hardness results for VERTEX COVER that there
could be some other SDP with integrality gap, say, 1.4. In particular, the best PCP-based hardness
result known (Dinur and Safra [7]) shows that 1.36-approximation of VERTEX COVER is NP-hard.
Only by assuming Khot’s Unique Games Conjecture [16] do we get a tight 2 — o(1) inapproxima-
bility result [17]. However, determining the validity of the Unique Games Conjecture (or directly
improving on [7]) remains a difficult open problem.

To get a better picture of the approximability of VERTEX COVER (especially in light of the
inability to resolve the issue with PCP-based methods), Arora et al. [3] suggested the following
approach: rule out good approximations by large families of algorithms. One such family is the class
of relaxations for VERTEX COVER in the Lovész-Schrijver hierarchies. Lovdsz and Schrijver [20]
define procedures LS and LS, for systematically tightening linear and semidefinite relaxations,
respectively, over many rounds. The key algorithmic properties LS and LS, enjoy are that (a)
n rounds of even the weaker LS procedure suffice to obtain exact solutions and that (b) we can
optimize a linear function over the rth round LS and LS, relaxations in n°(") time.

Many celebrated SDP-based algorithms, including the seminal MAX CUT algorithm of Goemans-
Williamson [11] and the Arora-Rao-Vazirani algorithm [4] for SPARSEST CUT, can be derived using
a constant number of rounds of LS. Thus proving inapproximability results for LS, based algo-
rithms rules out one of the most promising class of algorithms that we currently have for obtaining
2—Q(1) approximations for VERTEX COVER. Furthermore, unlike PCP-based results we emphasize
that such results do not rely on any complexity theoretic assumptions.

Arora et al. [3] obtained the first result along these lines for VERTEX COVER showing that
Q(logn) rounds of the weaker LS procedure has an integrality gap of 2 — o(1). Tourlakis [24]



subsequently proved an integrality gap of 1.5 — o(1) for VERTEX COVER for Q(log?n) rounds of
LS. Very recently, a beautiful result by Schoenebeck, Trevisan and Tulsiani [22] showed that the
integrality gap is 2 — o(1) even after Q(n) rounds of LS. Unfortunately, the hard examples used in
these papers cannot be used to prove a 2 — o(1) integrality gap for even one round of LS.

The only known integrality gaps for VERTEX COVER LS, relaxations prior to the current
paper were proved by Schoenebeck, Trevisan and Tulsiani [21] who showed that the integrality gap
remains 7/6 for Q(n) rounds of LS. At root of their result are graphs obtained using the standard
FGLSS [8] reduction from MAX-3XOR to VERTEX COVER. It can be shown that their result is tight
for these graphs as their integrality gaps are at most 7/6 after one round of LS.

To summarize, previously known results do not preclude a polynomial time 2 — (1) approx-
imation algorithm for VERTEX COVER using LS, tightenings. In particular, showing a 2 — o(1)
integrality gap for even two rounds of LS, remained a challenging open problem (Charikar’s con-
struction [6] does imply a 2 — o(1) gap for one round).

In this paper we rule out such approximations. Our starting point is the graph families used to
show 2 — o(1) integrality gaps for various VERTEX COVER SDPs in [18, 6, 13] (similar graphs were
used by Alon and Kahale [2] in independent work contemporaneous with [18] studying the Lovdsz
theta function). We briefly describe these graphs. The vertex set is {—1,1}™ and two vertices are
adjacent if their Hamming distance is exactly (1 — y)m. A result of Frankl and R6dl [10] bounds
from above the size of any independent set in such graphs by m(2 — Q(7?))™. Hence, for constant
v > 0 (or even <y a slowly vanishing function of m) any vertex cover has size (1 — o(1))|V|. Of
course for v = 0 these graphs are just perfect matchings on 2™ vertices. The cleverness of the
construction lies in how a minuscule increase in v dramatically changes the independent set size
while not appreciably altering the “geometry” of the graph (and hence not appreciably increasing
the SDP value from the perfect matching case).

We use this graph family to show that Q(y/logn/loglogn) rounds of LS, has an integrality gap
of 2—0(1) for VERTEX COVER. Our main theorem also implies that the integrality gap remains at
least 2 — O(y/loglogn/logn) after O(1) rounds of LS. Hence, the approximation ratio achieved
by Karakostas’ [15] algorithm is essentially tight for “polynomial” time LS, relaxations. Our main
technical tool is the construction of a sequence of tensoring operations on vectors. These operations
have the property that inner products on the set of tensored vectors are a polynomial function of
the inner products of the original vectors. These extend similar tensoring operations used by
Charikar [6] (and implicit in earlier work by Kahn and Kalai [14]). However, our application calls
for more complicated polynomials, and moreover the polynomials (and hence the tensored vectors)
change as the induction unwinds in our lower bound argument (details in Section 3).

Section 2 contains all necessary definitions including a description of LS, . Section 3 outlines
our approach while Section 4 contains the proof of our main result. Section 5 discusses limitations
of our approach and poses some open problems.

2 Definitions, Notation and Tools

2.1 Standard SDPs for VERTEX COVER
The standard way to formulate VERTEX COVER as a quadratic integer program is as follows:
min Y7 (1 + zox;)/2

st. (zo—zi)(zo—2z;) =0 VijeFE
z; € {-1,1} Vie{0}UuV



The set of vertices ¢ for which z; = zy corresponds to the minimal vertex cover. This quadratic
program leads to the following semidefinite programming relaxation:

min )7, (1 +vo-vg)/2
st. (vo—vy)-(vo—v;)=0 VijeFE (1)
lvill =1 Vie {0yuV

We can strengthen this relaxation by adding the vector analogues of constraints valid in the integral
case. Examples are the triangle and “extended” triangle inequalities (respectively),

(vi—vj)-(vi—vg) 20 Vi,j,ke{0}UV, (2)
(vitvj)-(vitvg) >0 Vi,j,ke{0}UV, (3)

Relaxation (1) was studied in [18]. The SDP tightened using (2) was studied in [6] while the SDP
tightened using (2) and (3) (as well as the so-called pentagonal inequalities) was studied in [13].

2.2 Lovasz-Schrijver Lift-and-Project

A convex cone is a set K C R™! such that for every y,z € K, and for every a, 3 > 0, ay+ 8z € K.
Let e; denote the vector with 1 in coordinate ¢ and 0 everywhere else. Hence, Ye; denotes the ith
column of a matrix Y. If K C R*' is a convex cone, M, (K) C R®+Dx(+1) consists of all
symmetric (n + 1) X (n + 1) matrices Y such that,

1. For all: =0,1,...,n, Yy =Y.
2. Foralli=0,1,...,n, Ye; and Yey — Ye; are in K.
3. Y is positive semidefinite (PSD).

We then define N, (K) = {Ye;:Y € M, (K)} C R*"L. That is, a vector y = (yo,...,¥n) is in
N, (K) if there exists Y € M, (K) such that Yey = y in which case Y is called a protection matriz
for y. Define N¥(K) inductively by setting N? (K) = K and N¥(K) = N, (Nf_il(K)).

Let G = (V, E) be a graph and assume that V = {1,...,n}. The VERTEX COVER convex cone
for G, VC(G), is the set of vectors y € R"*! such that:

yi+y; >y forallijeE (4)
yo>y; >0 forallieV (5)
Yo >0 (6)

Constraints (4) are called the edge constraints and constraints (5) are called the boz constraints.
The value of the VERTEX COVER relaxation arising from k rounds of LS, is the solution of

min >, y;
st. (Yo,---,yn) € NF(VC(GR)) and yo = 1

The integrality gap of this relaxation (for n-vertex graphs) is the largest ratio between the minimum
vertex cover size of G and the optimum in the above program, over all n-vertex graphs G.

To get an idea of the power of LS., we note first that the relaxation Ny (VC(Q)) is at least as
strong as the the standard SDP relaxation for VERTEX COVER since the Cholesky decomposition
of any matrix Y € M, (VC(G)) satisfies (under an affine transformation) SDP (1). In fact, it even
satisfies the triangle inequalities (2) for the case i = 0. On the other hand, one can show that adding
both the standard and “extended” triangle inequalities (constraints (2) and (3), respectively) to the
standard VERTEX COVER SDP results in a relaxation at least as strong as N, (VC(G)). Indeed,
we will exploit the latter fact when constructing SDP solutions for our lower bound.



2.3 Vectors and Tensoring

We will use 0 to denote the all-0 vector. Given two vectors x,y € {—1,1}" their Hamming distance
di(x,y) is |{7 € [n] : z; # yi}|. For two vectors u € R” and v € R™ denote by (u,v) € R**™ the
vector whose projection on the first n coordinates is u and on the last m coordinates is v.

Recall that the tensor product u® v of vectors u € R* and v € R™is the vector in R indexed
by ordered pairs from n x m and that assumes the value u;v; at coordinate (4, ). Define u® to

be the vector in R* obtained by tensoring u with itself d times.

Definition 1 Let P(z) = c1z™ + ... + cgz'e be a polynomial with nonnegative coefficients. Then
we define Tp to be the function that maps a vector u to the vector Tp(u) = (\/c1u®", ..., /cqu®).

Fact 1 For all vectors u,v € R?, Tp(u) - Tp(v) = P(u-v).

2.4 Frankl-Rodl Graphs

Definition 2 Fiz v, 0 < v < 1 and an integer m > 1. The Frankl-Rodl graph G3y, is the graph
with vertices {—1,1}" and where two vertices 1,7 € {—1,1}" are adjacent if dg(i,j) = (1 — v)m.

Relatives of the following lemma appear in [10] in various guises, but it seems as if the exact
statement that we will use requires a further small step which we sketch in Appendix A. The key
difference with variants in [10] is that we explicitly allow 7 to be a function of m.

Lemma 1 Let m be an integer and let vy = y(m) > 0 be a sufficiently small number so that v-m is
an even integer. Then there are no independent sets in Gy, of size larger than m2™(1 — +2/64)™.

2.5 Saturated Vectors and their Properties

In general, our lower bounds will be proved by arguing about vectors whose coordinates are either
0/1 or take on at most one other fixed value. The following definition formalizes this.

Definition 3 A vectory € [0,1]""! is an e-vector if yo = 1 and y; € {0, % + €, 1} foralll <i<mn.

Note that e-vectors have the property that the sum of any two non-0/1 coordinates is 1+ 2e. A
weaker condition on vectors in [0, 1]**! would be to only require that the sum of any two non-0/1
coordinates is at least 1+ 2e. Such vectors were used in [22] and the following definition is adapted
from their paper:

Definition 4 ([22]) Let G = (V, E) be a graph. A vector' y € VC(G) is e-saturated if for every
edge 1j € E such that y; and y; are both not integral, y; +y; > 1+ 2e.

Saturated vectors have the following important property proved in [22] (we include a proof in
Appendix B for completeness):

Lemma 2 ([22]) Let G = (V, E) be any graph and suppose x € VC(G) is e-saturated. Then x is
a convex combination of e-vectors in VC(QG).

The lemma essentially says that proving lower bounds for e-saturated vectors reduces to proving
lower bounds for e-vectors. This will be crucial for our arguments since we only know how to
find protection matrices for e-vectors. We remark that our definition for saturation is slightly
different than the one in [22] as there they only require that one of y; or y; in Definition 4 be
non-integral. Consequently, Lemma 2 becomes somewhat stronger to accommodate this difference,
but the additional argument for this strengthening is trivial (see Appendix B).
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3 Overview of the Proof

We start with the Frankl-Rodl graph family, G = G7,;, and denote by n = 2™ the size of G. We
will show that the point x = (1,1/2 +¢€,...,1/2 + €) is contained in the polytope defined after
Q(y/logn/loglogn) rounds of LS. This clearly gives us our desired 2 — o(1) integrality gap.

The standard way to prove that a certain point x is in the polytope resulting from r rounds
of LS, (hereafter, the “rth polytope”) is as follows: (1) Exhibit a symmetric PSD “protection”
matrix Y for x such that the diagonal and first column of Y equal x. (2) Show inductively that the
vectors Ye; and Y (eg — e;) are in the (r — 1)st polytope. By definition of LS, it will then follow
that x is in the rth polytope.

To define a protection matrix for x we will start with the canonical set of vectors associated
with the vertices of G, namely the normalized versions of the vectors {—1,1}™ (these vectors were
also the starting point for [18, 6, 13]). These vectors have the appealing property that the inner
product of vectors associated with vertices ¢ and j is solely a function of the Hamming distance
dp(i,7) between i and j. Observe that this property will not be compromised by applying the
Tp tensoring transformation to the vectors. Indeed, we will use this tensoring transformation with
a specific polynomial P to obtain a new set of tensored vectors and then define our candidate
protection matrix to be essentially the Gram matrix of these vectors. (Note that Charikar [6] also
uses a tensor transformation to prove his integrality gap for the SDP with triangle inequalities.)

A consequence of the observation above is that the values on the diagonal of the Gram matrix
are all identical. So this protection matrix recipe only works for vectors like x where all fractional
values are the same. In fact, for technical reasons which we do not get into in this outline, this
recipe produces valid protection matrices only when x is a p-vector for some 0 < p < 1/2.

To continue our inductive argument we would in turn like to use the same recipe to find candidate
protection matrices for each of the 2n vectors Ye; and Y(ey — €;) (or, more accurately, for the
projections of these vectors onto the hyperplane zy = 1). The problem is that while these 2n
vectors may indeed be in the (r — 1)st polytope, they may not be p-vectors. (This is because the
entries Y;; of Ye; are a polynomial function of dg (7, 7) and the latter is distributed like a binomial
distribution when i is fixed.) So the recipe cannot be used without extra work.

To remedy the situation, we will apply a “correction” phase as follows. (Note that “correction”
phases of some sort or another can be found in many previous works [3, 1, 5, 24, 21, 22].) We will
construct the tensored vectors so that the vectors Ye;, Y(ey — e;) have high saturation. We will
then use Lemma 2 to express these vectors as convex combinations of p'-vectors from VC(G) for
some p' > 0 (this is the “correction” part). We then carry on the induction with these p’-vectors to
show that they lie in the (r — 1)st polytope. Convexity then implies that the vectors Ye;, Y (e —e;)
are also in the (r — 1)st polytope.

To summarize, we start with a vector x = (1,1/24¢€g,...,1/2+¢€p), €o = €, and after one round
we need to show that the 2n vectors Ye;, Y(ey — ;) corresponding to x’s protection matrix Y
have large saturation €1; and then we continue with vectors with fractional values 1/2 + €1, and so
on. In this process, the obvious objective is to make the sequence €y, €1, €9, ... as slowly decreasing
as possible, thereby making it last for many rounds before it becomes negative (which amounts to
negative saturation, and hence that the corresponding vectors are not in VC(G) at all). We will
show that for each round i, we can ensure that ¢; = ¢;_1 — O(7y). Thus for arbitrarily small initial
€0, we get an induction chain of length Q(ep/7)-

The engine of this process and our main technical tool are the tensor-inducing polynomials.
Along with the sequence of decreasing saturation values we shall have a sequence of polynomials
with positive coefficients, Py, P1, P»,... where P; depends on ¢; and determines €;41. The choice



of this sequence is at the heart of the matter. The nonnegativity requirement on the coefficients
makes this a challenging task as otherwise we could approximate any continuous function that
fits our needs. In [6], Charikar uses a polynomial designed to produce vectors that satisfy the
triangle inequality. This polynomial is the sum of a linear term and a degree O(1/) monomial
that unfortunately produces a poor saturation, and hence cannot be used to proceed beyond one
round of LS. In particular, the saturation it provides is about 1/m < . The problem is intrinsic:
let’s suppose that we are dealing with Y (ey — e;) for some fixed i. It’s easy to see that whatever
polynomial we may use, edges ij will have no slack at all in Y (ey — ;). This edge itself does not
affect the saturation as its values are integral. However, the continuous nature of the construction
means that nearby edges 7’7" will not have integral values since their values will correspond to
evaluating the polynomial at points only slightly different than those for ij. But then, to ensure
that i'j' has good saturation, our polynomial must vary a lot between the cases corresponding to
ij and ¢'§’. This calls for a polynomial with a very large derivative, and hence one with very high
degree d > m; in contrast, the polynomial that Charikar uses has degree independent of m.

4 Main Theorem

Lemma 3 Let m be a sufficiently large integer and v > 0. Let n = 2™ and let € be a sufficiently
small constant such that € > 5y. Suppose in addition that y € R*! is an e-vector in VC(Gy,).
Then there ezists a protection matriz Y for 'y such that for all i with 0 < y; < 1, Ye;/y; and
Y(eo — €i)/(1 — y;) are convex combinations of (€ — 67)-vectors. In particular, y € Ny (VC(GY)).

Given Lemma 3, we can prove our main theorem from which the integrality gaps for LS, stated
in the introduction immediately follow.

logm

m
sufficiently small constant such that € > 5y. Let n = 2™ and let r = L%J — 1. Then the integrality
gap of N7 (VC(G?,)) is at least 2 — 4e — 2/m.

Theorem 5 Let m be sufficiently large, and fiz v > 12 such that ym are all even. Let € be a

Proof: Let y = (1, % +e... ,% +¢€) € Rl Clearly y € VC(Gy,). A simple inductive argument
using Lemma 3 then implies that y € N7 (VC(G)).
On the other hand, Lemma 1 implies that the largest independent set in G7, has size at most

2m
9M[m(1 — 42/64)™] < m2™e™ i < m2Me ™6 6™ < 9™ Iy

Hence, the integrality gap for N7 (VC(GY,)) is at least, 22 m _ 20-1/m) 5 9 ge

n( %—Fe) 1+2¢ O

2
=
4.1 Proof of Lemma 3

Fix m and v and consider G = G3,. Denote the vertices V of G as vectors w; € {—1,1}",

1 <4< 2™ and for each vector w; € V define u; = ﬁwi. Note that ||u;|]| =1 for all 4 € V and

u; - uj = 2y — 1 for all 45 € E. Moreover, —1 < u; - u; gl—% foralll1 <i<j<2™,

Given a polynomial P with nonnegative coefficients we will now define a procedure that takes
the vectors {u;}, applies the tensoring operation Tp from Section 2.3 to obtain a new set of vectors,
and then applies a linear transformation to the resulting vectors. The Gram matrix of the vectors
resulting from this procedure will be called Y (P,y). Our goal will be to pick P so that Y(P,y) is
a protection matrix for y.



First, define vy = (1,0,...,0). For each vertex 1 < i < 2™ define,

Vo, ify; =1
vi=1¢ 0, ify; =0
(346 Y2 - Tp(w)), ifyi=3+e

Let Y (P,y) € RO+Dx(+1) be the PSD matrix Y (P,y);; = vi-v;. We define a class of polynomials
and show that for any polynomial P in this class, Y(P,y) is a protection matrix for y.

Definition 6 A polynomial P(x) is called (v,e, m)-useful if it satisfies the following conditions:

1. P has only nonnegative coefficients.

2. P(1) = 1,
3. P(z) > P(2y—-1) = —}jrg: for all z € [-1,1].
4. For alli e {1,...,2™} and all jk € E,
4e 4e

_ < Pl -u:) + Plu, - <
1—2¢ = (uz uj)+ (uz uk)_ T2’ (7)

1
Claim 1 If P is (y,e,m)-useful, thenY =Y (P,y) € M. (VC(G)). In particular, Y is a protection
matriz for'y and hence, y € N.(VC(G)).

Proof: Since Y is PSD by definition, to show that Y is a protection matrix for y it suffices to show
that: A) Forall0<i<mn, Yy =Y;; =v;,and B) Forall1 <i <n, Ye;,Y(ey — e;) € VC(G).

Consider A first. Clearly Yjo = Y;; = y; whenever y; € {0,1}. In particular, note that Yy = 1.
So assume that y; = 1/2 + e. Clearly Y;o = % + ¢, so consider Y;;. We have

1 — 4¢€2

1
P(ui'ui):_+ea

1 2 1-4e 1
Yiz’:Vz"Vi:<§+6> + Tp(ui)-Tp(ui)=—+e+62—|— 5

4 4

where the last equality follows from the fact that the u; are unit vectors and P(1) = 1.

Now consider B. We must show that for all 1 < i < n, Ye; and Y(ey — €;) both satisfy the
edge constraints (4) and the box constraints (5). Note that if y; € {0,1}, then {Ye;,Y(ep — €;)} =
{0,Yep} C VC(G) and these constraints are trivially satisfied. So assume y; = % +e.

The box constraints require for all 1 < j <n that 0 <Yj; <Yjo and 0 <Yp; —Y;; < Yy — Yio.
Equivalently, for all 1 < 5 < n,

Yio +Yjo — Yoo <Y < Y. (8)

On the other hand, the edge constraints require for all 1 <4 < n and all jk € E that
Yij + Y > Yo, 9)
(Yo; — Yi;) + (Yor — Yik) > Yoo — Yio. (10)

Since (8) holds when y; € {0,1}, by symmetry it also holds if y; € {0,1}. So assume y; = % +e.
We first show that the right inequality in (8) holds. Fix j € {1,...,n}. Note that since P(1) =1,
it follows that ||V'Z|| = ||Vj|| SO, Yvij =V;-Vj < ||V'Z||2 = va = Y;'().

Now consider the left inequality in (8). We have that,

1 1 — 4é?
m+m—m—m:m—%:1ﬂ+&+46bmyb@)ﬁe
1 1 - 4¢2
:Z—e—l-eQ—I- 46P(ui-uj')20,



where the inequality follows by Property 3 of a (v, €, m)-useful polynomial and the fact that the u;
are unit vectors. So (8) holds.

Now consider the remaining constraints. Fix j,k € {0,1,...,2™}. Using constraints (8), the
fact that Y;; = Yy for all ¢, and the fact that y is an e-vector in VC(G), it is easy to verify that
constraints (9) and (10) hold whenever one of y; or y are integral. So assume y; = yx = & + €.

Note then that constraint (9) holds if the following is at least 1:

Yii + Y
Yio

=92 (% + 6) + 1 _226(TP(11z') - Tp(uy) + Tp(u;) - Tp(uy))

1-2
=1+2+ Te(P(ui ‘uj) + Pu; - ug)). (11)
Similarly, constraint (10) holds if the following is at least 1:

(Yo; — Yij) + (Yor — Yik)
Yoo — Yio

142
14 9e_ — =€

(P(u; - uj) + P(u; - ug)). (12)

But by Property 4 of a (v, ¢, m)-useful polynomial, for all 7 € {1,...,2™} and all jk € E, equa-
tions (11) and (12) are indeed both at least 1 and the claim follows. O

By Lemma 2, to complete the proof of Lemma 3 it suffices to show that there exists a (-, €, m)-
useful polynomial P such that if Y = Y(P,y), then for all 4 such that y; = % + € the vectors Ye; /y;
and Y(eyp —e;)/(1 —y;) are (e — 67y)-saturated. (The vectors Ye;/y; and Y (eo —e;)/(1 —y;) are the
“normalized” versions of Ye; and Y (ey — €;), i.e., their projections onto the hyperplane zy = 1.)

To that end, let us first compute the saturation of these vectors for an arbitrary but fixed
(v, €, m)-useful polynomial P. Fix i such that y; = % + € and consider Ye;/y;. Let I = {i} U
{7 :y; € {0,1}}. Then the saturation of Ye;/y; is at least

. 1 ) 1—2¢
i (O Y =) = in e S P w) + Pl w)

1—2¢
> ' o N
= jktigken [6 t (P(u; - uj) + Plu uk))] ;

where the equality follows by (11) and the fact that y;,yr ¢ {0,1}. Similarly, the saturation of
Y(ep —e;)/(1 —y;) is at least

; 1 [ (Yo; — Yij) + (Yor — Yir) . 1+ 2
Z —1) = _ Plu: - u. Plu, -
j,lcénl,lﬁeE 2 < 1—y; j,keznll,ljrllceE € 4 (P(u; - uy) (ui - ug)

1+ 2e¢
4

>  min
Jk#i,jkeE

(P(u; - uj) + P(u; - uk))] ,

where the equality follows by (12) and the fact that y;, yx & {0,1}.
Lemma 3 now follows from the following lemma proved in Section 4.2 which shows that (-y, €, m)-
useful polynomials of the type we require do in fact exist:

Lemma 4 Let m be an integer and 7y a sufficiently small positive real such that % and % are even
1

integers and m is significantly larger than ¥ Suppose € > by. Then there exists a (7, €, m)-useful

polynomial P such that for all i,j,k € {—1,1}" where j,k # i and jk € E,

|P(u; - uj) + P(u; - ug)| < 207. (13)



4.2 Proof of Lemma 4: Constructing (v, ¢, m)-useful polynomials

In this section we prove Lemma 4. Fix € and v as in the statement of the lemma. Let R be the
following subset of R? (see Figure 1):

1 1
RZ{(I,y)E[—1,1]2:|$+y|§2%|$—y|§2(1—7), z<1l-—, y<1—ﬁ}-

Claim 2 To prove the lemma it suffices to find a polynomial P with nonnegative coefficients such
that P(1) =1, Vz € [-1,1] P(z) > P(2y — 1) = (2¢ — 1)/(2¢ + 1), and such that,

P() + P(y)| <20y V(s,y) € . (14)

Proof: By definition, P satisfies the first three properties of a (v, €, m)-useful polynomial.

Next recall that the vectors u; satisfy the property —1 < wu;-u; <1 - % forall 1 <4 # 35 < 2™,
Further, if jk € E and 7 # j, k, then since u; + u; is supported on ym coordinates on which it
assumes values £2/4/m we get that

[ui - uj 4w ug] = (- (w5 4 )| < 2.

Similarly, |u; -uj —u;-ug| < 2(1—7). Hence, {(u; - uj,u;-uy) : j,k # i and jk € E} C R. So (14)
implies (13). Moreover, since 5y < e, it implies Property 4 of a (v, €, m)-useful polynomial in all
cases except when ¢ = k. However, in that case we have

2¢ —1 e

2¢+1  1+42€

P(u;-u;) + P(u;-uj) =P(1)+P2y—-1) =1+

and hence Property 4 holds in that case too. I
Lemma 4 now follows from the following technical lemma:

2m
v
integers and m s significantly larger than % Let € > 3v be sufficiently small. Then there exists a

polynomial P satisfying the conditions in Claim 2.

Lemma 5 Let m be an integer and v a sufficiently small positive real such that and % are even

Proof: Let P(z) = A(z + 1)x27m Voexy + (1 — ¢ —2A)zx where ¢, A are positive constants we will
define below so that P satisfies the conditions of the lemma. Note that P has a “high” degree
component (i.e., A(x + 1)x27m) which vanishes at —1, as well as a “medium” degree and a linear
component (see Figure 2). Observe that P(1) = 1.

Necessary conditions for ensuring that P(z) > P(2y—1) = (2¢ —1)/(2¢ + 1) for z € [—-1, 1] are
that P'(2y —1) =0 and P(2y — 1) = (2¢ — 1)/(2e + 1). These two (linear) conditions immediately
determine the values of ¢ and A (we give rough bounds that will suffice for our analysis):

2 — 5y + 1dey < A < 2€ — 4y + 1bery < 3e,
Ty + ldey < ¢ < 8y + 1dey < 8.57.

Note that these bounds and the condition € > 3 ensure that P has positive coefficients.
Next we show that P(z) > P(2y —1) for z € [-1,1]. Consider P"(z). Since % is even, we have

2 2 2m _ 2 2 2m _
P'(z) > A (_m n 1) m oy A (_m _ 1) 2m iy
Y Y



It is not hard to see then that P”(z) > 0 whenever z > —1 + 2m+7 So since P'(2y — 1) = 0, it
follows that P(z) > P(2y — 1) whenever z > —1 + 2m - 1t is more difficult to estimate P" when
< —-1+5 21 oF instead, we will bound P(z) directly for such z: our lower bounds for ¢ and A and
the fact that m is sufficiently large imply that for z <

—14 52,

1

P(z) > c (1 - %)5 —(1—c—2A) > —14+(14+e m)c+2A > —1+1.9c+2A > —1+4e > P(2y—1).

Hence, P(z) > P(2y — 1) for every z in [—1,1].
It remains to prove that |P(z) + P(y)| < 20y on R. Firstly, smce m > 1/, we (very roughly)

have that (z + 1)$27m < & when z € [-1,1 - %] Secondly, |x7 + y7| < 2 over R. Finally, by
definition of R, we have that |z + y| < 2y for all (z,y) € R. Hence, for all (z,y) € R,

IP(z) + P(y)| < Al(z + Dz + (y+ 1)y 27 4y |+ (1 —c—2A)|z +y

<4+ 17y + 2y = 207.

+c

O

5 Discussion

One obvious and probably challenging open problem is to determine how the integrality gap evolves
beyond w(+y/logn) rounds of LS, . Note that our graph instances have girth essentially y/logn and
that proving integrality gaps for VERTEX COVER for more rounds than the girth proved quite
challenging in the LS context (see [24, 22]).

One caveat of our result is that the VERTEX COVER SDPs we study are incomparable to the
SDP used in Karakostas’s algorithm [15] and with the SDPs considered by Hatami et al. [13].
Karakostas’s SDP employs the triangle inequality (2) while Hatami et al. also add the “extended”
triangle inequalities (3) and the so-called pentagonal inequalities. Such inequalities constrain the
geometry of valid SDP solutions: they are constraints on the £2-distances of the vectors given by the
solution’s Cholesky decomposition and do not depend on the edges present in the underlying graph.
It is not hard to show for the graph G with no edges that there exist matrices in M7 (VC(Gy))
(for all r) whose Cholesky decompositions do not satisfy the triangle inequality (2) whenever i # 0.
The technical reason for this is that while r rounds of LS, suffice to derive all valid inequalities for
any subset of r vertices, LS, (without strengthening the initial relaxation) cannot also derive all
valid inequalities for the “lifted” variables Y;; involving those r vertices. Intuitively, to derive such
inequalities we need a lift-and-project method that in subsequent rounds does lifting on the vertex
variables and the Y;; variables (i.e., applies N4 to M, (V C(G)) rather than to Ny (VC(G))).

Sherali and Adams [23] describe precisely such a related lift-and-project system. Unfortunately,
our arguments do not seem to extend to their system. Indeed, no non-trivial integrality gaps
are known for the SDP version of Sherali-Adams for any problem. Even for the LP version of
Sherali-Adams only one such result is known: Fernandez de la Vega and Kenyon-Mathieu [9] prove
a 0.5-integrality gap for MAX CuT after super-constant rounds.

Triangle, pentagonal and other such geometric inequalities for the Y;; variables can be derived
within LS if one introduces new variables (and constraints) to the initial relaxation to represent the
/2 distances of the Cholesky vectors corresponding to Y. Since geometric constraints have proved
powerful in tightening relaxations for problems such as SPARSEST CUT [4], we feel that the most
interesting open problem posed by our work is to extend our results to either the Sherali-Adams
system or to LS, relaxations augmented with distance variables and constraints.
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A Proof sketch of Lemma 1

In [10] we find the following similar-looking statement to Lemma 1 about sets avoiding intersections.

Lemma 6 (Corollary 4.2 in [10]) Let n be a sufficiently small number and m an integer. Also, let
F and G be two set families over the universe [m] so that |F NG| # |mn] for every F € F, G € G.
Then 4~ ™|F||G] < (1 —n?/4).

By taking F = G and treating set families as points in {—1,1}" we get that the above lemma
says that a subset of size > 2™(1 — 5%/4) must contain two points which share exactly |mn| ones.
Let S be a set in {—1,1}™ avoiding distance (1 —)m. Instead of bounding the size of S we will
bound the size of the biggest set of the form Sy = {s € S : |s| = k}, where | - | denotes Hamming
weight (i.e., the number of coordinates set to 1). Assume S, is this largest set; clearly it is of size
at least |S|/m. We may and will assume that w < m/2. Having reduced to the case where all
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points have the same Hamming weight w we relate to Lemma 6: it is easy to see that no two points
in S, may share exactly w — m(1 — y)/2 ones.

Now, let us assume first that w > (1 —~/2). Then S, is a subset that avoids intersections of
size nm where /4 < n < /2. We now apply Lemma 6 (or its corollary rather) to get that

|Sw| <2™(1 —7?/4) > 2™(1 — 4 /64)™,

and so || < m|S,| < m2™(1 — 4?/64)™. For the other case, namely w < %(1 —/2), it is enough
to use the simple upper bound S, < (Z}l) More precisely

m mH(1/2—v/4) m(o—72/16\m m _10g2 2 meq A2 m
< ~ 2 ~ 2™(2 <2 —_— <2™(1 4
S| < <73(1_,y/2)) ( )" < exP< TR (1 —~7/64)™,

and again S is at most m times this bound.
The above estimate is nearly tight: consider the (open) Hamming ball B of radius (1 — v)/2;
clearly this ball is an independent set in G ,,. Now

_ m ’)’m m ")’m mH(l/Q—’y) ’ym m(1_72/4 _ m’ym _72m/4
B|= E > — > —2 ~—2 =2"—2 .
1Bl = (j)_ 2 (m(l—%))_ 2 2 2

i< (1-7) 2

So for |B| to be 0(2™) we must have that ym2™"™/4 = (1) and so v = Q(y/logm/m).

B Proof of Lemma 2

For completeness, we include in this section a proof of the lemma by Schoenebeck, Trevisan and
Tulsiani [22] (Lemma 2 here) for expressing an e-saturated vector as a convex combination of
e-vectors.

Proof: Partition V as follows: Let V. ={i € V :z; <1/2+ €}, Vi ={i e V:z; >1/2+€},V =
{ieV:2;=1/2+¢€}. Let r(0) =0, and for all : € V' let

-, i€V
r(i) =< 1, 1€V
1- %, 1€V
setting at the end the maximum of the r(7)’s equal to 1. Note that since x is e-saturated, whenever
ij € F and 1 € V_, we must have j € V. Moreover, for such a pair we must have that r(j) > r(7)
because

1—x; T;
i) =) =1 - 1 (1 )
T; 11—z
1/2+€¢ 1/2—¢
w120 - (1L-a)(1/2+0)
(1/24¢€)(1/2 —¢)
zi+z;— (1+2€) e(zj—x;)

=T tTau-e Y

where the last inequality follows from the fact that x is e-saturated.
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Reorder the r(i)’s so that 0 = r(ig) < r(i1) < ... <r(ijy|). Foreach t =1,...,|V], let x(®) be
the e-vector where
, i € V_ and r(7) (i¢)

0 > (i
xgt) =< 1, i € Vi and r(z) > r(i)
% + €, otherwise

We claim these vectors are in VC(G). To see why consider an edge ij. The constraint PARERMG) >

i J
Z(-t) §t) is 0. However, if 7.” = 0, then i € V_ and r(i) > r(i).

3
So the feasibility of x implies j € V4 and hence 7(j) > r(it). So :cg-t) = 1 and the constraint is
satisfied.
It remains to argue that x is in the convex hull of the x(’s. To that end, we define a distribution
D over the vectors x() such that x® is assigned the probability r(i;) — (i;_1). It is easy to verify
now that Et[:z;gt)] =g foralljeV. O

1 is satisfied unless at least one of z;’ and z
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