
CSC 263H5S Homework Assignment #1 Spring 2010

Worth: 11% Due: Wednesday Januray 27 (at tutorial)
For each question, please write up detailed answers carefully. Make sure that you use notation and terminology
correctly, and that you explain and justify what you are doing. Marks may be deducted for incorrect/ambiguous
use of notation and terminology, and for making incorrect, unjustified or vague claims in your solutions.

1. [10 marks]
Consider the following two algorithms that find the two largest elements in an array A[1..n], where n >= 2.

Algorithm 1 Algorithm 2
if A[1] >= A[2] if A[1] >= A[2]
then L ← A[1] then L ← A[1]

S ← A[2] S ← A[2]
else L ← A[2] else L ← A[2]

S ← A[1] S ← A[1]
for i ← 3 to n for i ← 3 to n

if A[i] > L if A[i] > S then
then S ← L if A[i] > L

L ← A[i] then S ← L
else if A[i] > S L ← A[i]

then S ← A[i] else S ← A[i]
end for end for
return(L,S) return(L,S)

(a) Formally define an appropriate sample space and probability distribution with which to analyze the average
case complexity of these algorithms.

(b) Derive the expected number of element comparisons performed by Algorithm 1.

(c) Derive the expected number of element comparisons performed by Algorithm 2.

2. [10 marks]
Recall that the deterministic QuickSort algorithm we described in class chooses the first element of the input as
pivot element. We have seen that this algorithm has worst-case running time of Ω(n2) and an input showing this
is one in which the input sequence is already sorted (increasing or decreasing). In this question we examine what
happens when the input sequence is almost sorted.

We say that a sequence S is k-almost increasing if there are k elements, the exclusion of which leaves the
sequence ordered in an increasing fashion. For example, the sequence 1,2,3,8,6,4,5,7,9,10 is 2-almost increasing as
it is increasing once 8 and 6 are excluded. 4,3,2,1 is 3-almost increasing but not 2-almost increasing (check).

(a) Show that the best case running time of QuickSort on 1-almost increasing sequences is still Ω(n2). In other
words, there is a constant c > 0 so that for every sequence of size n that is 1-almost increasing, the number of
comparisons that QuickSort performs on the sequence is at least cn2.

(b) (bonus) Show for a general k that the best case running time of QuickSort on k-almost increasing sequences is
still Ω(n2). Hint: Let T (n, k) be the best case running time for k-almost increasing sequences. Show inductively
that T (n, k) > n2

2·2k .

3. [10 marks]
Consider a binary tree T . Let |T | be the number of nodes in T . Let x be a node in T , let Lx be the left subtree
of x adn let Rx be the right subtree of x. We say that x has the “approximately balanced property”, APB(x), if
|Rx| <= 2|Lx| and |Lx| <= 2|Rx|.
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(a) What is the maximum height of a binary tree T on n nodes where ABP (root) holds?

(b) We calll T an ABP-tree if ABP (x) holds for every node x in T . Prove that if T is an ABP -tree, then the height
of T is O(log n). More precisely, show that height(T) 6 log2 n/ log2

3
2 .

4. [10 marks]
Consider a binary search tree with seven distinct elements; the tree is perfectly balanced (that is, of height 2), and
rooted at root. In this question, we will consider two slightly different methods for searching the tree for a key
k. For each method, we will be interested in the expected time to search for k, when k is chosen at random from
amongst the keys in the tree.

(a) Consider the following search method Search1(root, k):

Search1(r,k) /*Return a pointer to a node with key k in subtree rooted at at r.*/
if k = key(r) then

return r
elseif k > key(r) then

return Search1(rightchild(r),k)
else

return Search1(leftchild(r),k)
end if

end Search1

Counting each “=” or “>” test as a comparison, what is the expected number of comparisons to do a search,
where the expectation is over the random choice of k from amongst the keys in the tree, with all of them being
equally likely? Briefly explain your reasoning and show your work.

(b) Next consider the search method Search2(root, k):

Search2(r,k)
/*Return a pointer to a node with key k in subtree rooted at at r.*/

if k > key(r) then
return Search2(rightchild(r),k)

elseif k = key(r) then
return r

else
return Search2(leftchild(r),k)

end if
end Search2

Again, suppose that each time we do a search, the element to be sought is chosen at random from amongst the
seven elements in the tree. Compute the expected number of comparisons using Search2.

(c) What if, instead of a perfectly balanced tree of height 2, we started with a perfectly balanced tree of much
larger height, say 10, and considered the same two experiments above. Which of the two procedures, Search1
or Search2, would yield the smaller expected number of comparisons? Justify your answer.

Hint: Both algoithms have two possible comparisons (not counting the ones from the recursive calls). Consier
the events that will lead to one or two comparisons in each of them and and their probabilities. Consider using
recurrance relation for the average number of comparisions in the above algorithms.
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