
1. Observe the following:

r∑
i=0

σi128i ≡
r∑

i=0

σi1i (mod 127)

≡
r∑

i=0

σi (mod 127)

Since strings containing the same characters will yield the same sum of σi

values and addition is commutitive, we may conclude that any two strings that
are permutations of each other will be hashed to the same value.

2a) Note that many possible solutions exist for this question. Let our hash
function be h(x) = x (mod 10), m=10. Suppose our operations are Insert(1),
Insert(11), Insert(21), Search(1). In T1, the element containing 1 will be at the
end of the linked list requiring 3 comparisons to find it. In T2, this same element
will be at position h(1) as expected, requiring only one comparison.

2b) There were many submissions referring to the expected number of com-
parisons derived in lecture. The assumptions about the probability space used
between this question and that derivation are different, and that derivation
didn’t take into account the issue of deleted symbols. In any case, when given
such a problem, it is best to derive a proof on your own using first principles.
Below is one such example.

Consider the state of T1 and T2 after an arbitrary sequence of n INSERT
and DELETE operations. Since T1 and T2 implement the same ADT, they have
exactly the same items in them. Furthermore, since T1 and T2 have the same
number of buckets and use the same hash function, each item hashes to the
same bucket in both tables.

Let m be the number of buckets in T1 (also T2). Let p be the number of
items in T1 (also T2). So p ≤ n. For each 0 ≤ i < m, let Li be the number of
items in T1 (also T2) that hashes to bucket i. So

∑m−1
i=0 Li = p.

For 0 ≤ i < m and 1 ≤ j ≤ Li, let xi,j be the j-th item in the chain from
bucket i of T1, and let yi,j be the j-th item found in the probe sequence starting
at bucket i that hashes to bucket i.(Note that xi,j and yi,j are not necessarily
the same, but xi,j is defined exactly when yi,j is defined.)

For each table, the expected number of item comparisons equals the total
number of item comparisons when we search for every item once, divided by the
number of items in the table.

For T1, the number of item comparisons to search for xi,j is j since we are
searching for the jth item in a doubly linked list. Thus E1 = 1

p ·
∑m−1

i=0

∑Li

j=1 j

1



For T2, the number of item comparisons to search for yi,j is at least j since
we are searching for the jth item that hashes to bucket i in the probe sequence
starting at bucket i. We get more than j item comparisons when there are items
that do not hash to bucket i appearing in the probe sequence before yi,j . Thus
E2 ≥ 1

p ·
∑m−1

i=0

∑Li

j=1 j.

Therefore E1 ≤ E2 as wanted.

3. We can show formally that Ai(k) = Am−i−1(k). This suggests that
A0(k)=Am−1(k), A1(k)=Am−2(k), etc. If m is odd, we may deduce that (m+1)/2
buckets are probed and when m is even, m/2 buckets are probed.

Why is this a problem? Consider that we may end up filling all (m+1)/2
buckets of a probe sequence with hashed items. If we needed to hash another
item to this same sequence, there would appear to be no empty bucket despite
only half of the table being used.

2


