
CSC2411 - Linear Programming and
Combinatorial Optimization

�

Lecture 3: Geometric Aspects of Linear
Programming and an Introduction to the Simplex

Algorithm

Notes taken by Adam Tenenbaum

January 31, 2005

Summary: In this class, we discuss some geometrical interpretations of
linear programs and a high-level description of the simplex algorithm. We
also introduce methods for implementing the two phases of the simplex
algorithm. These notes also include the tutorial presented on January 19.

1 Review

In our previous class, we took some important steps toward defining an efficient algo-
rithm for solving linear programs (LP).

� We defined basic feasible solutions (BFS).

� We proved that BFS and extreme points are equivalent.

� We showed that if an optimum exists for a LP, then there is a BFS which is
optimum.

– This gave us an exponential algorithm in which we check all sets of �
columns.

– Candidate solutions arise when the columns are linearly independent and
there is a nonnegative combination of the columns that equals

�
.

– An easy corollary is that if there is a solution (����	�), then there exists a
solution which is a BFS.

� Finally, we proved the claim that if
� is a BFS, then there is a
� such that

���
�����
���
�����
��� � �
� ��
�

�
Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

1

– That is, it is possible to pick an objective function that makes the BFS the
unique optimal solution.

We began the lecture with Caratheodory’s Theorem.

Theorem 1.1 (Caratheodory’s Theorem (1907)). Let
� �
��� ������� �
��� �	��
 and

� �
��
� � �

�

� for �

��
� � �� � ��� �

Then there is a set � of size � ��������� � so that

� � � �� �"!
�

for
! � � � � ! ��� �

In other words, if
� is a convex combination of the
�

’s, then it can be represented by a

convex combination of only �#� �
�

’s.

Proof. To prove this theorem, we write finding the scalars
!

as a linear program:$% � �

� �'&�&�&
� �� �

() $*% �+�
...�,�

(�-)
�
� � �

��
� � � � ��� �

We then include the constraint .

�

��� by inserting a row:$**% � �

� �/&�&�&
� �� �� &�&�& �
(�--) $*% �+�

...�,�
(�-)
�

$**% �

� ��
(�--) � �

��
� �

A BFS for the system must exist since � �� � ; as such, there is a solution 0 �1� &�&�& ���3254 �
� with at most �6� � non-zero coefficients. We take the positive components of that
BFS to be the

!
’s.

Example 1.2 (Graphical example of Caratheodory’s Theorem). In Figure 1, we
demonstrate a graphical example of Caratheodory’s Theorem. Here, the regular pen-
tagon is the convex hull of its five vertices; however, an arbitrary point inside the pen-
tagon can be represented using only three of the vertices. In the example shown, the
point represented by a small circle is contained in the shaded triangle formed by only
three of the vertices – a subset of the five points forming the convex hull.

2 Geometric Aspects of Linear Programming

Example 2.1. Consider the following LP:

� � � ��7 � ��8 � � (1)
� � � ��7 � ��8 �

� �
2

Figure 1: Convex hull containing a point inside a pentagon

x1

x3

1

x2

1

1

Figure 2: Feasible solutions to Equation (1)

The set of feasible solutions � to Equation (1) is represented by the shaded triangle
shown in Figure 2. We can also consider reducing the dimension of the problem by
removing the slack variable � 8 :

�+� � � 7 � � (2)
�+� � � 7 �

� �
We get (Figure 3) a somewhat similar triangle that is presented in two (rather than
three) dimensions.

x1

x2

1

10

Figure 3: Feasible solutions to Equation (2)

3

Definition 2.2. A hyperplane � is the set�
� �
� �
� � � !�� �
where
� ��
� � ��
 and

! �6� .

Definition 2.3. A halfspace ��� is the set�
� �
� �
� � � !�� �
where
� ��
� � ��
 and

! �6� . Similarly, a halfspace ��� is the set�
� �
� �
� � � !�� �
Note that the intersection of the two halfspaces ��� and ��� is the hyperplane �
(� �
	 � � � �).

Observation 2.4. If we take a LP in standard form, then our set of feasible solutions
is

� �

�� � � � � �

�
� ������� � � �
�

�
��� � �

 ���
Thus our set of feasible solutions is expressed as an intersection of halfspaces and
hyperplanes. Since we can represent hyperplanes as an intersection of halfspaces, this
can be rewritten as a finite intersection of halfspaces:

� �

�� � � � � �

�
� �������� � � �
�

�
���

�
�
 ����������

� � �
�

�
� � � �

 ���
Since halfspaces are convex, the intersection of halfspaces is convex. Conversely, all
convex spaces can be represented as an intersection of halfspaces (but not necessarily
a finite intersection).

Definition 2.5. A polyhedron is the finite intersection of halfspaces. Furthermore, a
polyhedron which is bounded (contained in a big enough cube) is a polytope.

Since the set of feasible solutions is always a finite intersection of halfspaces, it always
forms polyhedra.

Definition 2.6. � is a supporting hyperplane for � if � 	 � ���� (� is not disjoint
from �) and ������� or ������� (� is contained in either the upper or lower
halfspace).

Definition 2.7. The intersection of a supporting hyperplane � with � is called a face.

Definition 2.8. The dimension of a set is the dimension of the smallest affine space
containing it.

For example, the feasible sets in Figures 2 and 3 are of dimension 2.

4

(d)(c)(b)(a)

Figure 4: Graphical examples of hyperplanes

Example 2.9. Examples of faces and their dimensions.
A vertex of a polyhedron is a face of dimension � .
An edge of a polyhedron is a face of dimension � .
A facet of a polyhedron is a face of dimension ��� � , where � is the dimension of the
polyhedron.

Example 2.10 (Graphical examples of supporting hyperplanes). In Figure 4, we
consider four different hyperplanes, and whether or not they are supporting hyper-
planes. The two hyperplanes in (a) and (b) are supporting hyperplanes; those in (c)
and (d) are not. Furthermore, the intersection of the hyperplane in (a) yields a zero-
dimensional face (vertex), and that in (b) has a one-dimensional face (edge).

Lemma 2.11. Let � � � � �
� � � � � � � . � is a vertex of � iff � is a BFS. Equivalently,� is a vertex of � iff � is an extreme point.

Before we begin the proof, we note that since vertices are equivalent to BFS’s and
extreme point, it is enough to look at vertices when looking for the optimum solution.

Proof. Here, we prove that a BFS is a vertex. Recall that if
� is a BFS, then there exists

� ��
� such that

���
�����
� �
��� for
� ��
� � � . We define the hyperplane � as

� � �
� �
� �
��� � ! � � where
! �
���
� � �

Since, for
� ��
� and
� � � ,

� �
����� !

, it follows that � 	 � � �
� � . Furthermore,
since for any
� � � ,

� �
���
� !

, we get � � ��� , hence � � ��� . Therefore, � is a
supporting hyperplane for � and its intersection with � (the point �) is a vertex.

Note that we have previously shown the equivalence between BFS’s and extreme points;
the proof of equivalence between vertices and extreme points will complete the proof
of the lemma and is left as an exercise.

Definition 2.12. A BFS is associated with a set of indices � of size � �+� � � , which
correspond to � independent columns. Two distinct BFS’s are called neighbours if

��� � �
	 ��� � �� ��� 7 � �
where � , � � are the corresponding basic indices, and

� � , � 7 are two distinct indices in� � ������� � � � .
5

In Lemma 2.11, we demonstrated a correspondence sending a BFS to a vertex. By
using this definition of neighbouring BFS’s (defined by two sets of valid indices which
differ in one index), we see a connection to the geometrical view of neighbours. Here,
swapping a single valid index is equivalent to moving from one vertex to another along
an edge of a polytope. A proof for this claim can be found in Papadimitriou and Stei-
glitz.

3 Introduction to the Simplex Algorithm

The simplex algorithm has historically been the algorithm most commonly used to
solve linear programs. While it suffers from worst case exponential complexity in
time, and it is not believed that it can be made polynomial, it does perform very well
on average. Next class, we will discuss the complexity of the simplex algorithm in
detail.

We now provide a very high level description of the simplex algorithm. We want to
take advantage of the structure of the LP, and to improve on our previous (brute force)

algorithm by moving from BFS to BFS in a clever way, rather than visiting all � �
���

possible combinations (some of which may not be feasible).
This high level view of the simplex algorithm consists of three phases:

Algorithm 3.1 (High level view of Simplex Algorithm).

S: Start at an arbitrary BFS.

M: Move to a neighbouring BFS that improves (decreases) objective function.

T: Terminate when there is no such neighbour.

Observation 3.2 (Observations on the Simplex Algorithm). .

1. The S phase is quite difficult! (See Question 3b in assignment 1, which asks us
to show that Feasibility is “as hard” as Optimality in LP.)

2. We need to make sure that the termination condition is acceptable; i.e., that local
optimality (in the sense of being better than neighbours) is enough to conclude
global optimality.

3. While we can consider other forms (i.e. not the standard form for LP), we focus
on the standard form as it makes it easier to run the simplex algorithm.

3.1 The Start Phase

We have observed that finding a basic feasible solution from which the simplex algo-
rithm can start is quite a hard problem. Here, we propose a method by which we can
find such a BFS.

6

Consider our standard LP�������
� �
������� 	 � �
� �
� �
�
�
� �

Assume, without loss of generality, that all entries in
� are non-negative since we
can multiply a row in � and the corresponding

�

by � � without changing the solution
space.

We consider a different problem of solving���
��� � � ��� 	 � �
� �
� �
� �
� �
�
�
� �

The constraints on this problem can be represented by concatenating the identity
matrix � to the matrix � , i.e. � � ����
�
��� �
� �

We can then use the simplex algorithm to solve this problem; notice that in the new
system, the � phase is easy: simply take
� � � �
� �
� as the BFS. If we can solve it
with .

�

� � , then we have found a solution to �
� �
� and thus a BFS from which

we can begin our original problem. Note that we do not have any difficulty finding a
BFS from which to start the subproblem, as
� � � �
� �
� is a BFS for the subproblem
with
� as the basic variables (corresponding to the linearly independent columns in the
appended identity matrix).

More precisely, at the end of this start phase, the simplex algorithm will give us
an optimal solution

�
���
��� to the linear program. We will then have one of three
possible cases:

1.
� � �� � . If this is the case, there are no BFS’s for the original program; in other
words, the original LP is infeasible.

2.
� � � � and � � ��� � � � � � � is of size � . When this is the case,
� � is a feasible
solution to the original LP and � is a basis of linearly independent columns.
Thus,
� � is a BFS corresponding to � .

3.
� � � � and � �+� � � . In this case, we can find additional columns in � to get��� � of linearly independent columns. This is achieved by checking if column
��� is linearly independent of all columns � � ��� � � for each � �� � ; if it is, � is
added to

�
. We call the resulting set our basis.

3.2 The Move Phase

Now that we have outlined a method for finding a BFS from which to start, we can
describe the Move phase of the simplex algorithm. We begin with some linear algebra
and notation. We define the set

� � �"! 0 � 2 � &�&�& � ! 0 � 2 �
7

as the set of basic variables of our starting BFS, where
! 0 � 2 is the

� th index in the basis.
We know that for the BFS
��� � 0 � � � � ��7�� � &�&�& � �
 ��2 4 ,��

� � �

� �����

� �
� � (3)

Furthermore, each column of A which is not in the basis can be written as a linear
combination of the columns which are in the basis:

� � � �� � � �
 � ���	� �

Here, we define �
 � as some entries in a matrix which are used to form linear combi-

nations of the basis columns.
A geometrical viewpoint of adding column � � to the basis is that the basis increases

from � to � � � components. The previous basis (which belonged to a BFS) corre-
sponded to a vertex; linear combinations of the previous basis with a scaled version of
the new column
 � � (where � ��
 ��
 �) correspond to moving along an edge. The
“upper bound” of
 � will be explained shortly. We can write the scaled column as

 � � � �� � �
 �
 � ���	� � �

By adding and subtracting
�� � to Equation (3), we get��
� � 0 �

� ��
 �

 � 2 ���	� � �
�� � �
� �
In other words, we get the values of all the basic variables in a solution, provided that� ’s variable is
 and all the rest are still zero.

As
 increases, the “new” �

� (�

� ��
 �

 �) changes. If

�
� and �

� ��
 �

 � � � ,
we still have a feasible solution (i.e. all � � for � not in � are still 0).

If, further, there exists an
�

for which �

� ��
 �

 � � � , then we reach a solution
with at most � nonzero coordinates which we will see is a new BFS, with � in the new
basis.

Figure 5 illustrates the operation of moving from one BFS to another. Here, the

move is made from
� to the new vertex along the direction
� �
$**% � � � ��
� � 7 �
� � 8 �

(--)
.

Example 3.3 (Three examples, � ��� and � ���). Here, we consider three examples
of finding
 � , the maximum
 for which a scaled version of a column can be subtracted.

Example A

�

�
�

�

�
�

� � �
� ��� ���

8

x

a vector in direction d new vertex

Figure 5: Illustrating a Move step in the simplex algorithm

Here,
 � � �7 ; subtracting a scalar multiple of the row �

� with
 any greater would

cause the first element to be negative.

Example B

�

�
�

�

�
�

� � �� � � � �

Here,
 � � � . No move can be made since any positive
 would cause the first element
to be negative. This is the case whenever there is a zero entry in �

� and a positive

corresponding entry in �
 � . A BFS with less than � nonzero elements such as athe one

shown here is called a “degenerated basis”.

Example C

�

�
�

�

�
�

� � �
� � � ���

Here,
 � ��� . An arbitrarily large scalar
 can be used without causing any elements
to be negative. This case occurs when for all

�
, �

 � � � , and so increasing
 doesn’t
get us “any closer” to zero in any of the coordinates.

We formally define
 � as:

 �������� �����	

 ������ ��� �

�
�
 � � ��� �� � � �

The minimization is only performed over positions
�

where �
 � � � since we have

seen that they are the ones that can cause problems. The three examples shown above
are typical of the three possible solutions to
 � :

A:
 � � � . This is the “usual” case. We can increase
 , but up to a certain value.
We move to a new BFS.

9

B:
 � � � . This occurs when there is a zero in �

� and a positive value in �

 � . We
cannot increase
 , but we can still make � a new basic variable and throw away
the

� th current basic variable.

C:
 � � � . This occurs when there are no issues with nonnegativity – all �
 � � � .

Claim 3.4. If we define � �

� as follows,

� �

� �

� � � �
 � � � � ����

 � � ��� �

and we define
! � 0 � 2 � � and

! � 0 � 2 � ! 0 � 2 for
� ���� , then � �

� is a new BFS with

! � as
the new basis.

Proof. We start our proof by showing that � �

� is feasible; this is true since both �

� �

 � �
 � and
 � are non-negative. Next we show that

! � is still a basis.
In order to prove that

! � is still a basis, we will show columns � ��� � � � � ����� � 7 � � &�&�& � ����� � � �
are linear independent. Let � be the column entering the basis. Then � � can be written
as a linear combination of the columns which are in the original basis

!
:

� � � �� � � �
 � ���	� �

By the choice of � , we know � � � � � . So we can get the following equality:

����� � � � � � � . � � �	� �
� � � � ���	� �
��� �

This shows ���	� � � is expressible as a linear combination of entering column � �
and the other columns except itself in the basis

!
. Then we know subspace spanned

by columns ���	� � � � &�&�& � ����� � � � &�&�& � ���	� � � is the same as the subspace spanned by
columns ����� � � � � &�&�& � ����� � � � � � � :�� � � 0 ���	� � � � &�&�& � ����� � � � &�&�& � ���	� � � 2 � ��� � � 0 ����� � � � � &�&�& � ����� � � � � � � 2 � � �

So
! � is still a basis.

4 Tutorial: January 19, 2005

4.1 Outlining the Linear Program

We began tutorial by considering the following LP which minimizes the function ��0 ��2 �
� � 7 � � � � � ��� subject to the constraints:

� � � � 7 � � 8 � � � � �
� � � ��� � �� 8 � ��� � �

� � 7 � � 8 � ��� � �

10

and �
 �
� for all � � � ��� .

Our first goal will be to transform this LP from standard form to canonical form.
Note that this is a problem with � � ��
 , and with � equality constraints. This set of
equality constraints can be represented in matrix form as �
� �
� . Also note that in this
particular problem, the matrix � is in the form � ��� ��� ��� ; that is, the ��� � matrix
at the right of � is the identity matrix. If one is faced with a problem in which this is
not the case, it is possible to transform the ��� � matrices in � to the identity matrix
through elementary row operations.

By noting that for the variables corresponding to the identity part of � ,

�

� �

� �
 � � � �
 � ��� � � � �

� �
 � � � � � � � � � � � � � � � ������� � � �

where �
 � is the 0 � � � 2 entry in the matrix � , and also noting that �

 �
� , these �

equalities can be written as inequalities in �

,
� ��� ������� � � � � :
 � ��� � � � �

� �
 � � � � � � � � �

� �
 � � � �

The remaining variables �

,
� � � ������� � � � � satisfy the inequalities �

 �
� . Thus,

we have expressed the problem in canonical form:

� � � � � � 7 � � 8 � �
� � � � ���
� � ��8 � �
� � � ��7 � ��8 � �
� � � � �

�
� 7 ��7 �

�
� 8 ��8 �

�

Note that the problem in canonical form consists of � inequalities, which we label �

.

We also note that we have reduced the domain of the problem from �
 to ��
 � � by
removing the slack variables. From this form, it is much easier to view the problem
geometrically.

4.2 Geometrical Interpretation

As we have seen in class, each inequality represents a halfspace. Furthermore, the
intersection of these � halfspaces forms the space of feasible solutions � . Finally,
since halfspaces are convex, their intersection is convex, and as such forms a convex
polytope in ��
 � � .

In Figure 6, we see that there are � � � faces labelled as � � ��������� � � . This labelling
is intentional, as each face corresponds to the hyperplane which is defined when any of
the corresponding inequalities �

is satisfied with equality.

Recall that a BFS is an
� vector in �
 with at least � � � zeros (in standard form).
Since a zero in position

�
standard form maps to the equality of �

in canonical form,

11

a BFS corresponds to the intersection of � � � hyperplanes (corresponding to the� � � zeros in
�). Since the polytope we have constructed from the canonical form
exists in ��
 � � , we know that to the intersection of � � � hyperplanes will define a
point; furthermore, since these hyperplanes correspond to faces of the polytope, the
intersection of � � � hyperplanes defines a vertex of the polytope.

Consider the BFS with the basis
! � � � � � � 7 � � 8 � � � � . Recall that this notation

means that � � , � � , and � � do not belong to the basis, or equivalently that � � � � � ���� � � in standard form. We can see from Figure 6 that the intersection of the planes
� � , � � , and � � is the point 0 � � � � � 2 . By substituting the values � � � ��� � ��� � �
into standard form, we find the BFS
� � 0 � � � � � � � � � � � � � 2 , which has 0 �1� � � 7 � � 8 2 �0 � � � � � 2 .

Note that while the intersection of any � � � hyperplanes will map to a BFS, it
is possible that there are multiple mappings like this. For example, consider the BFS
with basis

! � � � � � � � 7 � � � � � � � �� ! . Here, � 8 � ��� � ��� � � , which gives us
the same solution as the previous BFS (the point 0 � � � � � 2). This occurs because the
previous BFS had more than � � � ��� zeroes. In fact, since it had 4 zeroes, the point0 � � � � � 2 corresponds to the intersection of the 4 hyperplanes � 8 � � � � � � � � � . We refer
to such BFS’s as degenerate.

4.3 Moving to another BFS

Now, consider starting from the BFS with basis
! � � � � � � 8 � � � � � � � . This corre-

sponds to the point 0 � � � � � 2 in � 8 . As we have seen in class, moving from one BFS
to another is accomplished by relaxing one of the equalities � 7 � � � � � � to an inequal-
ity. Here, we consider removing the equality � 7 on � 7 . Then, we will add a scaled
version of the variable � 7 , namely
 � 7 . Geometrically, this action corresponds to mov-
ing along the line towards the point 0 � � � � � 2 . This occurs since we have removed the
equality � 7 , and the intersection of the hyperplanes corresponding to the remaining
inequalities � � � � � is the line connecting the two points 0 � � � � � 2 and 0 � � � � � 2 . As we
have seen in our description of the simplex algorithm, we will continue moving along
this line until one of the inequalities reaches an equality. In this case, this will oc-
cur at the point 0 � � � � � 2 where ��8 � � . At that point, the intersection of hyperplanes
corresponding to equalities � 8 � � � � � � forms the vertex 0 � � � � � 2 which is a BFS.

4.4 Concluding Remarks

To conclude the tutorial, we briefly discussed some implementation issues associated
with the simplex algorithm.

� How do we decide which edge to move along?

– Consider decrease in objective function in free variable (i.e. the one that
we change when moving along the edge)?

– Pick the steepest edge?

– Pick the edge whose terminal vertex is farthest away (i.e. max distance)?

12

� We also noted that with degenerate BFS’s, we must be careful not to get trapped
in a loop. If we only consider the slope of the edge (i.e. its gradient) connecting
degenerate vertices, we may think that moving will improve the objective func-
tion. However, since the two points are “separated by distance zero”, clearly no
improvement can be made.

� Finally, we used our geometrical interpretation to reassert that local optima are
global optima. This holds since the polytope is convex.

References

13

(0,2,0) (2,2,0)

x1

x3

x2

(2,0,0)(0,0,0)

(2,0,2)

(0,0,3)

(0,1,3)

A6

A3

A1

A2

A7

A5

A4

(1,0,3)

Figure 6: Polytope corresponding to the example LP

14

