
CSC 263H5S Homework Assignment #4 Spring 2010

Worth: 11% Due: Monday March 29
For each question, please write up detailed answers carefully. Make sure that you use notation and terminology
correctly, and that you explain and justify what you are doing.

1. Consider a list of cities c1, c2, . . . , cn. Assume we have a relation R such that, for any i, j, R(ci, cj) is 1 if cities
ci and cj are in the same province, and 0 otherwise.

(a) If R is stored as a table, how much space does it require?

Solution:
R must have an entry for every pair of cities. There are Θ(n2) of these.

(b) Using a Disjoint Sets ADT , write pseudo-code for an algorithm that puts each city in a set such that ci and
cj are in the same set if and only if they are in the same province. Justify coorectness and running time of
your algorithm.

Solution:

For i <- 1 to n do
MAKE-SET(c_i)
For j <- 1 to i-1 do

If R(c_j, c_i) then
UNION(c_j, c_i)
BreakLoop

EndIf
EndFor

EndFor

(c) When the cities are stored in the Disjoint Sets ADT, if you are given two cities ci and cj , how do you check
if they are in the same province?

Solution:

ci and cj are in the same province if and only if FIND − SET (ci) = FIND − SET (cj).

(d) If we use linked-lists with union-by-weight to implement the union-find ADT, how much space do we use to
store the cities?

Solution:

There is one node per city, so the space is Θ(n).

(e) If we use trees with union-by-rank, what is the worst-case running time of the algorithm from (b) (Hint: the
unions from your algorithm probably have a special form). Explain.

Solution:

Whenever we do a union in the algorithm from part (b), the second argument is a tree of size 1. Therefore,
all trees have height 1, so each union takes time O(1). The worst-case running time is then Θ(n2).

(f) If we use trees without union-by-rank, what is the worst-case running time of the algorithm from (b). Explain.
Are there more worst-case scenarios than in (e)?

Solution:

Because of the special case of the unions, union-by-rank does not make a difference for our algorithm. Hence,
everything is the same as in part (e).
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2. Give a sequence of m Make-Set, Union, and Find-Set operations, n of which are Make-Set, that takes
Ω(m log n) time when we use union by rank only.

Solution:
Perform the n MAKESET operations. Then, using 2blog2 nc − 1 UNION operations, create a binomial tree of

degree blog2 nc. Recall that a binomial tree of degree k + 1 is formed by taking the UNION of any two elements in
different binomial trees of degree k. For example, UNION(1,2), UNION(3,4), UNION(1,3) creates a binomial tree
of degree 2.

The resulting binomial tree has one node at depth blog2 nc. Say it has value k. Then the last m−n−2blog2 nc+1
operations of the sequence are FIND-SET(k). Each of these takes time proportional to blog2 nc. The total time
for the entire sequence is bounded below by the time to perform all the FIND-SET operations, which is in Ω((m−
2n)(log n)). Provided m is sufficiently large, i.e. m− 2n ∈ Ω(n), it follows that Ω((m− 2n) log n) = Ω(m log n), as
desired.

3. Consider an implementation of the disjoint-sets ADT using rooted trees, where each node contains one member
and each tree represents one set. As discussed in class, each node points only to its parent. Moreover, the root of
a tree is the set representative and is its own parent. MAKE-SET(x) simply creates a tree with one node for x.
FIND-SET(x) follows parent pointers until the root of the tree containing x is found. UNION(x, y) first finds the
roots rx and ry of xs and ys trees, respectively, and then sets parent(ry ) = rx.

a Assume we have performed n MAKE-SET operations and no other operations. Give a sequence of n1 UNION
operations that cumulatively take time Ω(n2). Justify your answer.

b Assume we have performed n MAKE-SET operations and no other operations. Give a sequence consisting rst of
n1 UNION operations and then n unique FIND-SET operations (i.e., each element is searched for exactly once)
such that (i) the UNION operations cumulatively take time O(n) and (ii) the FIND-SET operations cumulatively
take time Ω(n)2). Justify your answer.

4. A bipartite graph G = (V,E) is a graph where V can be partitioned into two sets V1 and V2 (one of which may
be empty) such that there are no edges between any two nodes in V1 or between any two nodes in V2.

1. Show that any graph that contains an odd cycle is not bipartite.

Solution:

Let the cycle be {v1, v2}, {v2, v3}, · · · , {vm−1, vm}, {vm, v1}, where m is odd. Assume there is some partition
V1, V2 like the one described above. Assume without loss of generality that v1 ∈ V1. Then it must be the case
that v2 ∈ V2, v3 ∈ V1, · · · , vm ∈ V1. But this is a contradiction since there is an edge between v1 and vm.

2. Show how to modify DFS so that, given any graph, it creates a partition like the one described above (that
is, it assigns to each node either a 1 or a 2) when the graph is bipartite, and it outputs “not bipartite” when
the graph is not bipartite.

Solution:

For simplicity, we’ll assume the graph is connected. This solution refers to the pseudocode for DFS in lecture
8. We’ll let part[u] store the partition of each node u (i.e. 1 or 2). When we initialize p[s], we’ll initialize
part[s] = 1. Whenever we set p[v] = u, we’ll set part[v] = 3 − part[u] (if there is an edge between u and v,
then they should be in different partitions). Finally after the (*) line, we can check if colour[v] == gray AND
part[v] == part[u]. If that check is true, then we output “not bipartite”

University of Toronto Missassauga Page 2 of 3



CSC 263H5S Homework Assignment #4 Spring 2010

3. Is it true that any graph that does not contain an odd cycle is bipartite?

Solution:

Yes. If there are no odd cycles, then the algorithm from (b) will successfully partition the graph.
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