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Abstract. This work provides a Linear Programming-based Polynomial
Time Approximation Scheme (PTAS) for two classical NP-hard problems
on graphs when the input graph is guaranteed to be planar, or more
generally Minor Free. The algorithm applies a sufficiently large number
(some function of 1/ε when 1+ ε approximation is required) of rounds of
the so-called Sherali-Adams Lift-and-Project system. needed to obtain a
(1 + ε)-approximation, where f is some function that depends only on
the graph that should be avoided as a minor. The problem we discuss are
the well-studied problems, the Max Independent Set and Min Vertex
Cover problems. An curious fact we expose is that in the world of minor-
free graph, the Min Vertex Cover is harder in some sense than the
Max Independent Set.
Our main result shows how to get a PTAS for Max Independent Set in
the more general “noisy setting” in which input graphs are not assumed
to be planar/minor-free, but only close to being so. In this setting we
bound integrality gaps by 1+ε, which in turn provides a 1+ε approxima-
tion of the optimum value; however we don’t know how to actually find
a solution with this approximation guarantee. While there are known
combinatorial algorithms for the non-noisy setting of the above graph
problems, we know of no previous approximation algorithms in the noisy
setting. Further, we give evidence that current combinatorial techniques
will fail to generalize to this noisy setting.

1 Introduction

A common way to handle NP-hard problems is to design approximation algo-
rithms for them. Often, even a good approximation cannot be achieved if one is
concerned with the standard worst-case analysis. For example, it is NP-hard not
only to solve Max Independent Set but also to approximate it to within factor
of |V |δ for any δ < 1 unless NP=ZPP [18]. However, we may be able to to com-
pute good approximations for some classes of inputs. Examples for such classes
in the context of graph problem could be graphs with bounded degree, sparse
graphs, dense graphs, perfect graphs, etc. In some cases a certain restriction on
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the input renders a problem trivial, such as the case of Max Clique restricted
to bounded-degree graphs; in others, such as Sparsest Cut on bounded degree
graphs are still very hard to approximate. More interesting examples are the
semidefinite-programming based algorithm for colouring of perfect graphs [17],
or the classical Polynomial Time Approximation Scheme (PTAS) by Arora for
Euclidean TSP [2].

In this paper we present algorithms based on Linear Programming (LP),
which give rise to a PTAS for the problems of Max Independent Set and
Min Vertex Cover on minor-free graphs, and in particular on planar graphs.

We first explain how Linear Programming approach may lead to a PTAS,
namely algorithms that for each ε > 0 give approximation of 1+ε and run in time
polynomial in the size of the graph and may depend on ε. One can think of this
as a sequence of algorithms which give approximation factor that approach 1. To
come up with such a sequence using an LP, it is natural to consider a sequence
of LP formulations rather than a fixed one. Systematic methods that give rise to
such sequences are so-called Lift-and-Project methods. Here, the original LP is
tightened repeatedly r times (or levels/rounds). When this process is repeated
for r = n times, the obtained LP is equivalent to the original Integer Program,
and hence solving it will give the exact solution to the original problem, however
the running time of such an algorithm will not be polynomial in general. More
specifically, starting from a poly-size LP it takes nO(r) to optimize over the level
r tightening. In order to obtain a PTAS using the above paradigm, one should
show that lim ηr = 1 where ηr is the approximation guaranteed by the LP after
r rounds of applying the Lift-and-Project operator.

Different variants of Lift and Project methods exist, and in this work we show
that the one due to Sherali-Adams satisfies the condition above with respect to
some classical graph optimization problems on planar graphs and their gener-
alization to minor-free graphs. To the best of our knowledge there is only one
example for PTAS that is obtained by Lift-and-Project systems due to Fernández
de la Vega and Kenyon-Mathieu [15] who have provided a PTAS for Max Cut
in dense graphs using the Sherali-Adams hierarchy.

We further consider the setting where the input graphs are noisy, in the sense
that they are obtained by applying some bounded number of changes to graphs
in the special classes considered above. We show that in this setting the LP-
based approach is still effective: we can bound the integrality gap by 1 + ε when
O(1/ε) rounds of Sherali-Adams are applied. It is important to note that while
the integrality gap is well-bounded by our method (whence the method well-
approximates the optimal value), we don’t know how to translate this guarantee
to a rounding procedure or to any other method that will obtain a solution
approximating the optimum. There aren’t many examples in the literature where
a bound on the integrality gap is known but no integral solution is presented to
achieve the bound, and we note [14] as one example of such a scenario.

Previous Work: Tree graphs, bipartite graphs, small tree-width , outerplanar
and planar graphs all have been well-studied in the context of restrictions on
the type of input of NP-hard problems. Specifically for our problem, algorithms



for planar graphs were studied by Baker [3] who gave a PTAS with running
time O(f(ε)n log n) for Max Independent Set and Min Vertex Cover on
planar graphs. For the minor-free case, The work of DeVos et al.[12] opened
the way for algorithms in minor-free graph partitioning, as they provided (proof
of existence of) a decomposition of the graph to simple parts. Following their
work, there were a series of algorithms for minor-free graphs which were mostly
nonconstructive 3 such as [16]. However, later in a work of Demaine et al.[13]
it was shown that the decomposition can be done in polynomial time which
makes those algorithms constructive. We note that our approach is in general
inferior to the combinatorial approach in [3] in terms of running time as the
time complexity of optimizing in the r-th level of the Sherali-Adams Hierarchy
is nO(r) which means that our algorithm run in time O(n

1
ε .

In contrast to the above work, no algorithms are known for the noisy setting.
In fact, in Section 5 we give evidence that current combinatorial approaches or
modification of them are bound to fail.

In the context of PTAS which are LP-based not many examples are known,
and we mention two here. In [4], Bienstock shows that a Linear Programming
of size polynomial in 1/ε and in n to approxmate upto 1 + ε the knapsack
problem on n items. As in our case, this is an LP-based analogue to an existing
combinatorial algorithm, the well known PTAS for Knapsack by Lawler [20]. A
second example is due to Avis and Unemoto [11] who show that for dense graphs
linear programming relaxations of max cut approximate the optimal solution
upto 1 + ε, where the size of the LP is again polynomial in 1/ε and in n. Unlike
the current work, however, the LPs in these results are not obtained through
the lift-and-project method, but rather they are found in a way customized to
the problem. (In fact, for the first result above, even the choice of variables to
be used is not obvious.)

Techniques: An essential ingredient in our work is a result by Bienstock and
Ozbay [10]. Consider a graph G that has tree-width k, and consider the standard
LP relaxation of Max Independent Problem on G. It is shown in [10] that the
application of the level k Sherali-Adams (SA) operator gives an exact solution
to the problem. In other words, the relaxed and integral optimal solutions are
the same. The graph-theoretic component of our results uses the theorem of
DeVos et. al. [12] mentioned above. The theorem shows that for every positive
integer j there is a partition of the vertices of a minor-free graph into j parts so
that the removal of any of them leaves components of tree-width at most k(j),
where k(j) depends only on j and on the minor and not on n. In the special
case of planar graphs this decomposition theorem is almost straightforward, with
k(j) = j. Our approach essentially uses the following simple schema: (i) apply
the level-k(j) SA operator, where j ∼ 1/ε. (ii) bound the integrality gap obtained
by 1 + ε. This is made possible by separately bounding the contribution of the

3 this means that for every H there is an algorithm for the H-minor-free case, but
there was no uniform algorithm, that given H and an H-minor-free graph provides
the required approximation.



solution on the different parts relative to the corresponding integral solution.
Notice that ensuring small integrality gap gives an approximation of the value
of the optimum and that in order to provide algorithms that actually supply
good approximated solutions we need to know the decomposition and round the
fractional solution according to this decomposition. We later elaborate on this
interesting aspect of our technique.

The rest of the paper is organized as follows. In Section 2 we give the rele-
vant graph theoretical definitions as well as the description of the Sherali-Adams
Hierarchy. In Section 3 we deal with the Max Independent Set problem. We
first show how to get a PTAS for the simpler case of planar graphs, and then
extend to family of minor-free graphs. In Section 4 we deal with the approxima-
tion of Min Vertex Cover. We show a general lemma that says that under
sufficient conditions it is possible to import results about integrality gaps for
certain LPs for the problem of Max Independent Set into ones about Min
Vertex Cover. Last, we consider the case of graphs which are “noisy versions”
of planar or minor-free graphs.. We show that unlike combinatorial approaches,
our algorithms can extend to this case. More specifically, we show a PTAS for
the value of the maximum independent set in noisy planar graphs and, more
generally, in noisy H-minor-free graphs.

2 Preliminaries

The tree-width of a graph A tree decomposition of the graph G is a pair (T,X)
such that

1. T is tree;
2. for every vertex v ∈ G there is a tree tv;
3. X = {tv : V (tv) ⊆ T} such that each tv is a subtree of T ;
4. and for any edge e(u, v) in E(G), we have tv ∩ tu 6= ∅.

We say that a graph G has tree-width k if there exists a tree decomposition
of G such that the intersection of every k + 2 of tv’s is empty.

The Sherali-Adams Hierarchy Sherali-Adams is a system that given an LP re-
laxation produces a tightened LP, that will eventually produce a program that
is equivalent to the Integer Program describing the problem. More specifically,
given a LP relaxation of some {0, 1} integer-program on n variables and a pa-
rameter r, the Sherali-Adams lifting of the LP in the rth level an LP that is
strictly stronger than the original LP and requires nO(r) time to optimize over.
When r = n, the generated LP is equivalent to the integer program, hence its
solution solves the original problem exactly. While this is not essential for the
purpose of the current paper, we give below a full description of the system.

For every two disjoint sets of variables I and J such that |I ∪ J | ≤ k, we
have a variable w[I, J ]. This variable represents

∏
i∈I xi

∏
j∈J(1 − xj) in an

integer solution, and in particular, an original variable of the LP is associated
with w[{i}, ∅]. The system imposes all possible linear conditions on this set of



variable that can be derived by (i) the original inequalities of the LP, and (ii)
by the relations of the above products amongst themselves. The inequalities of
type (i) that we get are derived by every LP inequality For the first type, we
obtain the inequality ∑

j 6∈J

ajw[I ∪ {j}, J ] ≥ b · w[I, J ]. (1)

for every LP inequality
∑

i aixi ≥ b and every I, J as above.
For type (ii) the following inequalities are obtained.

w[∅, ∅] = 1 (2)

0 ≤ w[I ∪ {j}, J ] ≤ w[I, J ] for j /∈ (I ∪ J) (3)

0 ≤ w[I, J ∪ {j}] ≤ w[I, J ] for j /∈ (I ∪ J) (4)

w[I, J ] = w[I ∪ {j}, J ] + w[I, J ∪ {j}] (5)

The obtained linear program “projects back” to the original set of variables,
namely considers w[{i}, ∅]. We shall denote by SA(t)(G) the polytope of all
solutions of the t-th level of the Sherali-Adams Hierarchy (this is the extension
of the notion of the polytope associated with an LP relaxation).

Noisy Graphs Consider a class of graphs. Then a noisy version of a graph from
the class is simply a perturbation applied to it. We adopt a standard notion of
distance to quantify this: the distance between two graph is the minimum number
of edges or vertices that should be added or removed from one of the graphs to
become isomorphic to the other graph. We extend this notion to distance between
a graph G and a family of graphs in the standard way, namely as the minimum
distance of G over all the graphs in the family. Notice that when the family is
monotone, that is closed under edge removal, as is the case with the families we
consider, the distance is simply the number of edges needed to be removed from
the graph in order for it to be in the family. It is important not to confuse the
notion of ”noise” here, which is deterministic, with the notion of noise used to
describe random perturbation of objects, and the result we supply are stronger
than corresponding results in the random model.

3 A PTAS for Max Independent Set

In the Max Independent Set problem the input is a graph and the output is
an independent set, namely a set of maximum size of vertices that share no edges.
This is a classical NP-hard problem which is notoriously hard to approximate.
Let n be the number of vertices, then it is NP-hard to approximate the problem
to within factor of n1−ε [18]. In other words, in the worst case setting not much
can be done. This motivates looking at special classes of inputs.



3.1 Planar Graph Case

While the Max Independent Set problem is still NP-hard for planar graphs,
the problem of approximating the solution is quite a bit different. Indeed, any
four colouring of a planar graph gives rise to an independent set of size at
least n/4, and hence 4-approximation algorithm. The next natural is whether a
polynomial time algorithm exists that approximate the optimum to within 1+ ε
and what is the dependency in ε.

The standard Linear Programming relaxation for the problem is:

maximize:
∑

v∈G xv

for uv ∈ E(G)) xv + xu ≤ 1
for u ∈ V (G) 0 ≤ xu ≤ 1

(6)

Notice that this LP is quite weak as the all 1/2 solution is always a feasible
solution. For graphs with sublinear independent sets this LP is therefore quite
useless as it is. However, it is not hard to show that for planar graphs the
integrality gap of the LP above cannot be larger than 2. Our goal now is to
show that by using higher level of the Sherali-Adams hierarchy much better
approximations can be obtained.

Let G be the input graph and α(G) be the size of the largest independent set
of G. Furthermore, let y be the projection of optimal solution of the level k SA
operator applied to LP (6) onto the singleton variables. For a set of vertices S
we define y(S) as

∑
u∈S yu, and y′(S) as

∑
u∈S yu− y2

u. Abusing notation, when
M is a graph, we may write y(M) instead of y(V (M)).

Fix an embedding of a planar graph G into the plane. Graph G is m-
outerplanar for some m > 0. The vertices of the graph can be partitioned into m
sets V1, V2 . . . Vm, where V1 is the set of vertices in the boundary of the outerface,
V2 is the set of vertices in the boundary of the outerface after V1 is removed and
so on. Note that, if u ∈ Vi and w ∈ Vj are adjacent then |i− j| ≤ 1.

We now wish to remove some of the Vi from the graph so that (i) the remain-
ing graph is k-outerplanar, and (ii) the weight of the removed set in the optimal
SA solution is small. Let

B(i) =
⋃

j=i(mod k+1)

Vj .

For every value of k this partitions V (G) into (k+1)-outerplanar sets. Note that
after removing the vertices in B(i), the resulting graph is k-outerplanar. We now
consider an index j for which y′(B(j)) ≤ y′(G)/(k + 1) and denote B(j) by W .

Let Gi be the subgraph of G induced on Vi = {v : v ∈ Vl, ik + j ≤ l ≤
(i + 1)k + j}. Notice that every edge or vertex of G appear in one or two of
the Gi, and those vertices not in W appear in precisely one of the Gi. A key
observation we need is that applying Sherali-Adams on G and then projecting
onto Vi (more precisely, projecting onto all subsets of size at most t in Vi) is a
solution in SA(t)(Gi). This follows from the fact that the LP associated with G is
stronger than the one associated with the subgraph Gi (on all common variables)



and the same extends to the Sherali-Adams hierarchies. Therefore using [10] we
can deduce that the projection of y onto the singleton sets in Vi is a convex
combination of integral solutions, namely independent sets of Gi.

Let ρi be the corresponding distribution of independent sets for Gi and con-
sider the following experiment (or random rounding): pick a set Si according to
ρi, independently for each i. We say that a vertex v is chosen if it is in Si when-
ever v ∈ Gi. (Notice that for v /∈ W , v belongs to a unique Gi and the condition
is simply that v ∈ Si, but for v ∈ W , v may belong to both Gi and Gj in which
case it is chosen only when v ∈ Si ∩ Sj .) Denote by S the set of chosen vertices.
We claim that S is an independent set. Indeed, every edge belongs entirely to
some Gi, two neighbours in Gi cannot both be in the independent set Si, and
so they cannot both be chosen.

Since the marginals of ρi on v ∈ Gi is yv, we get that for vertices v /∈ W

Pr[v ∈ S] = yv

and for vertices v ∈ W
Pr[v ∈ S] ≥ y2

v .

From the above conditions we can conclude that

E(|S|) ≥
∑
v/∈W

yv +
∑
v∈W

y2
v =

∑
v

yv −
∑
v∈W

(yv − y2
v) = y(G)− y′(W )

Now, it is easy to see that y′(G) ≤ 3y(G)
4 . It is shown in [5] that a k-

outerplanar graph has tree-width at most 3k− 1, therefore in the 3k− 1 level of
Sherali-Adams y will be integral on any subgraph of tree-width at most k. We
can finish off with the required bound

IS(G) ≥ E(|S|) ≥ y(G)− 1
k

y′(G) ≥ y(G)− 1
k

(
3y(G)

4

)
=

(
1− 3

4k

)
y(G)

and get

Theorem 1. Let G be a planar graph. Then α(G) is at least 1 − 3
4k times the

solution of level 3k − 1 Sherali-Adams operator applied on the standard LP for
Max Independent Set (LP (6)). Further, the above algorithm gives rise to a
rounding procedure that actually finds an independent set that is at least (1 −
3
4k )α(G)

3.2 Extending to Minor-free Graphs

Consider a fixed graph H and consider graphs G which are H-minor-free, namely,
they don’t contain H as a minor4 Notice that planar graphs are a special case
as they do not contain K5 (or alternatively, K3,3 as a minor. As with the case of

4 A graph G contains H as a minor if H can be obtained from G by applying a
sequence of edge/(isolated)vertex removal and edge contraction.



planar graphs, the special property of a minor-free which is utilized in algorithms
is the fact that it can be decomposed into simple components when some limited
part of it is removed. As with the case of planar graph, we would like “simple” to
stand for small tree width. A recent theorem due to DeVos et al. gives precisely
that.

Theorem 2. (DeVos et. al [12]) For every graph H and integer j ≥ 1 there
exist constants kV = kV (H, j) and kE = kE(H, j) such that the vertices of every
graph G with no H-minor can be partitioned into j +1 parts such that the union
of every j of them has tree-width at most kV . In addition, the edges of G can be
partitioned into j +1 parts such that the union of every j of them has tree-width
at most kE.

The above theorem is crucial in the algorithm we present. It is worth noting
that for the special case of planar graphs we may take kV to be as small as O(j).

Theorem 3. For every H and ε > 0 there exists a constant c = c(ε,H) such
that for every graph G with no H-minor, the integrality gap of the level-c Sherali-
Adams operator of LP (6) is at most 1 + ε.

Proof. (sketch) Let c = kV (H, d1/εe), we claim that applying level c SA operator
is sufficient to derive 1 + ε bound on integrality gap. For any subset of vertices
we define y(S) =

∑
v∈S yv. Using the result from [10]. We know that for any

S ⊆ G with tree-width less than or equal to c, we have y(S) ≤ α(S). Now if we
take the partitioning of vertices into V1, . . . , Vj+1 according to Theorem 2, and
remove the partition with minimum y(Vi) from G the rest of the graph must
have tree-width at most c, and furthermore we have

y(G \ Vi) ≥
j

j + 1
y(G),

and we bound the integrality gap

y(G)/α(G) ≤ (1 + 1/j)y(G \ Vi)/α(G) = (1 + 1/j)α(G\Vi)/α(G) ≤ 1 + 1/j.

4 Vertex Cover

A vertex cover for a graph G is a subset of the vertices touching all edges. The
Min Vertex Cover problem is to find a minimal vertex cover for a graph. For
a graph G we denote the minimum vertex cover by ν(G).

The purpose of this section is to show how to get a SA-based PTAS for
Min Vertex Cover on minor-free graphs from a similar PTAS for Max In-
dependent Set. Generally speaking, Min Vertex Cover is easier problem to
approximate than its complement, Max Independent Set, and it can be easily
approximated by a factor of 2. Notice that an exact algorithm for one problem
can be easily converted into an exact algorithm for the other problem. Similarly,
the quality of the additive approximation to the problems is still the same. It is



well known, however, that for the standard measure of approximation namely
multiplicative approximation, the approximation quality of the problems may
differ dramatically. The most common scenario exhibiting the above difference
are graphs with independent sets of size at most o(n) and vertex covers of size at
least n− o(n). For the purpose of this section, though, we are interested in un-
derstanding the opposite scenario where the size of some vertex covers is o(n);
this is since in these such graphs (the compliment of) a 1 + ε approximation
of Max Independent Set may provide a very poor approximation for Min
Vertex Cover. Now, there is a standard trick that reduces any instance of
Min Vertex Cover into one where the optimal solution is of size at least half
the graph. This trick simply finds an optimal solution for the standard LP, and
removes the vertices who get value 0 in the solution. What we do next avoids
the trick. The advantage of having a direct claim about the integrality gap of
any graph, rather than using it as a subroutine, is that it allows for argument
that involves projection of a solution onto smaller subgraphs. Examples of this
sort was shown in Section 3, and a more interesting one will be supplied later in
Section 5 in the context of noisy graphs.

The LP for Min Vertex Cover is formulated below.

minimize:
∑

v∈G xv

for uv ∈ E(G)) xv + xu ≥ 1
for u ∈ V (G) xu ≥ 0

(7)

The idea behind getting a generic statement allowing us to move from Max
Independent Set to Min Vertex Cover is quite simple. In fact it uses
similar reasoning (even if in a more subtle way) to the “standard trick” described
above. We split the graph into two parts, one that “behaves integrally” on which
no error is incurred, and the other on which the maximum independent set is
smaller than the minimum vertex cover, and then combine the two parts. This
split is achieved by looking at the optimal solution of the standard LP to Max
Independent Set. We start by defining a property of LP relaxations for Max
Independent Set.
Downward property: We say that an LP relaxation for Max Independent
Set has the downward property if its solution y satisfies that for any S ⊆ V (G),
y(S) ≤ (1 + ε)α(G′), where G′ is subgraph of G induced by S.

Lemma 1. Let y be an optimal solution to an LP relaxation of Max Indepen-
dent Set that has the downward property, then |V (G)| − y(G) ≥ (1− ε)ν(G)

Proof. Consider the standard LP for Max Independent Set (LP(6)) and de-
note its solution by z. It is well known that z can be transformed into a half-
integral solution. Partition V (G) to S0, S1, and S1/2 according to the value of z
on the vertices. Also, let Sint = S0 ∪ S1, Gint be the induced subgraph on Sint,
and G1/2 the induced subgraph on S1/2

We first argue that the restriction of z on Sint is the optimal fractional
solution of LP(6) on Sint. To see that, let w be any fractional solution to LP(6)



on Sint and let u be the extension of w to S according to z, that is u agrees
with w on Sint and with z on S1/2. We now show that (z + u)/2 is a solution to
LP(6) on G: edges inside Sint as well as edges inside S1/2 are satisfied by both z
and u, and so also by (z + u)/2; edges between S0 and S1/2 sum to at most 1/2
in z and at most 3/2 in u, and so must sum to at most 1 on (z + u)/2. Since
there are no edges between S1 and S1/2 in G we have that (z + u)/2 is a valid
solution. Optimality of z implies that z(S) ≥ u(S) and hence z(Sint) ≥ w(Sint).
Of course the same holds for any vector which is a solution to a tightening of
LP(6) on Sint. In particular

y(Sint) ≤ z(Sint) = |S1|. (8)

The second fact we require is that maximum independent set in G1/2 is smaller
than the minimum vertex cover of this graph. Since the all-half vector is solution
of LP(6) on G1/2, it is also a solution of the standard vertex cover relaxation.
But then

ν(G1/2) ≥ z(S1/2) ≥ α(G1/2). (9)

With inequalities (8) and (9) we can easily conclude

n− y(G) = |Sint| − y(Sint) + |S1/2| − y(S1/2)
≥ |Sint| − |S1|+ |S1/2| − (1 + ε)α(G1/2)
= |S0|+ ν(G1/2)− εα(G1/2)
≥ |S0|+ ν(G1/2)− εν(G1/2)
≥ ν(G)− εν(G1/2)
≥ ν(G)− εν(G)

where the second last inequality follows since the union of S0 and any vertex
cover of G1/2 is a vertex cover for G.

For any graph G which is H minor-free all its subgraphs are also H minor-
free. This fact shows that we satisfy the conditions of Lemma 1. Now if we use
Theorem 3, we can immediately get that applying level c SA operator is sufficient
to obtain the n− y(G) ≥ (1− ε)ν(G) inequality. Specifically, we have

Theorem 4. After applying level k SA operator the above Linear program, we
have a approximation of 1− 1/f(k) for Min Vertex Cover.

Any subgraph of a H minor-free graph is also a H minor-free graph and
therefore it satisfies the second condition of Lemma 1. Also it is clear that it
satisfies the first condition as SA is a tightening of the LP (6). and therefore the
approximation on independent set follows the approximation of vertex cover for
planar graphs.



5 Main result: a PTAS for Max Independent Set on
Noisy Minor-Free Graphs

Algorithms that makes assumptions about the nature of their input may com-
pletely break down when this assumption is not totally met, even if by just
a little. Indeed, try to two-colour a graph that is not quite two-colourable, or
to approximate Max2SAT for formulas that are almost satisfiable by using an
algorithm that solves 2SAT. Perhaps the most obvious example of this sort is
MAX-2LIN, the problem of satisfying a maximal number of linear equations.
This problem can be solved easily using Gaussian elimination if there is an as-
signment satisfying all equations but is hard to approximate when this is not
the case, even when the system is nearly satisfiable.

Of course a better scenario is when the algorithms are robust. Such algorithms
are designed to work well on a special class of inputs but even when the input
slightly inconsistent with the class (of course, ”slightly” should be well defined
in some natural way) then the performance (approximation) of the algorithm
may only deteriorate in some controlled way.

As was outlined in the Preliminaries, in the context of graphs we say that a
graph is close to being Minor Free if by removing a small number of edges the
obtained graph is minor-free. With this in mind, we would like to know whether
there are good algorithms when the input graph is either minor-free or it can be
made minor-free after, say, o(n) edges are removed from.

We first argue that previous combinatorial algorithms, or even other algo-
rithms that work in the same spirit, are non-robust. Notice that all previous
algorithms relied on finding a decomposition of the graph into simpler (small
tree-width) parts, in a manner which “resembles” a partition. For simplicity we
will consider the spacial case of robustness with respect to planar graphs. Had
there been robust combinatorial algorithms we would that along the way such
algorithms will provide decomposition of the above nature. But then we should
also expect such algorithms to perform the simpler task of deleting a few nodes
and edges in such graphs so as to make them planar. Two relevant combina-
torial problems come in mind, Maximum Planar Subgraph and Minimum
Non-planar Deletion, the first asking to find a planar subgraph of the input
graph G with maximum number of edges, and the second is the complementary
problem, that is minimizing the number of edges to delete to make G planar.
These problems are well studied and was shown to be APX-hard [9, 22].

In contrast, the Sherali-Adams based approach uses such decomposition only
in its analysis and so the algorithmic difficulty in detecting the ”wrong edges”
disappears. Here is what we can obtain. We jump right away to the general
minor-free case, although similar argument will provide an algorithm for the
planar case with improved parameters.

Theorem 5. For every H and ε, there exists a constant r = r(ε,H) such after
applying level-r SA operator to LP (6) for Max Independent Set with input
graph G which has distance d = O(n/|H|

√
log|H|) from an H-minor-free graph,



the integrality gap is at most

1 + ε + O(d|H|
√

log |H|/n).

Proof. Let F be an H-minor-free graph that is closest to G. It is easy to verify
that (i) V (F ) ⊆ V (G) (ii) E(F ) ⊆ E(G) and further that |E(G) − E(F )| ≤ d.
Since the removal of every edge can increase the size of the maximum indepen-
dent set by 1, and since the removal of an isolated vertex will decrease it by 1,
it follows that

|α(G)− α(F )| ≤ d.

The next structural statement we need in order to control the behaviour of G
compared to that of F is the strength of SA(t)(G) compared to that of SA(t)(F).
Let y be the optimal solution of SA(t)(G). Since E(F ) ⊆ E(G) we can use the
monotonicity argument as in the proof of Theorem refmain to deduce that the
restriction of y to F is a valid solution to SA(t)(F). This allows us to bound
y(F ) as if it is obtained in SA(t)(F) and hence we can use Theorem 3, which
sys that there exists a constant r = r(ε,H) such that after applying level r
Sherali-Adams operator, we get a bound

y(F ) ≤ (1 + ε)α(F ). (10)

Recall that y(F ) is just a projection of the vector y onto F , hence

y(G)− y(F ) ≤ d (11)

We next argue that there are large independent sets in F . Indeed, recall
that the greedy algorithm that repeatedly takes a vertex of lowest degree to the
independent set and removes its neighbours, gives an independent set of size
Ω(n/δ) where δ is the average degree in F . It is known [21, 19, 1] that H-minor-
free graphs have on average degree O(|H|

√
log |H|), hence an independent set

of size Ω(n/|H|
√

log |H|) is obtained. Since d = O(n/|H|
√

log |H|) we get that
d = O(α(F )). We will assume from now on that the hidden constant is such that

d ≤ α(F )/4 (12)

We now combine inequalities 10, 11 and 12 to get obtained the desired bound
on the integrality gap of SA(t)(G).

y(G)
α(G)

≤ y(F ) + d

α(F )− d

≤ y(F )
α(F )− 2d

≤ (1 + ε)α(F )
α(F )(1− 2d/α(F ))

≤ (1 + ε)(1 + 4d/α(F ))

= 1 + ε + O(d|H|
√

log |H|/n).



When Min Vertex Cover is harder than Min Independent Set: Is
it possible to import the above result to the Min Vertex Cover problem a-la
Section 4? We give a strong evidence that the answer is negative. The idea is
based on two simple facts. First, a graph on d vertices has distance d from the
empty graph. Second, the addition of isolated vertices to a graph the optimal
value of the vertex cover LP does not change, nd the same holds to the level
r SA operator applied on that LP. By a result of Charikar, Makarychev and
Makarychev [8] there are graphs on d nodes for which the integrality gap is
2 − o(1) even in the r-th level of the Sherali-Adams hierarchy for r = dΩ(1).
Specifically, the fractional solution (in the hierarchy) is roughly d/2 while the
minimum vertex cover is d(1 − o(1)). Now, take a graph G0 on d vertices as
above and add n− d isolated vertices to it. The obtained graph G will have (i)
distance d from the empty graph on n − d vertices (which is of course planar),
and (ii) an optimal value of roughly d/2 in the dΩ(1)-level of the Sherali-Adams
hierarchy. Thinking of d and n as asymptotically the same, say d = n/100 we
get that even linear-level (in number of vertices) of Sherali-Adams has tight
integrality-gap for graphs which are d distance away from planar graph, and so
for the Min Vertex Cover problem, proximity to planarity does not preclude
large integrality gaps.

6 Discussion

We have shown how LP-based algorithms “utilize” graph theoretical concepts in
a different way compared to their combinatorial counterparts: While the combi-
natorial algorithms need to find a partition/decomposition of the graph in order
to define the execution of the rest of the algorithm, in the Sherali-Adams world
the special structure of the graph is used only in the analysis (at least for the
problem of approximating the optimal value). This conceptual difference is what
allows the Sherali-Admas approach to be successful where the combinatorial
approach is limited.

In the introduction we have mentioned the Euclidean TSP result due to
Arora[2]. Other works on connectivity problems for Planar/Euclidean case were
since investigated, see [6, 7]. The underlying principle that is employed in these
works is that a discretization of the space can approximate the problem well. The
finer the discretization the better the approximation (at the cost of increased
running time). Showing that a Sherali-Adams based algorithm leads to similar
PTAS would be very interesting. Again, such a result will give rise to a very
simple algorithm, placing “all difficulty” on the analysis.

Acknowledgement: We thank Robi Krauthgamer who suggested to chal-
lenge lift and project systems with hard problems on planar graphs.
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