
CSC 263H5S Homework Assignment #2 solutuions Spring 2010

Worth: 11% Due: Friday February 12
For each question, please write up detailed answers carefully. Make sure that you use notation and terminology
correctly, and that you explain and justify what you are doing. Marks may be deducted for incorrect/ambiguous
use of notation and terminology, and for making incorrect, unjustified or vague claims in your solutions.

1. Let D be an ordered Dictionary with n items implemented with an AVL tree. Show how to implement the
following method for D in time O(log n):

countAllinRange(k1, k2): return the number of items in D with key k such that k1 6 k 6 k2.
note: you may assume that the AVL tree supports a data field at each node x which stores the number of

nodes in the subtree rooted at x.
Solution : We will show how to implement a method AllinRangefromNode(v, k1, k2) where v is a node in D.

This is enough of course since AllinRange(k1, k2) = AllinRangefromNode(root, k1, k2). In addition we will implement
“countAllBiggerThan(v,k)” and “countAllsmallerThan(v,k)” that return the number of items in the subtree of D
rooted at node v, with keys bigger-than or smaller-than k respectively.

We denote by “numnods(v)” the data field supported by the AVL that stores the number of nodes in the subtree
rooted at v.

AllinRangefromNode(v, k1, k2) {
if v = NIL return 0
if (v.key < k1) return AllinRangefromNode(rightchild(v), k1, k2)
if (v.key > k1) return AllinRangefromNode(leftchild(v), k1, k2)
else return 1+ countAllBiggerThan(leftchild(v), k1) + countAllSmallerThan(rightchild(v), k2)
}

Why does this work? If v.key < k1 then we can safely ignore the elements in the left subtree of v and continue
with the same query to the right child of v. A similar argument justifies the third line. If, however,k1 6 v.key 6 k2

then v should be counted, and for the two subtrees of v we only need to count the elements that are bigger than k1

in the left subtree, and smaller than k2 in the right subtree.
How long does it take? We can bound the running time of this method by the height of the tree, that is

O(logn) plus the running time of the other two methods. This is since every time the conditions in line 2 or line
3 are satisfied in the recursion tree, we move to a deeper node. Hence there can be as many recursive calls to
AllinRangefromNode as the height of the tree.

Now we define ‘countAllBiggerThan(v, k) and ‘countAllSmallerThan(v, k).

countAllBiggerThan(v, k) {
if v = NIL return 0
if (v.key < k) return countAllBiggerThan(rightchild(v), k)
else return 1 + countAllBiggerThan(leftchild(v), k) + numnodes(rightchild(v))
}

countAllSamllerThan(v, k) {
if v = NIL return 0
if (v.key > k) return countAllSmallerThan(lefttchild(v), k)
else return countAllBiggerThan(rightchild(v), k) + numnodes(leftchild(v))
}

University of Toronto Missassauga Page 1 of 3



CSC 263H5S Homework Assignment #2 solutuions Spring 2010

Why do they work? We analyze the first of the two methods (the other is proved similarly). If the condition
in line 2 holds then we can avoid looking at the left subtree as all elelemtns there are clearly too small. Otherwise,
all elements of the right subtree must be counted, the root must be counted and in addition all sufficiently large
elements in the right subtree should, hence the recursion.

How long do they take? As before its clear that the recursion can be no longer than the height of the tree,
as regardless of whether the condition in line 2 holds, we move to a child node of the original node.

2. Given two AVL trees T1 and T2, where the largest key in T1 is less than the smallest key in T2, Join(T1, T2)
returns an AVL tree containing the union of the elements in T1 and T2.
Give an algorithm (in pseudocode) for Join that runs in time O(log n), where n is the size of the resulting AVL tree.
Justify the correctness and efficiency of your algorithm.

Solution:
Begin by computing the heights h1 of T1 and h2 of T2. This takes time O(h1 + h2): You simply traverse a path

from the root, going to left child if the balance factor is -1, to the right child if it is positive, and to any of the
children if the balance factor is 0, until you reach a leaf. Assume that h1 > h2; the other case is symmetric.

Next, DELETE the smallest element x from T2, leaving T ′
2 of height h. This takes O(h2) time.

Find a node v on the rightmost path from the root of T1, whose height is either h or h + 1, as follows:

v ← root(T1)
h′ ← h1

while h′ > h + 1 do
if balance factor (v) = -1
then h′ ← h′ − 2
else h′ ← h′ − 1
v ← rightchild(v)

This takes O(h1) time.
Let u denote the parent of v.

Form a new tree whose root contains the key x, whose left subtree is the subtree rooted at v and whose right subtree
is T ′

2.
Note that this is a valid binary search tree, since all the keys in the subtree rooted at v are in T1 and, hence, smaller
than x, and, by construction, x is smaller than or equal to all elements in T ′

2. The balance factor of the root of this
new tree is h− h′, which is either -1 or 0, so this new tree is a valid AVL tree. The height of this new tree is h′ + 1,
which is 1 bigger than v’s height. Let the root of this new tree be the right child of u, in place of v. Again, since all
keys in this new tree are at least as big as u, this results in a valid binary search tree. This part of the construction
takes constant time.

Now, as in the INSERT algorithm, we go up the tree, starting at u, fixing balance factors and perhaps doing
a rotation. This takes O(h1) time. Note that the correctness follows from the condition at u before this process is
begun is a condition that can arise during the INSERT algorithm.

Since h1, h2 ∈ O(log n), the total time taken by this algorithm is in O(log n).

3. Suppose we are using a priority queue Q to schedule jobs on a CPU. Job requests together with their priorities
are inserted into the queue. Whenever the CPU is free, the next job to execute is found by extracting the highest
priority job in Q. Using a heap implementation for Q the scheduler can both extract the next job from Q and add
a new job to Q in time O(log n) where n is the number of pending jobs in the queue.

University of Toronto Missassauga Page 2 of 3



CSC 263H5S Homework Assignment #2 solutuions Spring 2010

However, in practice, we want our scheduler to be able to do more than just insert jobs and extract the highest
priority job. In particular, we want our scheduler to be able to remove a job x from the job queue (Delete(x)) as
well as change the priority of a job x to some new value k (Change-Priority(x, k)). Show how to add the operations
Delete(x) and Change-Priority(x, k) to the heap data structure so that (a) they both run in time O(log n) and (b)
the resulting data structure after executing either these operations is still a heap. For both operations, you may
assume that parameter x gives you the index corresponding to job x in the array representation of the heap.

Solution:

• For the delete operation, we start with taking the last item (let’s say it has key k) and placing it in position
x. So now the original key of x is gone, and instead we have y there, and in addition the “heap” is of the
right size. But of course, it’s not necessarily a heap: y may agree or disagree with its parents/children. If y
is smaller than the key of the parent, we perform up-heap bubble. Otherwise, we perform down-heap bubble
(which, in the case that y is smaller than the keys of the children, will stop right away). Since there is either
up-heap or down-heap bubble, this will have ruinning timeof O(log n). The initial swap is of course O(1).

• The change-priority is similar but even easier: All you have to do is change the key of poistion x to k, and
continue as the second phase of the delete(x) method above. In fact, you can even implement delete(x) by
performing the swap, and then using change-priority as a black box if you wish! Again, clearly this takes
O(log n).

4. [10 marks]
Consider two Binomial Heap H1 and H2. You are required to create the union H of H1 and H2 and also to find the
minimum key in H. A standard way would be to perform

H ← Union(H1, H2)
m← LookupMin(H).

Alternatively, you may perform

m1 ← LookupMin(H1)
m2 ← LookupMin(H2)
m← min(m1, m2)
H ← Union(H1, H2).

Give an example of heaps H1 and H2 in which the first sequence of operations is faster, and one in which the
second is faster. Justify your answer.

Solution: Notice that the union operation will have the same inputs in both cases (the lookupMin operations
do not change the Binomial heaps). So the question boilds down to comparing the cost of the lookupMin operations.
For a Binomail heap J , denote by `(J) length of the linked list of Binomial trees in H. Recall that the cost of
lookupMin(J) is simply `(J). Hence, if we denote by u the running time of persorming the union of H1 and H2 we
get that the first method would run in time

u + `(H)

and the second in time
`(H1) + `(H2) + 1 + u.

An example in which the first method is faster is one where `(H) is bigger than `(H1) + `(H2) + 1 and vice versa.
If H1 and H2 contain list of binomial trees of all heights upto some k, then H will contains only one binomial tree
(of height k + 1, and so `(H) = 1 and `(H1) + `(H2) + 1 = 2k + 1. On the other hand, it is always the case that
`(H) 6 `(H1) + `(H2) (do you see why? equality will happen only when the binomial trees of H1 are all different
than those of H2) and so an example of the opposite kind does not exist.

University of Toronto Missassauga Page 3 of 3


