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Summary: We first describe different forms of linear programming, in-
cluding the standard and canonical forms. The concept of basic feasible
solutions is introduced, and we discuss the basic algebraic objects behind
LP which will lead to the Simplex method for solving LP.

Overview

In the previous lecture, we introduced the notion of optimization problems. Figure 1

shows several families and examples of optimization problems. In this course, we will
focus on the relationship between Linear Programming (a family of continuous opti-

mization problems) and certain finite domain problems. Specifically, we will examine

methods of approximating solutions to the latter problems through tools developed for
the former.

Forms of Linear Programming

Recall, from the previous lecture, the linear programming problem

n
min Z c;jr; subjectto
Jj=1

n
Zaijszbi fori=1...m
j=1

X 20

* Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.



Optimization Problems

finite domain
(MST, TSP, etc ...)

continuous domain

(mathematical programming, etc...)

Convex optimization

Linear
programming

relationship

Figure 1: Types of optimization problems

Another way to write this is

min{c,z) subjectto
(aj,z) >b; fori=1...m
a; € R"

x>0,

where(:, -) specifies the dot product. An even more compact form is

min{c,z) subjectto
Ax > b
x> 0.

Definition 2.1. An LP is said to be irstandardform if it is written as

min{c,z) subjectto
Ax =10
x> 0.



An LP is said to be irtanonicalform if it is written as

min(c,z) subjectto
Ax >
xz > 0.
There are many other conventions, but these two will be the ones of interest for this

course. The most general form will contain some inequalities, some equalities, some
non-negative variables and some unconstrained variables.

(ai,az> = bi, 1€ E,
<CL7;,37> Zbia i€|+a
(ai,x>§bi, el

z; 0, j €U, (uncostrained)
Z; > 0, j € N.
It is useful to know how to move from an LP in the general form (as above) to

standard form. First we need to eliminate inequality constraints. Given an inequality
constraint(a;, z) < b;, we introduce thelackvariabley; and write

Since(a;, x) > b; is equivalent to|—a;, ) < —b;, this also covers the other type of
inequality. To attain standard form, we also must eliminate unconstrained variables of
the form

ZCj § O
Notice that any real number can be presented as a difference of two nonnegative num-

+ - + -
bers, hence we may replaeg by =} — z;, whenz,z; > 0. We replace every

occurrence of; with z — ;.

Example 2.2. Consider the LP

maxx; + 3z2 Subject to
2.’L‘1 — T > 10
I § 0 T2 2 0.

Convert to standard form.

First we attempt to convert the inequality constraints to equality constraints by
introducing the surplus variablg; .

maxxi + 3z Subject to
21’1 — T2 — Y = 10
.’L‘1§O l‘gzo y120



Next we replace the unconstrained variabjeby = andz; .

maxz] —x] + 372 subjectto
2] —2x] — 29 — 11 = 10

xfaw;7x27y1 2 0
Finally, we convert the maximization problem to a minimization problem as follows

min —2 + 7 — 3z, subjectto
21’?'72:171_ — 29—y =10

+ -
'1:1 7x1 , L2, Y1 20

sincemax(c, ) = —min{—c, ).

Basic Feasible Solutions

Let us now consider the linear system of equatidas= b whereA hasm rows and
n columns. We next show that we may assume that matrbas full row rank. In
particular,m < n.

The rank of a matrix is the dimension of the linear space spanned by its rows, and
also the dimension of the linear space spanned by its columns. We may also say that
m = rank(4) < n.

Example 2.3. Consider the system of equations

r1+29 =25
21‘2+1’3:8
3x1 + bxo + 23 =7.

The missing value can either have valae23 or # 23. In the former case, the third
equation is redundant. In the latter case, the system is inconsistent.

We will now introduce the notatiod’ to mean theth row of A and similarly, A,
to mean theith column of A.

We now formally prove the assumption abolt Suppose there is a rod’ that is
linearly dependent on the rest of the rows.

A =3, A A7, then for any solution, we have

bi = <Ai,$> = <Z AjAj,.’I}>
JFi

= Z)\j<Aj7$>

=> A

So ifb; = Y A;b; then thei'th equation is redundant. Otherwise, ncsatisfies
the system. These two cases are easily detected by Gaussian elimination. In the former



case, this row can be removed. In the latter case, we will just state that the system is
infeasible and stop.

Equipped with this assumption let’s start with a fairly trivial situation in which
m = n. Notice that in this eventl is a nonsingular square matrix, and4o = b has
a unique solutiony = A=1b. If z > 0 then that is the only solution to the system, and
otherwise, the system is infeasible.

We use this simple observation to characterize a certain (finite) set of feasible solu-
tions that will play a vital role in the following discussion. Before we go on we require
the following.

Definition 2.4. Let P = {z|x > 0, Az = b} be called the set of feasible solutions.

A solution to the system satisfigs ; z;4; = b. Let's pickaset/ C {1,...,n}
such thatd;, j € I is a set of linearly independent columns. There is at least one such
set, since rankd) = m. We associate witlf a vectorz, for which for everyj ¢ I,
xz; = 0. By the linear independence of the columis j € I, we know that there is
exactly one solution to the rest of the veraibales that will satisfy= b. Formally,
if we let A; be the matrix restircted to the columnesiinandzx; to be the vector:
restriced to the indices if, then we define the vectarso thatr; = Al_lb andz; =0
(notice that by definitionA; is a square nonsingular matrix).

Definition 2.5. A vectorz defined as above is calledbasic solutiorassociated with
1. If z > 0, then we get that € P and we call itBBasic Feasible Solution

We now consider an example of a procedure that generates basic feasible solutions.

Example 2.6. Consider the LP

min(z, (—1,1,0)7) subject to
Az =b where

=(10)e-(2)

First, we choosd; = {1,3} so

1
a4

We have

() () ()= (1)

Next, we choosé,; = {2, 3} so



Ar

I
7N
N DO
— O
~_

We have

20 x274:>33272§”,g
2 1 I3 o 7 I3 o 3 = 3
In the above example, we were “fortunate” to get 0. Otherwise the solutions
would not have been feasible.

To motivate the concept of bfs, we state Claim 2.7. It will be proven later in our
discussion.

Claim 2.7. If an LP in standard form has an optimal solution, it has one which is a
basic feasible solution.

What does Claim 2.7 tells us? Instead of the initial infinite domain, we may restrict
our attention to a special finite set of bfs. Consequently, there is a brute force algorithm
that finds an optimal solution to an LP, provided an optimal solution exists.

Algorithm 2.8 (Brute force).

Input: A,c, b

Initialize: Cost,Z =
For all subsetd C {1,...,n} of sizem, do
Check if A; is nonsingular
Ifitis, checkif A;'6 >0
If so, letx be the corresponding bfs, do
If (x,¢) < Z
SetZ = (z,¢)

Thest= T
Output: xpestcorresponding to the current best solution.

When considering the running time, note that we h@@ iterations, which for
m = n/2, say, is exponential in the size of This is indeed a good estimation to the
running time, since the involved calculation does not contain extremely large humbers
as is suggested by the following claim, which was given in Assignment 1, question 3a.

Claim 2.9. The size of representation of a bfs is polynomial in the size of the input of
the LP.

Definition 2.10. We callz € P extreme if it is not the average of two poinis,z €
P;y, z # x. Specifically, ifx is the average of two pointg z, we mean any convex
combinationz = Ay + (1 — A\)z wherex # y # 2.



For example, the extreme points[in 1] are{0, 1}. Also, 0 is the extreme point of
{z > 0}.

Example 2.11. Consider the set of real valuef§jz||, < 1}. The extreme points are
{ll=l =13

Example 2.12. Consider a polygon in 2-D (Figure 2). Its extreme points are its ver-
tices.

Figure 2: Extreme points example: 2-d polygon

Lemma 2.13. z is a bfs iffz is extreme.

Proof. Part 1. bfs= extreme
Assumer is a bfs and is the average of two poinfsandz

r=Ay+(1-XNz 0<A<1
y,z € P.

Equivalently,Vj, z; = Ay; + (1 — X)z;. Forj ¢ I we have

O:IJ:)\yj+(1*A)ZJ

buty,,z; > 0. Thereforey; = z; =0, forj ¢ I. So

Yj = Zj :B_lb:mi,forj el

and we haver = y = z. It follows thatzx is extreme.
Part 2. extremes bfs

We first claim thatz is a bfs iff J = {j|z; > 0} corresponds to a set of linearly
independent columns. If this set is not independent it is immediatextiiminot a
bfs and if it is independent then simple linear algebra shows that there is a way to
extetend the set of columns corresponding to a set of linearly independent columns,



correspondingto asét |I| = m,I D J. Clearly,z is a bfs with a corresponding basis
1.

Assumez is not a bfs. Let/ = {j|z; > 0}. We know thatz € P such that the
columnsA; for z; > 0 are linearly independent iff is a bfs. Therefore, the columns
in Ay are linearly dependent. and so there is a nonzero vedtwat isO outsideJ so
that Av = 0. We have

A(x £ M) = Az £ NAv = Az =b.

In other wordsy: + A\v is a solution to the systetdz: = b. For small enough > 0,

. 1 1
bothz + Av,x — Av > 0. Hencex £ Av € P. Sincex = = (z + Av) += (. — \v),
2 2 e —

=y =z
IS not extreme.
|

Claim 2.14. If z is a bfs, then there is a choice of vect®uch that(z, ¢) < (y,¢),y €
P.

rrPOOOO O

Figure 3: Choosing the objective functian,

Proof. Sincex isabfs,z; = 0,for j ¢ I. We choose such that; = 0,for j € I, and
¢; = 1,for j ¢ I. Clearly(z,c) = 0. If y # x, theny; # 0 (otherwisey; = z; and so
y = z) but sincey; > 0 we get(y,c) =3, y; > 0and so(y,c) > 0 = (z,c).
Notice that the reverse direction is obvious, since i§ not a bfs, it is the average
of y, z and so cannot achieve strictly smaller value than both. |

We now set out to prove Claim 2.7.

Proof. Assume that we have an optimal solutiati, If x* is a bfs, then we are done.
Otherwise, we may find a bfs through the following iterative procedure.

e Start with the initial solution, call it°

o LetJ = {jlz) > 0}.If A;,j € J are linearly independent, stop:is a bfs.
Otherwise, choose (as in Lemma 2.13 such that = 0 andv; = 0, if 2; = 0.

e Letk be the index for which

and set\ = ——
Vg



e Setz! = 2% + \v. We can easily verify that
z! >0 (hencer € P),
ri =0,
xy =0, forj¢..
Repeat.

This process ends whehis a set of indices for independent columns of A (notice
that we may end up withl = ¢, in which case we know that = 0 € P, and this is a
bfs).

We are left with showing that the bfs is as good as the optimal solution we started
with. Indeed, at every iteration in the above procedure, the objective function changes
by (¢, Av) which, by the following claim, ig).

O

Claim 2.15. (c,v) =0

Proof. Assumez is the optimal solution. Fok > 0 small enoughgz + \v € P,

(c,x £ Xv) = (e, z) = Ne,v)
Since) # 0, (c,v) # 0 would change the value of the optimal solutiorzat [
We now turn to an example to illustrate the process of finding a bfs.

Example 2.16. Given system

Az =b where

1
101 2 3 9 3
A= 1 1 2 3 5 |,b=| 18 |,andinitial solutiont’ = | 4 |,
01 1 1 8 9 2
0
find a bfs.

Step 1.J = {1,2,3,4} (only the last element of® is zero). A; is not linearly
independent, so we choose= (1,1, —1,0,0)7 such thatdv = 0 andvs = 0. Next
we choose\ by comparing the ratiog:; /v;| for v; # 0

L1 T2 T3

1
1

i

U1 V2 U3

and a minimum is found fof = 1, so we sef = —1.
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Step 2.J = {2, 3,4} (the first and last elements of are zero).A; is not linearly
independent, so we choose= (0, —1,2,—1,0)7 such thatdv = 0 andv;,vs = 0.
Next we choose by comparing the ratiog:; /v;| for v; # 0

€2

V2

Z3

U3

2

]2
=1

H

We see that there is a tie for the minimumjat 2,5 = 4 and so\ = 2.

0 0 0
2 -1 0
2=zl 4= 5 | +2 2 =| 9
2 -1 0
0 0 0

We are left with only one column od, corresponding to the; # 0 atj = 3. This
single vector is obviously linearly independent, so our solutidns= (0,0, 9,0,0)7 is
a bfs.

10



