— e

Bernard Chazelle, Ding Liu

Princeton University

Avner Magen

University of Toronto

— e

Large geometric datasets require algorithms that examine only a small
fraction of the input.

Traditionally, the cure is preprocessing.

e

Large geometric datasets require algorithms that examine only a small
fraction of the input.

Traditionally, the cure is preprocessing.

e Nearest Neighbour Search. find point in A closest to ¢g. Can get
poly(logn).

e Do two polytopes intersect? Can get O(log”n) time.

e Is a query point inside an n-vertex polytope? O(logn) time.
e point location in a planar subdivision. O(logn).

But — Preprocessing is unrealistic for massive datasets, even when it
takes linear time.

)

e Dynamically maintain a solution. Update the Euclidean Minimum

Spanning tree when adding a point in O(y/nlogn) [Eppstein '95].

e Use specialized data-structures. Approximate the Euclidean
Minimum Spanning tree in O(y/n) [CEFMNRS "03].

Can we do without all these?

S

Present the standard input model.

The necessary use of randomization and the field of
property-testing.

Previous work.

The problems we deal with and our Las-Vegas algorithms running

in sublinear time O(y/n).

1. detecting intersection of convex polytopes in 3D.

. ray-shooting, nearest neighbour from a point to a polytope.
. point location in Voronoi Diagram and Delaunay triangulation.
. approximate the volume of polytopes.

. approximate the shortest path on polytopes.

pen questions.

—]

e Input in standard representation with no extra assumptions.

e Planar subdivision and 3-D polytopes are given in classical

edge-based structure.

e The main theme : there is table holding the edges, and some

relations to the neighbouring objects.

—_—)

Collections of records for edges, vertices and faces. various operations.

can sample a random edge in constant time.

e e)

If not reading the whole inputs, cannot do much deterministically.
: Sublinear time algorithms to check combinatorial or
geometric properties of an object.

e An object which does not satisfy the property has a distance
measuring how far it is from having the property.

e Object has the property? say YES. far from having the property?
say NO.

e Example: Check whether a set of points is in convex position. it is
far from having this property if a large number of points are in the
interior of the convex hull [CS '01]. SAY how does it differ?

SRIEIEE

, a deterministic algorithm for point location in

2-D and 3-D Delaunay triangulation of n points takes an average time
O(n'/3) in 2-D and O(n'/#) in 3-D.

No preprocessing. No assumptions on the input model are provided.

el

Sublinear algorithms for several classical problems. n is input size.

Algorithms are Las Vegas: never err, and we measure expected time.

of two convex polygons (polytopes) in 2-D

(3-D); Optimal O(+/n) time.

SHRENE

e Checking intersections of two convex polygons (polytopes) in 2-D

(3-D); Optimal O(4/n) time.

in polytopes; in polytopes; point
location in 2-D Delaunay triangulation and Voronoi diagrams.

Optimal O(y/n) time.

SRS

e Checking intersections of two convex polygons (polytopes) in 2-D

(3-D); Optimal O(4/n) time.

e Ray-shooting in polytopes; Point location in 2-D Delaunay
triangulation and Voronoi diagrams; optimal O(y/n) time.

o (1 + e)-approximate the volume of a polytope, in O(¢~1/n) time.

SRS

Checking intersections of two convex polygons (polytopes) in 2-D

(3-D); Optimal O(4/n) time.

Ray-shooting in polytopes; Point location in 2-D Delaunay
triangulation and Voronoi diagrams; Optimal O(y/n) time.

(1 + €)-approximate the volume of a 3-D polytope, in O(¢~1/n)

time.

(1 4 e)-approximate the shortest path between two points on the
surface of a polytope, in O(e~5/4/n).

SRS

Checking intersections of two convex polygons (polytopes) in 2-D

(3-D); Optimal O(y/n) time.

Ray-shooting in polytopes; Point location in 2-D Delaunay
triangulation and Voronoi diagrams; Optimal O(y/n) time.

(1 + €)-approximate the volume of a 3-D polytope, in O(e~1y/n)

time.

(1 4 &)-approximate the shortest path between two points on the
surface of a polytope, in O(e~%/4\/n).

Supply a new and most efficient construction of a wrapper : a
polytope containing the original polytope with small number of
vertices and which approximates shortest path on the original
polytope.

—)

Input : n keys in an array. A linked list leading from an element to its
successor. A key ¢q. Output : Smallest number in the list bigger than ¢.

Of course if the table itself is sorted, can do in O(logn)

g=/0

Choose r elements at random.

72

g=/0

Find the predecessor among those; traverse the original list via the
links.

—

Expected time is + n/r. Optimize to get O(y/n) time.

This alg’ is optimal. As always, to give a lower bound for a randomize
algorithm, we use Yao's minimax principle: provide a distribution over
inputs and lower bound the expected time of a deterministic algorithm.

)

Input: the numbers 1,...,n are ordered (in the table) by a random
permutation, and we need to find the number n.

The two operations we have are
(T) pick an arbitrary element from the table;
(L) go to the previous/next from the current element;

Enough to show that if O(y/n) T-operations are performed, then with

const’ prob’ we do not hit any of the last y/n elements.

This holds since an element that is obtained by a T-operation is
random among all unseen elements. Now Birthday paradox.

)

Problem : Given a Delaunay Triangulation of a set of n points A in

the plane, and a point g, find a triangle containing gq.

O

Sample r vertices; find the closest to g.

Traverse all triangles crossing the line segment from closest point to

query. there are O(y/n/r) in average.
total average time = r + /n/r. optimize to get n!/3 time.

—

e Small sample. use table-operations.

e Exhaustive naive algorithm to point to the interesting part of the

sample.

e Pin down to a restricted region and use linked-list-operations to
finish.

[ntersecting polytopes]

Polytopes P, @ with n vertices each (and so O(n) edges and faces);
Output : A point in the intersection or a separating hyperplane.

If preprocessed then can do in O(log®n) time [CD '87].

But without preprocessing?

We show O(4/n); asymptotically optimal;

—_— e e

e Can solve the intersection-problem of two polytopes in R? in
linear time when d is constant.

e How? Write a linear-program for the problem. Look for a
hyperplane that separates them. Need d + 1 variables and 2n
constraints

e Can solve LP of constant dimension in O(n) time [Megiddo ,Dyer,
Frieze, Kalai, MatouSek]

P

1. Sample y/n edges from each of the polygons: Consider the

polytopes spanned by the sample. Do not compute the polytopes.

1. Sample r edges from each of the polygons: Consider the polytopes
spanned by the sample. do not compute the polytopes.

If they intersect (check with LP) we are done.

2. Else, take a plane L separating and tangent to both.

only need to check if the “leftovers” intersect the original polytopes.

apply LP again to get intersection between C, and R, or separating

hyperplane. Get another leftover polytope of ().

check linearly (LP) the intersection of the two leftovers.

—_

C, computable in O(|C,|).
E|Cp| = O(n/r).

Conclusion : total time is O (% + 'r).

optimizing gives O(y/n).

Look at the two neighbours of v. if one of them crosses the separating

line, follow it up to the crossing back. if none it C}, is empty.

e If the size >> n/r very unlikely to be missed when |sample| = r.

e This gives E|C,| = O(n/r)logn. A more careful and elaborated

analysis gives E|C,| = O(n/r).

—_—)

All is the same (including analysis of “small-leftover” lemma) except

the “construct-leftover” procedure.

C,, is computable in O(|C,| + /n).

Once there is an edge from p crossing to the “other side” of the
hyperplane, can continue by a DFS along the edge structure

(convexity).

f

To find such an edge need to sample again; if no crossing edge in

the sample, there are two extreme between which we should scan.

)

It is essential to sample edges rather than, say, vertices. Here, if we

sample vertices, the small-leftover lemma clearly fails.

e

Using the same sampling techniques can perform

from a point to a polytope;
from a point on a polytope;
in 2-D Voronoi diagrams;
. in 2-D Delaunay triangulation;
5. And others; all optimal O(y/n).

Approximating volume of convex 3D polytopes}

An algorithm to approximate the volume in O(y/n/¢)

time.

|ldea: Dudley’s construction 4 the nearest-neighbour sublinear alg +
additional use of our sublinear primitives.

Observe : exact volume computation is easily done in O(n) using
triangulation.

Given a polytope P with n vertices, we want to approximate it by ()
with much fewer vertices.

—_—)

let P be contained in the unit ball; there is a polytope @)
with O(1/¢) vertices, such that: (1) P C @
(2) Hausdorff distance between P, Q) < e.

() formed by:

(1) sphere of radius 2;

(2) longitude/latitude grid of resolution /& X /¢;
(3) project (nearest-neighbors) the grid onto P.

—)

e Compute @ using 1/¢ nearest-neighbour operations. time =

O(vn/e).

e Compute exact volume of). time = O(1/¢).

() does not necessarily well approximates volume :

P should be fat! Goal : Affine transform P to P’.

e]

How to transform?

e Find a constant approximating volume inside P with constant
number of vertices. constant many applications of nearest
neighbour and ray-shooting.

e Compute the largest ellipsoid enclosed (Lowner-John ellipsoid) in

constant time.

e Use it to rescale P to get P’ which is fat.

Shortest paths on 3 convex palytope]

Given s,t on the surface of a polytope P. Compute the shortest path

from s to t on its surface.

Well studied in computational geometry. motivations: robotics.
geographic info systems. computer assisted surgery. many more.

previous work:

)

Previous work

2-approximation, O(n) time;

(1 + ¢)-approximation, O(n + £73) time;

O(nlog(1/e) + £73) time if output the path;
[] .

(1 + €)-approximation, O(n/\/e + %) time;

practical, implemented;

. a O(¢75/%y/n) algorithm.

Note : We approximate the length or supply a path outside of the
interior of P but not necessarily on its surface. This is necessary.

— e]

An approximating polytope Q) (“s-wrapper”) is wanted with the
property: For an s,t far enough on the surface of P, their shortest

path QT approximates to within relative error € the shortest path on
P. How many vertices must () have?

Theorem: There exists such Q with O(e75/4) vertices.
Improves on O(¢73/2) in

—)

e Truncate polytope so that s and ¢ are far enough compared to its
radius (use the sublinear primitives).

e Construct (). Project a certain grid on the sphere onto P (not a

—5/4

simple grid this time). There are ¢ points in the grid, so

time = O(e~%/*\/n).

e Use an exact algorithm to find a shortest path on Q.
time = O(¢%/41og 1/¢).

]

What makes a problem solvable in sublinear time?

General planar subdivision. Conjecture - no sublinear alg.

Techniques for showing linear lower bounds?
Can we do something for nonconvex bodies?

More efficient “wrapper” construction?

SRR

Embeddings of metric spaces; the relevance to approximation
algorithms.

Convex and mathematical programming. cutting-plane methods.

Concrete complexity. Example : How can we define

dynamic-programming, and how can we bound its strength?

Bioinformatics. Particularly combinatorial problems that arise
naturally in the analysis of genomic sequences and also the
geometry of edit-distance.

