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Combinatorial Optimization∗

Lecture 2: Different forms of LP. The algebraic
objects behind LP. Basic Feasible Solutions

Notes taken by Graham Taylor

January 22, 2005

Summary: We first describe different forms of linear programming, in-
cluding the standard and canonical forms. The concept of basic feasible
solutions is introduced, and we discuss the basic algebraic objects behind
LP which will lead to the Simplex method for solving LP.

Overview

In the previous lecture, we introduced the notion of optimization problems. Figure 1
shows several families and examples of optimization problems. In this course, we will
focus on the relationship between Linear Programming (a family of continuous opti-
mization problems) and certain finite domain problems. Specifically, we will examine
methods of approximating solutions to the latter problems through tools developed for
the former.

Forms of Linear Programming

Recall, from the previous lecture, the linear programming problem

min
n∑
j=1

cjxj subject to

n∑
j=1

aijxj ≥ bi for i = 1 . . .m

xj ≥ 0.

∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

1



(mathematical programming, etc...)

continuous domain
finite domain
(MST, TSP, etc ...)

Linear
programming

Convex optimization

Optimization Problems

relationship

Figure 1: Types of optimization problems

Another way to write this is

min〈c, x〉 subject to

〈ai, x〉 ≥ bi for i = 1 . . .m
ai ∈ Rn

x ≥ 0,

where〈·, ·〉 specifies the dot product. An even more compact form is

min〈c, x〉 subject to

Ax ≥ b
x ≥ 0.

Definition 2.1. An LP is said to be instandardform if it is written as

min〈c, x〉 subject to

Ax = b

x ≥ 0.
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An LP is said to be incanonicalform if it is written as

min〈c, x〉 subject to

Ax ≥ b
x ≥ 0.

There are many other conventions, but these two will be the ones of interest for this
course. The most general form will contain some inequalities, some equalities, some
non-negative variables and some unconstrained variables.

〈ai, x〉 = bi, i ∈ E,

〈ai, x〉 ≥ bi, i ∈ I+,

〈ai, x〉 ≤ bi, i ∈ I−,

xj ≶ 0, j ∈ U, (uncostrained)

xj ≥ 0, j ∈ N.

It is useful to know how to move from an LP in the general form (as above) to
standard form. First we need to eliminate inequality constraints. Given an inequality
constraint〈ai, x〉 ≤ bi, we introduce theslackvariableyi and write

〈ai, x〉+ yi = bi, yi ≥ 0.

Since〈ai, x〉 ≥ bi is equivalent to〈−ai, x〉 ≤ −bi, this also covers the other type of
inequality. To attain standard form, we also must eliminate unconstrained variables of
the form

xj ≶ 0.

Notice that any real number can be presented as a difference of two nonnegative num-
bers, hence we may replacexj by x+

j − x−j , whenx+
j , x

−
j ≥ 0. We replace every

occurrence ofxj with x+
j − x

−
j .

Example 2.2. Consider the LP

maxx1 + 3x2 subject to

2x1 − x2 ≥ 10
x1 ≶ 0 x2 ≥ 0.

Convert to standard form.
First we attempt to convert the inequality constraints to equality constraints by

introducing the surplus variable,y1.

maxx1 + 3x2 subject to

2x1 − x2 − y1 = 10
x1 ≶ 0 x2 ≥ 0 y1 ≥ 0.
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Next we replace the unconstrained variablex1 by x+
1 andx−1 .

maxx+
1 − x

−
1 + 3x2 subject to

2x+
1 − 2x−1 − x2 − y1 = 10

x+
1 , x

−
1 , x2, y1 ≥ 0.

Finally, we convert the maximization problem to a minimization problem as follows

min−x+
1 + x−1 − 3x2 subject to

2x+
1 − 2x−1 − x2 − y1 = 10

x+
1 , x

−
1 , x2, y1 ≥ 0.

sincemax〈c, x〉 = −min〈−c, x〉.

Basic Feasible Solutions

Let us now consider the linear system of equationsAx = b whereA hasm rows and
n columns. We next show that we may assume that matrixA has full row rank. In
particular,m ≤ n.

The rank of a matrix is the dimension of the linear space spanned by its rows, and
also the dimension of the linear space spanned by its columns. We may also say that
m = rank(A) ≤ n.

Example 2.3. Consider the system of equations

x1 + x2 = 5
2x2 + x3 = 8
3x1 + 5x2 + x3 =?.

The missing value can either have value= 23 or 6= 23. In the former case, the third
equation is redundant. In the latter case, the system is inconsistent.

We will now introduce the notationAi to mean theith row ofA and similarly,Aj
to mean thejth column ofA.

We now formally prove the assumption aboutA. Suppose there is a rowAi that is
linearly dependent on the rest of the rows.

Ai =
∑
j 6=i λjA

j , then for any solutionx, we have

bi = 〈Ai, x〉 = 〈
∑
j 6=i

λjA
j , x〉

=
∑

λj〈Aj , x〉

=
∑

λjbj .

So if bi =
∑
λjbj then thei’th equation is redundant. Otherwise, nox satisfies

the system. These two cases are easily detected by Gaussian elimination. In the former
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case, this row can be removed. In the latter case, we will just state that the system is
infeasible and stop.

Equipped with this assumption let’s start with a fairly trivial situation in which
m = n. Notice that in this eventA is a nonsingular square matrix, and soAx = b has
a unique solution,x = A−1b. If x ≥ 0 then that is the only solution to the system, and
otherwise, the system is infeasible.

We use this simple observation to characterize a certain (finite) set of feasible solu-
tions that will play a vital role in the following discussion. Before we go on we require
the following.

Definition 2.4. Let P = {x|x ≥ 0, Ax = b} be called the set of feasible solutions.

A solution to the system satisfies
∑
j xjAj = b. Let’s pick a setI ⊂ {1, . . . , n}

such thatAj , j ∈ I is a set of linearly independent columns. There is at least one such
set, since rank(A) = m. We associate withI a vectorx, for which for everyj /∈ I,
xj = 0. By the linear independence of the columnsAj , j ∈ I, we know that there is
exactly one solution to the rest of the veraibales that will satisfyAx = b. Formally,
if we let AI be the matrix restircted to the columnes inI, andxI to be the vectorx
restriced to the indices inI, then we define the vectorx so thatxI = A−1

I b andxI = 0
(notice that by definition,AI is a square nonsingular matrix).

Definition 2.5. A vectorx defined as above is called abasic solutionassociated with
I. If x ≥ 0, then we get thatx ∈ P and we call itBasic Feasible Solution.

We now consider an example of a procedure that generates basic feasible solutions.

Example 2.6. Consider the LP

min〈x, (−1, 1, 0)T 〉 subject to

Ax = b where

A =
(

1 2 0
1 2 1

)
, b =

(
4
7

)
.

First, we chooseI1 = {1, 3} so

AI =
(

1 0
1 1

)
.

We have

(
1 0
1 1

)(
x1

x3

)
=
(

4
7

)
⇒
(
x1

x3

)
=
(

4
3

)
⇒ x =

 4
0
3

 .

Next, we chooseI2 = {2, 3} so

5



AI =
(

2 0
2 1

)
.

We have

(
2 0
2 1

)(
x2

x3

)
=
(

4
7

)
⇒
(
x2

x3

)
=
(

2
3

)
⇒ x =

 0
2
3

 .

In the above example, we were “fortunate” to gety ≥ 0. Otherwise the solutions
would not have been feasible.

To motivate the concept of bfs, we state Claim 2.7. It will be proven later in our
discussion.

Claim 2.7. If an LP in standard form has an optimal solution, it has one which is a
basic feasible solution.

What does Claim 2.7 tells us? Instead of the initial infinite domain, we may restrict
our attention to a special finite set of bfs. Consequently, there is a brute force algorithm
that finds an optimal solution to an LP, provided an optimal solution exists.

Algorithm 2.8 (Brute force).

Input: A, c, b

Initialize: Cost,Z =∞
For all subsetsI ⊂ {1, . . . , n} of sizem, do

Check ifAI is nonsingular
If it is, check ifA−1

I b ≥ 0
If so, letx be the corresponding bfs, do

If 〈x, c〉 < Z
SetZ = 〈x, c〉
xbest = x

Output: xbestcorresponding to the current best solution.

When considering the running time, note that we have
(
n
m

)
iterations, which for

m = n/2, say, is exponential in the size ofn. This is indeed a good estimation to the
running time, since the involved calculation does not contain extremely large numbers
as is suggested by the following claim, which was given in Assignment 1, question 3a.

Claim 2.9. The size of representation of a bfs is polynomial in the size of the input of
the LP.

Definition 2.10. We callx ∈ P extreme if it is not the average of two points,y, z ∈
P ; y, z 6= x. Specifically, ifx is the average of two pointsy, z, we mean any convex
combinationx = λy + (1− λ)z wherex 6= y 6= z.
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For example, the extreme points in[0, 1] are{0, 1}. Also,~0 is the extreme point of
{x ≥ 0}.

Example 2.11. Consider the set of real values,{‖x‖2 ≤ 1}. The extreme points are
{||x|| = 1}.

Example 2.12. Consider a polygon in 2-D (Figure 2 ). Its extreme points are its ver-
tices.

Figure 2: Extreme points example: 2-d polygon

Lemma 2.13. x is a bfs iffx is extreme.

Proof. Part 1. bfs⇒ extreme
Assumex is a bfs and is the average of two points,y andz

x = λy + (1− λ)z, 0 < λ < 1
y, z ∈ P.

Equivalently,∀j, xj = λyj + (1− λ)zj . Forj /∈ I we have

0 = xj = λyj + (1− λ)zj

butyj , zj ≥ 0. Thereforeyj = zj = 0, for j /∈ I. So

yj = zj = B−1b = xi, for j ∈ I

and we havex = y = z. It follows thatx is extreme.
Part 2. extreme⇒ bfs

We first claim thatx is a bfs iff J = {j|xj > 0} corresponds to a set of linearly
independent columns. If this set is not independent it is immediate thatx is not a
bfs and if it is independent then simple linear algebra shows that there is a way to
extetend the set of columns corresponding toJ to a set of linearly independent columns,
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corresponding to a setI, |I| = m, I ⊃ J . Clearly,x is a bfs with a corresponding basis
I.

Assumex is not a bfs. LetJ = {j|xj > 0}. We know thatx ∈ P such that the
columnsAi for xi > 0 are linearly independent iffx is a bfs. Therefore, the columns
in AJ are linearly dependent. and so there is a nonzero vectorv that is0 outsideJ so
thatAv = 0. We have

A(x± λv) = Ax± λAv = Ax = b.

In other words,x±λv is a solution to the systemAx = b. For small enoughλ > 0,

bothx+ λv, x− λv ≥ 0. Hencex± λv ∈ P . Sincex =
1
2

(x+ λv)︸ ︷︷ ︸
=y

+
1
2

(x− λv)︸ ︷︷ ︸
=z

, x

is not extreme.

Claim 2.14. If x is a bfs, then there is a choice of vectorc such that〈x, c〉 < 〈y, c〉, y ∈
P .

IA

cx

0

1

*

1
0
0

0

0
0
0
*
*
*

1

Figure 3: Choosing the objective function,c

Proof. Sincex is a bfs,xj = 0, for j /∈ I. We choosec such thatcj = 0, for j ∈ I, and
cj = 1, for j /∈ I. Clearly〈x, c〉 = 0. If y 6= x, thenyI 6= 0 (otherwiseyI = xI and so
y = x) but sinceyI ≥ 0 we get〈y, c〉 =

∑
j 6=I yj > 0 and so〈y, c〉 > 0 = 〈x, c〉.

Notice that the reverse direction is obvious, since ifx is not a bfs, it is the average
of y, z and so cannot achieve strictly smaller value than both.

We now set out to prove Claim 2.7.

Proof. Assume that we have an optimal solution,x∗. If x∗ is a bfs, then we are done.
Otherwise, we may find a bfs through the following iterative procedure.

• Start with the initial solution, call itx0

• Let J =
{
j|x0

j > 0
}
. If Aj , j ∈ J are linearly independent, stop:x is a bfs.

Otherwise, choosev (as in Lemma 2.13 such thatAv = 0 andvj = 0, if xj = 0.

• Let k be the index for which∣∣∣∣xkvk
∣∣∣∣ = min

j:vj 6=0

∣∣∣∣xjvj
∣∣∣∣ ,

and setλ = −xk
vk
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• Setx1 = x0 + λv. We can easily verify that

x1 ≥ 0 (hencex ∈ P ),

x1
k = 0,

x1
j = 0, for j /∈ J.

Repeat.

This process ends whenJ is a set of indices for independent columns of A (notice
that we may end up withJ = φ, in which case we know thatx = 0 ∈ P , and this is a
bfs).

We are left with showing that the bfs is as good as the optimal solution we started
with. Indeed, at every iteration in the above procedure, the objective function changes
by 〈c, λv〉 which, by the following claim, is0.

Claim 2.15. 〈c, v〉 = 0

Proof. Assumex is the optimal solution. Forλ > 0 small enough,x± λv ∈ P ,

〈c, x± λv〉 = 〈c, x〉 ± λ〈c, v〉

Sinceλ 6= 0, 〈c, v〉 6= 0 would change the value of the optimal solution atx.

We now turn to an example to illustrate the process of finding a bfs.

Example 2.16. Given system

Ax = b where

A =

 1 0 1 2 3
1 1 2 3 5
0 1 1 1 8

 , b =

 9
18
9

 ,and initial solutionx0 =


1
3
4
2
0

 ,

find a bfs.
Step 1.J = {1, 2, 3, 4} (only the last element ofx0 is zero).AJ is not linearly

independent, so we choosev = (1, 1,−1, 0, 0)T such thatAv = 0 andv5 = 0. Next
we chooseλ by comparing the ratios|xj/vj | for vj 6= 0

∣∣∣∣x1

v1

∣∣∣∣ =
∣∣∣∣11
∣∣∣∣ ∣∣∣∣x2

v2

∣∣∣∣ =
∣∣∣∣31
∣∣∣∣ ∣∣∣∣x3

v3

∣∣∣∣ =
∣∣∣∣ 4
−1

∣∣∣∣ ,
and a minimum is found forj = 1, so we setλ = −1.
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x1 = x0 + λv =


1
3
4
2
0

+ (−1)


1
1
−1
0
0

 =


0
2
5
2
0

 .

Step 2.J = {2, 3, 4} (the first and last elements ofx1 are zero).AJ is not linearly
independent, so we choosev = (0,−1, 2,−1, 0)T such thatAv = 0 andv1, v5 = 0.
Next we chooseλ by comparing the ratios|xj/vj | for vj 6= 0

∣∣∣∣x2

v2

∣∣∣∣ =
∣∣∣∣ 2
−1

∣∣∣∣ ∣∣∣∣x3

v3

∣∣∣∣ =
∣∣∣∣52
∣∣∣∣ ∣∣∣∣x4

v4

∣∣∣∣ =
∣∣∣∣ 2
−1

∣∣∣∣ .
We see that there is a tie for the minimum atj = 2,j = 4 and soλ = 2.

x2 = x1 + λv =


0
2
5
2
0

+ 2


0
−1
2
−1
0

 =


0
0
9
0
0

 .

We are left with only one column ofA, corresponding to thexj 6= 0 at j = 3. This
single vector is obviously linearly independent, so our solution,x2 = (0, 0, 9, 0, 0)T is
a bfs.
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