
CSC 263H5S Homework Assignment #1 Spring 2010

Worth: 11% Due: Monday February 1 (at class)
For each question, please write up detailed answers carefully. Make sure that you use notation and terminology
correctly, and that you explain and justify what you are doing. Marks may be deducted for incorrect/ambiguous
use of notation and terminology, and for making incorrect, unjustified or vague claims in your solutions.

1. [10 marks]
Consider the following two algorithms that find the two largest elements in an array A[1..n], where n >= 2.

Algorithm 1 Algorithm 2
if A[1] >= A[2] if A[1] >= A[2]
then L ← A[1] then L ← A[1]

S ← A[2] S ← A[2]
else L ← A[2] else L ← A[2]

S ← A[1] S ← A[1]
for i ← 3 to n for i ← 3 to n

if A[i] > L if A[i] > S then
then S ← L if A[i] > L

L ← A[i] then S ← L
else if A[i] > S L ← A[i]

then S ← A[i] else S ← A[i]
end for end for
return(L,S) return(L,S)

(a) Formally define an appropriate sample space and probability distribution with which to analyze the average
case complexity of these algorithms.

Solution:

Let Sn be the set of all permutations of {1, . . . , n} and suppose that each is equally likely (i.e. has probability
1/n!).

(b) Derive the expected number of element comparisons performed by Algorithm 1.

Solution:

Let Xi be the indicator variable that is 1 if A[i] > max{A[j] | 1 6 j < i} and 0 otherwise. Recall from class
that E[Xi] = Prob[Xi = 1] = 1/i.

In Algorithm 1, there is 1 element comparison before the loop and 1 element comparison (with L) each iteration
of the loop. Furthermore, there is 1 element comparison (with S) each iteration of the loop in which the condition
“A[i] > L” doesn’t hold, i.e. in which Xi = 0.

Thus the expected number of element comparisons performed by Algorithm 1 is

1 + n− 2 +
n∑

i=3

E[1−Xi] = 1 + n− 2 + (n− 2)−
n∑

i=3

1/i = 2n− 3−Θ(log n).

(c) Derive the expected number of element comparisons performed by Algorithm 2.

Solution:

Let Yi be the indicator variable that has value 1 if A[i] is bigger than the second largest element of {A[j] | 1 6 j <
i}, and 0 otherwise. Then E[Yi] = Prob[Yi = 1] = Prob [A[i] is the largest or second largest element in A[1..i]] =
1/i + 1/i = 2/i.

University of Toronto Missassauga Page 1 of ??

CSC 263H5S Homework Assignment #1 Spring 2010

In Algorithm 2, there is 1 element comparison before the loop and 1 element comparison (with S) each iteration
of the loop. Furthermore, there is 1 element comparison (with S) each iteration of the loop in which A[i] > S
i.e. in which Yi = 1.

Thus the expected number of element comparisons performed by Algorithm 2 is

1 + n− 2 +
n∑

i=3

E[Yi] = n− 1 +
n∑

i=3

2/i = n + Θ(log n).

(Can you see how the gain of Algorithm 2 over Algorithm 1 obtained conceptually? Why does it make more
sense to compare with S rather than with L?)

2. [10 marks]
Recall that the deterministic QuickSort algorithm we described in class chooses the first element of the input as
pivot element. We have seen that this algorithm has worst-case running time of Ω(n2) and an input showing this
is one in which the input sequence is already sorted (increasing or decreasing). In this question we examine what
happens when the input sequence is almost sorted.

We say that a sequence S is k-almost increasing if there are k elements, the exclusion of which leaves the
sequence ordered in an increasing fashion. For example, the sequence 1,2,3,8,6,4,5,7,9,10 is 2-almost increasing as
it is increasing once 8 and 6 are excluded. 4,3,2,1 is 3-almost increasing but not 2-almost increasing (check).

(a) Show that the best case running time of QuickSort on 1-almost increasing sequences is still Ω(n2). In other
words, there is a constant c > 0 so that for every sequence of size n that is 1-almost increasing, the number of
comparisons that QuickSort performs on the sequence is at least cn2.

We know that a sequence which is 1-almost increasing there is an elelment, let’s say in location j, so that if we
remove it the remaing sequence is increasing. We divide to cases.

• If j = 1 then it is the pivot in the qsort algorithm. Let’s say that the rest of the elements split to sizes n1

and n2 and notice that n1 +n2 = n−1. In addition we know that both parts of the partition are increasing
sequences. So the running time is

n− 1 +
(

n1

2

)
+
(

n2

2

)
(remember that

(
a
2

)
is the number of pairs in a set of size a which is also expressed as a(a− 1)/2). It can

be easily seen that (at least) one of n1 and n2 is of size at least (n− 1)/2 and so
(
n1

2

)
+
(
n2

2

)
> (n− 2)2/8,

and so n− 1 +
(
n1

2

)
+
(
n2

2

)
> n2/8.

• if j > 1 then we know that all elements, other than j perhaps, are bigger than the first element, which
means that the partition will be to two parts of size 1 and n− 2 or to one part of size n -1and the bigger
part is 1-almost increasing. We inductively assume that a sequence of length m where 1 < m < n which is
1-almost increasing requires number of comparisons which is at least m2/8. By this assumption, we know
have at least

n− 1 + (n− 2)2/8 = n2 − n/2 + n− 1 + 1/2 > n2/8

. Since for m = 2 once comparison is needed and 1 > 22/4 this is the base case and we are done.

(b) (bonus) Show for a general k that the best case running time of QuickSort on k-almost increasing sequences is
still Ω(n2). Hint: Let T (n, k) be the best case running time for k-almost increasing sequences. Show inductively
that T (n, k) > n2

2·2k .

University of Toronto Missassauga Page 2 of ??

CSC 263H5S Homework Assignment #1 Spring 2010

To be added...

3. [10 marks]
Consider a binary tree T . Let |T | be the number of nodes in T . Let x be a node in T , let Lx be the left subtree
of x adn let Rx be the right subtree of x. We say that x has the “approximately balanced property”, APB(x), if
|Rx| <= 2|Lx| and |Lx| <= 2|Rx|.

(a) What is the maximum height of a binary tree T on n nodes where ABP (root) holds?

Solution:

The worst case is when Lroot and Rroot are just single paths, so that height(Lroot = |Lroot| − 1 (and the same
for Rroot). We know |Lroot|+ |Rroot| = n− 1, so it could be that |Lroot| = 1

3(n− 1) and |Rroot| = 2
3(n− 1) (or

vice versa). Therefore, height(Rroot) = 2
3(n− 1)− 1 and height(T) = 2

3(n− 1).

(b) We call T an ABP-tree if ABP (x) holds for every node x in T . Prove that if T is an ABP -tree, then the height
of T is O(log n). More precisely, show that height(T) 6 log2 n/ log2

3
2 . Solution:

We’ll prove that |T | > 3
2

height(T) (*) by induction on the height of T . If T has height 0 (it is a single node),
then (*) certainly holds. Now consider T of height h. Assume, without loss of generality, that height(Lroot) >
height(Rroot). Then height(T) = height(Lroot) + 1. We know |T | = |Lroot|+ |Rroot|+ 1. Since we have ABP (x)
it follows that |T | > 3

2 |Lroot|+ 1. Lroot > (3
2)h−1, so we get

n = |T | > 3
2

(
3
2

)h−1 + 1 > (
3
2

)h.

Now that we hae proven (*), we just take the log of both sides:

h = height(T) 6 log3/2 n = log2 n/ log2

3
3

.

4. [10 marks]
Consider a binary search tree with seven distinct elements; the tree is perfectly balanced (that is, of height 2), and
rooted at root. In this question, we will consider two slightly different methods for searching the tree for a key
k. For each method, we will be interested in the expected time to search for k, when k is chosen at random from
amongst the keys in the tree.

Solution Assumptions:
For Parts (a) and (b) of this question, assume (without loss of generality) that the 7 keys in the tree are

1, 2, 3, 4, 5, 6, 7, where 4 is at the root, 2 and 6 are at depth 1, and 1,3,5,7 are at depth 2.

(a) Consider the following search method Search1(root, k):

Search1(r,k) /*Return a pointer to a node with key k in subtree rooted at at r.*/
if k = key(r) then

return r
elseif k > key(r) then

return Search1(rightchild(r),k)
else

return Search1(leftchild(r),k)
end if

end Search1

University of Toronto Missassauga Page 3 of ??

CSC 263H5S Homework Assignment #1 Spring 2010

Counting each “=” or “>” test as a comparison, what is the expected number of comparisons to do a search,
where the expectation is over the random choice of k from amongst the keys in the tree, with all of them being
equally likely? Briefly explain your reasoning and show your work.

Solution:

Let ui be the number of comparisons made when searching for i using Search1, where 1 <= i <= 7. Since
each number i is equally likely, the desired expected value is just (1/7)

∑
1<=i<=7 ui. It is easy to calculate that

u4 = 1, u2 = u6 = 3 and u1 = u3 = u5 = u7 = 5, so the answer is 27/7.

(b) Next consider the search method Search2(root, k):

Search2(r,k)
/*Return a pointer to a node with key k in subtree rooted at at r.*/

if k > key(r) then
return Search2(rightchild(r),k)

elseif k = key(r) then
return r

else
return Search2(leftchild(r),k)

end if
end Search2

Again, suppose that each time we do a search, the element to be sought is chosen at random from amongst the
seven elements in the tree. Compute the expected number of comparisons using Search2.

Solution:

Let vi be the number of comparisons made when searching for i using Search2. Then v4 = 2, v2 = 4, v6 = 3,
v1 = 6, v3 = 5, v5 = 5 and v7 = 4, so the answer is 29/7.

(c) What if, instead of a perfectly balanced tree of height 2, we started with a perfectly balanced tree of much
larger height, say 10, and considered the same two experiments above. Which of the two procedures, Search1
or Search2, would yield the smaller expected number of comparisons? Justify your answer.

Hint: Both algoithms have two possible comparisons (not counting the ones from the recursive calls). Consier
the events that will lead to one or two comparisons in each of them and and their probabilities. Consider using
recurrance relation for the average number of comparisions in the above algorithms.

Solution:

For a tree with only 7 nodes, Search1 uses fewer (on the average) comparisons than Search2. For large trees,
however, we should expect Search2 to do much better, since equality tests are very unlikely to be true most
of the time.

More quantitatively, the behaviour of Search1 can be described as follows:

• To search for the key at the root takes 1 comparison.

• Let x be an internal node of the tree. If it takes c comparisons to search for the key at x, then it takes
c + 2 comparisons to search for key at the left child of x, and c + 2 comparisons to search for key at the
right child of x.

The behaviour of Search2 can be described as follows:

University of Toronto Missassauga Page 4 of ??

CSC 263H5S Homework Assignment #1 Spring 2010

• To search for the key at the root takes 2 comparisons.

• Let x be an internal node of the tree. If it takes c comparisons to search for the key at x, then it takes
c + 2 comparisons to search for key at the left child of x, and c + 1 comparisons to search for key at the
right child of x.

To compare these two algorithms, say that the path from the root to node x contains l left edges and r right
edges. Then to search for the key at x, Search2 uses 2 + 2l + r comparisons while Search1 uses 1 + 2l + 2r
comparisons. When x is on the leftmost path (that is, r = 0), then Seach1 uses 1 fewer comparison than
Search2. In all other cases, Search2 is no worse than Search1, and it is often much better.

Consider the perfectly balanced tree of height 10 with 2047 nodes. Search1 saves 1 comparison on each of
the 11 nodes on the leftmost path. However, in the tree rooted at the right child of the right child of the root
(for example), there are 511 nodes, and for all of them, Search2 is at least 1 better (and for most nodes much
more than 1 better) than Search1.

University of Toronto Missassauga Page 5 of ??

