
CSC2414 - Metric Embeddings∗

Lecture 10: ARVO(
√

log n) approximation of
Sparsest Cut

Notes taken by Igor Naverniouk

Summary: We describe aO(
√

log n) approximation algorithm for the
Sparsest Cut problem, due to Arora, Rao and Umesh Vazirani [ARV04].
The algorithm uses Semidefinite programming and its analysis relates to
notions of distortion, or more accuratelyaverage distortion of a negative
type metric intò 1.

1 Overview

1. We construct a Semidefinite Program (SDP) for the Sparsest Cut problem. Its
solution can be viewed as an`22 metric in the usual way (d(i, j) = ‖vi − vj‖2).

2. We show that if a solution embeds into`1 with average distortion D, then the
integrality gap of the SDP is at mostD, and we can find a cut which is a2D-
approximation to the optimal solution. In order to prove that such an embedding
exists, we prove the Main Structure Theorem (MST):

3. The Main Structure Theorem (MST) says that given a metric spaceX ⊂ Bm(0, 1)
with |X| = n and 1

n2

∑
‖xi − xj‖2 ≥ β > 0, will find a pair of subsets

S, T ⊆ X, such that|S|, |T | = Ω(n) and

d(S, T ) = ∆ = Ω
(

1√
log n

)
.

Trivially the MST implies thatd ↪→ `1 with average distortionO(
√

log n): Map
everyx ∈ X to d(x, S). Thus the embedding is in fact into the lineR.

4. To prove MST we describe an algorithm to find the desired setsS andT . It is
a probabilistic algorithm that makes use of thealternationmethod. Specifically,
the algorithm consists of two phases:

• Phase 1: randomly pick a hyperplane, and separateX to two sets of points
that are relatively far (Θ(1/ log n)) from the hyperplane, and are on differ-
ent side of it.

∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.
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• Phase 2: Repeatedly remove pairs of points that are in different halves, but
are too close to each other (closer thanO(1√

logn)
).

At the end, we will get two sets that have the desired separation, by construction.
The hard part will be to prove that both haveΩ(n) points.

5. Much of the discussion will revolve around that difficult part. A very high-level
sketch is as follows: if we assume that|S| = o(n) or |T | = o(n), then we will
get an impossible geometric configuration. Namely, we will get a setY , which
is a “core”, and the contradiction will come from an application of a theorem of
Lee [Lee05].

2 Semidefinite Programming for the Sparsest Cut prob-
lem

The Sparsest Cut of a graphG, also called theedge expansionof G is defined as

SC(G) = min
{
|E(S, S)|
|S|

: S ∈ V, |S| ≤ n

2

}
,

whereE(A,B) is the number of edges crossing the cut{A,B}. The following algo-
rithm is due to Arora, Rao and U.Vazirani [ARV04].

Define

η(G) = min
d=δS

{∑
ij∈E d(i, j)∑
i,j d(i, j)

}
,

whereδS is the cut metric corresponded toS ⊆ V , andE is the set of edges ofG.
From last time, recall that

SC(G) ≤ nη(G) ≤ 2SC(G)

because

η(G) =
|E(S, S)|
|S||S|

.

In the previous class, we relaxed the condition ofd being a cut metric to a more
general condition ofd being aǹ 1 metric with no loss. Then we relaxed it to a strictly
more general condition ofd being any metric and built a Linear Program using all
n3 triangle inequalities. Then by Bourgain’s theorem we found aO(log n)-distortion
embedding tò1, which gave us aO(log n) approximation algorithm for Sparsest Cut.

Now, we can writeη(G) as

η(G) = min
xi∈{−1,1}

∑
ij∈E(xi − xj)2∑
i,j(xi − xj)2

.

This is still NP-hard to solve, but look instead at

η∗(G) = min
xi∈Rn

∑
ij∈E ‖xi − xj‖2∑
i,j ‖xi − xj‖2

.
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This is a relaxation of thexi’s from integers in the set{−1, 1} to n-dimensional vec-
tors. As as a result, we get a Semidefinite Program (SDP ):

min
∑
ij∈E ‖xi − xj‖2,

s.t.
∑
i,j ‖xi − xj‖2 = 1.

Contrast this set-up with the one before, where we relaxed cut metrics to general
metrics and got a Linear Program. Now we relax cut metric to`22 distances and get a
Semidefinite Program. Note that`22 distances do not necessarily define a metric. (Take,
for example, 3 points on a line.)

Next, we combine both ideas and create anSDP+ by adding alln3 triangle in-
equalities:

∀i, j, k : ‖xi − xj‖2 + ‖xj − xk‖2 ≥ ‖xi − xk‖2.
This causes the solutions to be restricted to`22 metrics. From now on we refer toη∗(G)
to the solution to the above SDP in the presence of triangle inequalities.

3 Geometry of`2
2 metrics

What is the geometry of thisSDP+? When does a set of points inRn define aǹ 2
2

metric?
Consider 3 points on a line with̀2 distancesa, b andc = a + b. Then their`22

distances area2, b2 anda2 + b2 + 2ab, respectively. Assuming thata > 0 andb > 0,
this 3-point set violates thè22 triangle inequality and is thus not a metric.

To see which point sets do define`22 metrics, take an arbitrary triangle. Then, by
the law of cosines,

c2 = a2 + b2 − 2ab cos γ,

and we havec2 ≤ a2 + b2 whencos γ ≥ 0, i.e. 0 ≤ γ ≤ π
2 . This has to hold for all

triples of points in the setX if (X, `22) is to be a metric space.
Danzer and Gr̈unbaum [DG62] showed that the maximum number of points inR

n

without obtuse angles between them is2n and is realised by a hypercube.

4 Application to Sparsest Cut

What can we say about the integrality gap? If for any`22 metricd, d
D
↪→ `1, then the

integrality gap is

IG =
η(G)
η∗(G)

≤ D.

From Bourgain’s theorem we know thatD can be taken to be equal toO(log n). Can
we do better using the fact that the metric is`22?

Definition 4.1. Let d ↪→ d′ s.t.∀i, j : d′(i, j) ≤ d(i, j) (a non-expanding embedding).
Then theaverage distortion is ∑

i,j d(i, j)∑
i,j d

′(i, j)
.
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Claim 4.2. If every`22 metric embeds intò1 with average distortionD, then

η(G)
η∗(G)

≤ D.

If we use a polynomial number of dimensions in the embedding into`1, then we can
efficiently find a cut with cost at mostDη∗(G).

Proof. GivenG, solve theSDP ∗ and get a metricd ∈ `22 s.t.∑
ij∈E

d(i, j) = η∗(G).

Let d′ ∈ `1 be s.t.

• ∀i, j : d′(i, j) ≤ d(i, j),

•
∑
i,j d

′(i, j) ≥ 1
D

∑
i,j d(i, j).

Then

Z
def
=

∑
ij∈E d

′(i, j)∑
i,j d

′(i, j)
≤ D

∑
ij∈E d(i, j)∑
i,j d(i, j)

= Dη∗(G).

If d′ has a polynomial number,m, of dimensions, then we can split it intomn cuts on
which it is supported. An algorithmA that checks these cuts will get a cut of value at
leastZ, which is at leastDη∗(G).

We haven points on the unit sphere inm dimensions with
∑
i,j ‖xi − xj‖22 = n2.

We want two linear-size setsS andT s.t.

d`22(S, T ) = min
i∈S,j∈T

‖xi − xj‖2 ≥ ∆,

We will show that we can have∆ = Ω((logn)−1/2).

Theorem 4.3. Main Structure Theorem.LetX be a set ofn points on the unit sphere
with a metricd, such that

1
n2

∑
i,j

d(i, j) =
1
n2

∑
i,j

‖xi − xj‖2 ≥ γ > 0.

Then there exists a partition ofX into S andT , such that

• |S| = Ω(n), |T | = Ω(n);

• d(S, T ) = Ω((log n)−1/2).

Proof. To come later. . .

First, a few remarks.

• It is enough to assume that the diameter ofX ≤ 1.
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• The condition
1
n2

∑
i,j

d(i, j) ≥ γ > 0

is essential. Otherwise, we could put everything into one point.

• The condition on the diameter ofX being less than 1 is essential in the proof.
(why?)

• Without the triangle inequality, we can only get a bound of∆ = (logn)−1.

• The hypercube, normalized to fit into the unit sphere, makes the Main Structure
Theorem tight, so we cannot hope to get a better separation. For example take
two Hamming balls around two opposite corners of the hypercube. Isoperimetric
inequality says that they will give the best separation we can get.

Assuming that the theorem is true, we will get a good average distortion. To get
an approximation algorithm for the Sparsest Cut problem, we start with a general`22
metric (not one that lives on the unit sphere).

Claim 4.4. The Main Structure Theorem implies aO(
√

log n) approximation algo-
rithm for Sparsest Cut.

Proof. We know that 1
n2

∑
d(i, j) = 1.

Case 1: There exists a radius14 ball of size≥ n
4 . Call it L. Take a Fŕechet

embedding with respect toL, i.e. takef : X → L, f(x) = d(x, L). We get a
metric; call itd′. Then∑

d′(i, j) ≥
∑
i/∈L
j∈L

d′(i, j) ≥ |L|
∑
i

d(i, L) ≥ n

4

∑
i

d(i, L).

n2 =
∑
i,j

d(i, j) ≤
∑
i,j

d(i, k) + d(k, j),

wherek is the center ofL. So

n2 ≤ 2n
∑
i

d(i, k) ≤ 2n
∑
i

(
d(i, L) +

1
4

)
,

and so
∑
d(i, L) ≥ n

4 . Therefore,

∑
d′(i, j) ≥ n2

16
.

Case 2:There is no ball of radius14 containing at leastn4 elements. Notice, that it
is always true that for every pointl, |B(l, 2)| ≥ n/2 (else the average ofd is bigger
than 1). We now claim that the average distsance among points inB(l, 2) is constant.
Indeed, for every point, at leastn/2− n/4 points are of distance at leastn/4 ensuring
an average of at least1/16 in B(l, 2). Scaling down this set by

√
2 we get a set of

points in the unit ball with average distance at least1/32. We can now apply the M.S.T
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to the set of pointsB(l, 2) and get setsS andT . (The proof that the Main Structure
Theorem holds even when the points are inside the unit ball, and not just on the unit
sphere, is given as a question on one of the homework assignments.) Next, we construct
a Fŕechet embedding with respect toS. This gives us a distance function

d′(i, j) = |d(i, S)− d(j, S)|.

By the properties of Fréchet embeddings,d′ ≤ d and∑
i,j

d′(i, j) ≥
∑

i∈S,j∈T
d′(i, j)

≥ |S||T |d(S, T )

= Ω
(

n2

√
log n

)
=
∑
i,j

d(i, j)Ω
(

1√
log n

)
.

So the distortion isD = O(
√

log n).

5 The Algorithm for proving MST

We have a unit ball with a set of pointsX on its surface. The average distances between
the points ofX are large, and there are no obtuse angles. We know thatX ⊆ Sm−1,
and that

1
n2

∑
i,j

‖xi − xj‖2 ≥ β > 0.

The algorithm consists of two phases.

• Phase 1: Pick a uniformly random direction (a vector inSm−1) and define the
sets

Su
def
= {xi : 〈xi, u〉 ≥

σ√
m
},

Tu
def
= {xi : 〈xi, u〉 ≤ −

σ√
m
},

Ru
def
= {xi : |〈xi, u〉| <

σ√
m
} = X\Su\Tu,

whereσ is a constant to be picked later.

• Phase 2: As long as there exist pairs of pointsx ∈ Su, y ∈ Tu, s.t.‖x−y‖2 < ∆,
remove them. The order of removal is unimportant.
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S

T

σ√
m

Figure 1: Separating a sphere by a hyperplane with a margin. Pairs of points that are
too close to the margin are removed in Phase 2 of the algorithm.
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θ

x

y

Figure 2: Two points,x andy, on the surface of a sphere, separated by an angle ofθ.

Finally, call what is remained inSu andTu the required setsS andT .
By construction, the separation betweenS andT (assuming they are non-empty) is

at least∆ in the`22 norm. The only claim left to prove is thatS andT have size that is
at least linear inn.

First, look at the two half-balls

S̃u = {xi|〈xi, u〉 ≥ 0},
T̃u = {xi|〈xi, u〉 ≤ 0},

and define two events:

E1 =
{
u : |S̃u| ≥

γn

2
∧ |T̃u| ≥

γn

2

}
,

E2 =
{
u : |Ru| ≤

γn

4

}
.

We want to show thatp
def
= Pr[E1 ∩ E2] is a positive constant.

Note that ifx, y ∈ R2 are on a circle and are separated by an angle ofθ, then the
probability of separating them by a line passing through the center of the circle isθ

π
(see Figure 5). The same obvious fact holds inm dimensions, by symmetry.

Hence,

Pr[〈x, u〉〈y, u〉 < 0] =
θ

π
.

‖x− y‖2 = 2(1− 〈x, y〉) = 2(1− cos θ).

Note:

∀θ : 2
θ

1− cos θ
≥ 0.878.

So ifEs is the event thatu separatesx from y, then

Pr[Es]
‖x− y‖2

≥ 0.878
4

.
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To extend the claim to a set of points inside the unit ball instead of the unit sphere,
we can simply move the points away from the origin (see homework).

Let1x,y be the indicator function ofEs in the probability space ofu. Then

E[
∑
x,y

1x,y] =
∑
x,y

Pr[Es]

≥
∑
x,y

‖x− y‖2 4
0.878

≥ γn2.

So

Pr[
∑
x,y

1x,y ≤
γn2

2
] ≤ 1− γ

1− γ
2

≤ 1− γ

2
.

Therefore, with probabilityγ2 ,

|S̃u||T̃u| ≥
γn2

2
,

so
|S̃u|, |T̃u| ≥

γn

2

because|S̃u| ≤ n and|T̃u| ≤ n.
This gives us a bound on the probability ofE1. Now, we need to approximate the

probability ofE2.

Lemma 5.1. If v is a unit vector inRm andu is a random unit vector (by the Haar
measure) then

• Pr[|〈u, v〉| < x√
m

] ≤ 3x.

• Pr[|〈u, v〉| ≥ x√
m

] ≤ exp(−x2/4).

Proof. This follows from the Gaussian-like behavior of projections.

Note that this implies thatPr[x ∈ Ru] ≤ 3σ and

Pr

[
|Ru| >

3σn
γ/4

]
≤ γ

4
.

So if σ = 1
3γ

2, we get

Pr[E2] = Pr
[
|Ru| >

γn

4

]
<
γ

4
.

Now we have shown that|S̃u| and|T̃u| are linear inn, and thatRu is small. Since
Su ⊂ S̃u andTu ⊂ T̃u, we get that|S| and|T |must beΩ(n).

What remains is to analyze Phase 2 of the algorithm. We need to show that the
number of points removed fromSu andTu is small.
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What can we say ifx and y were removed byu? Let’s callM(u) the set of pairs
removed when the separating hyperplane isu. Also let l =

√
∆, that is theEuclidean

needed separation. For(x, y) ∈M(u) we have that

• ‖x− y‖ ≤ l def=
√

∆.

• |〈x− y, u〉| ≥ 2σ√
m

.

The first condition follow from that the pair was too close to be left untouched, while
the second follow from the fact that the two points were on different side of the “fat”
cut. Here is a major observation. We expect|〈x− y, u〉| to be about‖x−y‖√

m
, in general.

But here, we have

|〈x− y, u〉| ≥ ‖x− y‖√
m

· 2σ
l
.

So we say thatx−y has a “stretch” of2σl with respect tou, which precisely means that
this is the factor by which its projection is larger (asymptotically) from the expected
length.

LetKu(x, y) be the event that the pair{x, y} is removed byu. Then

Pr[Ku(x, y)] = exp
(
−Ω((2σ/l)2)

)
.

If we required the “modest” separation ofl = O
(

1√
logn

)
, then that would be easy

Pr[Ku(x, y)] = exp(−Ω(log n)) = o(1/n)

But with l = Θ((logn)−1/4), we get

Pr[Ku(x, y)] = e−Ω(
√

logn) = Ω(1).

What does this tell us? that the expected number of pairs that are locally (per the
above conditions) candidate for deletions is large. This means that we have no choice
but to understand the stochastic behavior of|Mu| which is, recall, a matching. In a way
we learn that a global approach is inventible.

We would like to show that

q = Pr[|Mu| ≥ γn/8]

is small, more precisely thatq = o(1). If this is the case we are happy as then with
constant probability phase one is successful, and to say that on top of that the size of
the matching is small enough to leave linear size sets, doesn’t “cost” more thanq, and
so with constant probability we get two sets. From now on we assume for contradiction
that

q = Ω(1).

Now think of the following graph onX. For a pairx, y ∈ X we have an edge labelled
with a subset ofSm−1 defined by{u : (x, y) ∈ Mu}. Notice that sinceMu is a
matching, the sets corresponding to edges out of a vertexx are disjoint. We define the
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degree ofx ∈ X as the measure of the union of the sets corresponding to the edges out
of it, which is, by the above observation, the same as the sum of the measures of the
edges out of it. Clearly, sinceq = Ω(1) we get the the average degree of the graph is
some constantν > 0.

We next apply a simple greedy procedure that turns a graph with average degree
ν to a graph withminimumdegreeν/2. This is done by removing every vertex with
degree strictly less thanν/2. By doing so the remaining total degree is strictly bigger
than |X|ν − 2|X|(ν/2) = 0, and therefore we must remain with a nonempty graph
with the guaranteed minimum degree.

Let Y be the surviving set of vertices. We claim thatY is a a(σ, ν/2, l) core as
is defined in the tutorial notes. We simply note that the degree ofx ∈ Y is exactly
Pr[∃y ∈ Y (x, y) ∈Mu] to establish that.

The point now is thatY is a very constrained object. In fact, it is so constrained
that it has no choice but to bevery large. This is well formulated in Lee’s Big Core
Theorem. We get|Y | ≥ exp(Ω( σ6

l4 log2(2/ν)
)) = exp(Ω(log n)) and wheneverl =

c(log n)−1/4 with c small enough, the hidden constant in theΩ as as large as we want,
hance we can get with an appropriatec that|Y | > n. Contradiction.
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