
CSC2414 - Metric Embeddings
�

Lecture 2: Bourgain’s theorem for metric
embeddings

Notes taken by Periklis Papakonstantinou
Revised by Hamed Hatami

Summary: We begin by discussing a simple application of metric em-
beddings to the efficient computation of the

���
-diameter of a finite set of

points in ��� . The main part of this lecture concerns Bourgain’s theorem
for embedding an arbitrary finite metric space into an

���
space. In particu-

lar, this theorem states that every metric space can be embedded into an
�	�

space of dimension 
���
���������� with distortion 
���
�������� . Our proof of the
theorem directly implies an efficient randomized algorithm for computing
such an embedding. Bourgain’s theorem is of particular interest since it
provides a way to represent an arbitrary metric space with only a logarith-
mic loss in distortion, into a nice normed space (e.g. Euclidean) which is
well-understood and enjoys desirable analytic and algorithmic properties.

1 Preliminaries - terminology - notational conventions

All of the metric spaces encountered here are of finite dimension. Throughout this
lecture, unless stated otherwise, the term metric space refers to a finite metric space (a
metric space with finite number of points). In general, �����! "� denotes a metric space
on the points of � equipped with metric  . In the previous lecture we defined the norm�#�

on ��� , and to emphasis the dependency on $ we denoted this by
� �� . In general

�#�
is

defined on a subset of the set of sequences %'&)(	%+*-,�.*�/ � of real numbers:

Definition 1.1. For 0214365��#78� , the normed space
� �

is defined on the sequences%'&)(	% * ,9.*�/ � for which the sum : .*�/ ��; % * ; � converges. For %<1 � � , the
� �

norm of % is
defined as = % =?> & @ .A *�/ � ; %B* ; �9C

�ED-�GF
On the other hand the normed space

� . is defined on the sequences %H&I(J%K*L,9.*�/ � forM
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which ����� *�� � ; % * ;�� 7 . For %�1 � . , the
� . norm of % is defined as= % =
	 &������*
� � ; % * ;

F
Note that

� ���� � �
, as the elements of � � can be identified with the sequences(	% * ,�.*�/ � with % * &�� for ��� $ . Since both

� �
and

� �� induce the same norm on � � ,
we may write

�?�
instead of

� �� when $ is clear from the context. As we discussed in
the previous lecture every norm induces a metric space. We use the term the metric
induced by

� �
to refer to the standard metric induced by the

� �
norm; that is, for every%���� 1 � � ,  ��%���� � & = %���� =#> . Usually, we are interested in embedding a finite metric

space into an infinite metric space with small distortion.
We say that a finite metric space �����! "� embeds into �
� �  �� � if �����! "� embeds iso-

metrically into �
� �  �� � ; and we write �����! "� �� � �����! �� � to denote this. In case of non-
isometric embeddings we say that ��� �  �� is  -embeddable in �
� �  �� � meaning that there
exists a  -embedding (i.e. an embedding with distortion  ) of �����  �� into �
� �  ���� and

we write �����  �� !� � �����! �� � .
For a vector (point) %818��� we denote by % * , 5#"$�%" $ its � -th coordinate. For

vectors in � � we use &(' , ) &)5�� F	F F �#$ to denote the vectors of the standard orthonormal
basis; i.e. & ' is the vector with all coordinates are � except the ) -th coordinate which is
equal to 5 .

Regarding the embeddings into ��� sometimes we construct each of the $ coordi-
nates of a point separately. We use * to denote the concatenation of the computed
components of a point %<1 � � . Let + ���-� be the value of the � -th coordinate of % . Then,%'&,* �.- * - � + ���-��& : �*�/ � + ���-��&J* (see section 3 for an example).

All logarithms are in base / .
2 Application of metric embeddings in the computation

of the 0 5 -diameter

The
� . norm is said to be the “universal

�?�
-norm”. In the previous lecture we saw

that an arbitrary metric space of � points can be (isometrically) embedded into
�21 . (or

into
�(1�3 �. if we are a bit more careful). Here we will use an embedding into

� . which
has only a loose resemblance with the “universality property” of

� . . The properties of� . (together with the properties of
���

) allow us to embed a set of points in
� � � into

� �.4.
such that this embedding enjoys many desirable algorithmic properties. Note that this
is different from what we did in the previous lecture - e.g. the embedding will be into
a space of dimension /�� .

Given a finite set of points 5 in
� �

we define the diameter of 5 (w.r.t.
� �

) as 6�87:9 � �
5 � &<;�=?>@6A B2C6D = %���� =?> F
Given a finite set of � points 5 � � � � the naive way of computing the diameter is by
checking the

�9�
distance of every pair of the E 1 � F points in 5 . That is, we can compute
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the diameter with 
�� $�� � � operations. Can we do any better? We show that we can
compute the diameter using only a number of operations which is linear in � ; which is
of particular interest when $ is small (e.g. a constant). We do this by first embedding� �

to
� . . Moreover, we will see that this embedding has other desirable algorithmic

consequences.

Theorem 2.1. If ��5 �  �� is an
� � � metric space then we can (isometrically) embed it into� � 4. .

Proof. The proof of this theorem is based on the observation that for every % 1 � � ,= % =�� & ;�=?> B C�� 3 � A ��� 4 � % ����� . This is because
= % =	� & : �*�/ ��; % * ; & : �*�/ ��
 �
�"� ��% * �L% * &;�= > B2C�� 3 � A ��� 4 � %������ , where for 7��&$� , 
 �
�"� ��7�� &�� ���� and when 7 &�� , 
 �
�"� ��7 � &$� .

By definition of
� . , + ��%K� & * B2C�� 3 � A ��� 4 � %������ (1)

is an isometric embedding.

We apply this proposition to compute the diameter in
� �

. We observe that we can
compute the diameter of a finite metric space 5 � � ���. ��87�9 . �
5 � & ;�=?>@6A B2C6D = % ��� = 	 &<;�=?>@?A B C6D ; =?>� - ' - � � ; % ' ��� ' ;& ;�= >' ;�= >@?A B ; %�' ���2' ; & ; =?>' ��;�= >@ %�' � ;����B �2'	�
That is, we can compute the diameter of

� ���. in time 
�� $������ .
Therefore, the algorithm is as follows: (i) embed 5 into

� ���. , where $�� & /��
and then (ii) compute the diameter in

� ���. . The time required for this computation
is 
�����$�/���� � /�����& 
�����$�/�� � which for constant $ is 
������ .
Remark 2.2. Observe that the embedding of % (Eq. (1)) does not depend on the other
points in 5 . This is important in applications e.g. on-line data-structures, databases
etc. Contrast this “oblivious” embedding with the embedding of any metric space into� . (previous lecture) or with the embedding of the Bourgain’s theorem (Section 4).

3 Fréchet embeddings

Let �����  �� be a finite metric space. Say that � � � � � �
F F F ����! are subsets of � . We

abuse notation and we write  ��%�� � � to denote  B��% ��� � & ;��"� B2C$#  B��%���� � . A Fréchet
embedding + is of the following form:

+ ��%B��&,* � - * - !�% #�&  B��% ���+* �
Usually % # & ’s will be equal to 5 . Here is an example of such an embedding (all % # & ’s
are 5 ). Consider the graph in Figure 1. Say that � � & (�5�� / ��' ,"��� � & (	( ��) , and��* & (�+ ��, , . Then + �-5J� & �
� ��' ������� + � /�� & ��� �./ � 59�?�.+ �-'�� & �
� � 5���'���� + �.(�� &�-5���� � /���� + �
)�� & � / ��� � 59�?� + �/,�� & � / �	5����"� and + �
+�� & �E5��./ ���"� .

3



S1

S2S3

1

2

3

47

6 5

Figure 1: A cycle equipped with the shortest-path metric where each edge is of weight5 .
Lemma 3.1. Let �����  �� be a metric space on � points. Consider the Fréchet em-
bedding + of �����  �� into

� ! � , for some sets � � � � � �
F F	F ��� ! which correspond to the

coordinates of the value of + . Then,
= + ��%K� � + �
� � = � " �  B��% ��� � .

Proof. We wish to show that for every � � � , ;  ��%������ �  B���K� � � ; "  B��% ��� � . Let B���K��� � &  �
�B��� � for some � 1 � (by definition of  B���K��� � such a � exists). Also,
by definition for every �41 � ,  B��%�� � � "  ��%���� � . Therefore,  B��% ��� � �  B���K������" B��%���� � �  �
�B��� � "  B��% ��� � where the last inequality follows by the triangular in-
equality. Let + ��%B��& �� B��%�� � � �?�! ��%���� � ���

F F	F �! ��%���� ! �E���
and + ��� ��& �  �
�K��� � �?�! �
�B� � � ���

F	F F �! �
�K��� ! �E� F
Then, the expansion of the embedding is at most �  B��% ��� � since

= + ��%B� � + �
� � =�� &: !* ;  B��% ���+* � �  �
�B� �+* � ; " �  ��%���� � .
4 Bourgain’s theorem

We want to show the existence of an embedding with distortion 
���
�������� to an
���	��
 ��
�� 1���

space for every 0 . The proof of theorem 4.1 implies a randomized algorithm for effi-
ciently computing such an embedding.

Theorem 4.1 (Bourgain’s theorem). Let ��� �  �� be a metric space on � points. Then,��� �  �� �	��
 ��
 1��� � � � �	��
 ��
 � 1� �
Theorem 4.1 appears in [Bou85]. Linial et al. [LLR95] provide algorithmic appli-

cations and an explicit lower bound showing that the theorem is tight1 (for
� � ). Also,

1The original bound on the dimension was exponential in � . In [LLR95] the dimension was reduced to����������� � � . Specifically for the euclidean space we can reduce the dimension to
��������� � � (by applying the

JL-flattening lemma) as we will see in some upcoming lecture.
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Matousek [Mat96] shows that a stronger version of theorem 4.1. In particular,�����! "� � � � �����> �� � � � �	� 
 ��
 � 1� �
Note that this dependence on 0 also refers to the universality of

� . .
Before getting to the proof of Bourgain’s theorem let us state without a proof a

similar theorem for the special case of embeddings into
� . . This theorem is due to

Matousek (see [Mat96] or [Mat02] pp. 386-388).

Theorem 4.2. Let �����  �� be a metric space on � points. Then, �����! "� �� � � � � � 1 �	�	
 
 ��
 1��. .

For the special case of
� . this theorem generalizes Theorem 4.1, since for

� &
� ��
�������� we get that �����! "� �	��
 ��
 1��� � � � �	��
 ��
 � 1. � . Note that theorem 4.2 provides a trade-
off between distortion

�
and and the dimension of the host

� . space. It is easy to
see that for every % 1 ��
 ,

= % = 	 " = % =#> " 9 = % = 	 . Therefore, a corollary of
Theorem 4.2 is that �����! "� � ��
 ��
�� 1��� � � � �	� 
 ��
 � 1� �
(which is weaker than Bourgain’s theorem). Now, we get to the proof of Bourgain’s
theorem.

Intuition behind the proof of theorem 4.1 In Fréchet embeddings for each coordi-
nate of the vectors we measure the distance of a point to a set. In Bourgain’s theorem
we will use Fréchet embeddings where the corresponding � * ' sets are constructed ran-
domly by sampling independently the metric space with different probabilities / 3 ' ,)'& 5�� / � F F	F ��� 
��������9� for many rounds � & 5 F F	F � � ��
���� ��� . Then, we will show that
with positive probability there exists an embedding which satisfies the requirements of
the theorem. Clearly the same embedding must “work well” for the distance of every
pair of points in the metric space. Hence, the reason why we use different probabil-
ities (to sample points) has to do with the “structure” of the metric space. Also, for
the same probability (used to independently sample elements from the metric space)
we construct several sets. All these will become clear by getting into the details of
the proof. In Figure 2 we give an intuitive example. Although, we use the plane to
somehow refer to the notion of distance, keep in mind that the metric space is not (nec-
essarily) Euclidean and drawing on the plane is done just for the sake of this intuitive
demonstration. Before getting to the proof let us give some more intuition regarding
why we need the two extreme cases, where the sampling probability is 5��?/ and 5��9� .
Consider two points %���� to be far apart in the line. In one extreme we choose elements
independently with probability

�� . In this case with high probability � * � will contain
points close both to % and to � (“no matter” how many times we will sample with the
same sampling frequency). Therefore, we expect ;  B��% ��� * ' ���  B���K��� * ' � ; to hardly con-
tribute to

= + ��%B� � + �
� � =	� (where + is the Fréchet embedding we are talking about) -
actually in the example in the figure the contribution is zero. In the other extreme the
probability is 5��9� . In this case (if we sample with the same frequency for a sufficient
number of times) with high probability we will have few points in � * ' which are close
to % (or to � - but not both). In this case ;  ��%���� * '9� �  B���K��� * '9� ; is going to be close to B��%���� � .

5



j=1 j=t/2 j=t

Figure 2: The black dots correspond to elements that are picked (randomly) and placed
in � * ' when sampling for particular values of ) .

x y

x y

Figure 3: The interior of the dotted closed curves shows the elements that are chosen
in � * ' .Top: sampling with probability 5��6/ . Bottom: sampling with probability 5��9� .

Proof of Theorem 4.1 - Bourgain’s theorem. We prove the theorem for embedding into� �
(i.e. 0 & 5 ). At the end of the proof we will show how to obtain the theorem for

every 0 .
We probabilistically construct a Fréchet embedding. We will show that in the (fi-

nite) probability space there exists with positive probability an embedding that satisfies
the statement of the theorem.

Given �����! "� construct 
���
������+��� sets � * ' as follows: For every ) &)5�� F F F ��� 
��������
( � & ��
���� ��� ) construct � & 5�� F F	F � 5�( ( ��
���� ��� ( 9 & 5 ( (�� 
�������� ) sets2. Each � * ' set
is constructed by choosing independently at random for every elements of � with
probability / 3 ' . The embedding + for every point %�1 � is:

+ ��%B� & * � - ' - 
� - * -��  B��%���� * '9� F
Algorithmic implication of the proof: An algorithm that computes the construc-
tion of the embedding can be implemented to work in polynomial time. Since this
embedding exists with constant probability (over all embeddings constructed in this
probabilistic way) we can make the probability that the desired embedding is not con-
structed exponentially small, by independently repeating the randomized construction
for a polynomial number of times.

2The constants in � and � can be improved. Moreover, working through the details of the proof we
observe that there is a trade-off between these constants in the dimension and the distortion of the embedding;
and we can tune this trade-off.
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For every %����I1 � we are going to split the distance  B��%���� � : we will find a
“desirable” set of numbers � � ��� � �

F F F ��� ��� � with : ' � ' &�� � @6A B �� . For such an
splitting we call a set � * ' good when ;  ��%���� * '����� B���K��� * '9� ; � � ' . Our goal is to have
many good sets.

Lemma 4.3 (Main lemma). For each 5 "�) " � and for each % ��� 1 � there exists
a set of numbers � � ��� � �

F F	F ��� � � � with : ' � ' &�� � @?A B �� such that with probability

greater than 5 � �1 � , a constant fraction 	 & ���
 of sets � * ' are good.

We defer the proof of the above lemma, and first finish the proof of the theo-
rem (using the lemma). Let � @
B' be the event stated in the lemma. By this lemma

5 � � � @
B' � " 5��9� * . Therefore, (by the union-bound)

5 � ��
' A @?A B � @ B' � " A
'@6A B
5 � � � @
B' � & 1 � 1�3 � �� 
���� �� * � 5

Hence the negation of the above event occurs with positive probability which implies
that there exists an embedding such that:

	 9
(  ��%���� � & A

' 	 9�� ' " A * A ' ;  ��%���� * ' � �  �
�B��� * '9� ;& = + ��%B� � + ��� � =	� " 9 �- ��%���� �
where the last inequality follows from Lemma 3.1. This means that the distortion of
the embedding is at most ��9 �E� � E�� 
� F & � �

� & 
���
�������� .
Remark 4.4. Note that for example,

��� ��� ���
� 
 ��
 11 � � �� 
 for every � � /?� . This implies

that at least 90% of the embeddings have distortion 
���
�������� . We can amplify the
probability of success by repeating the experiment and after a polynomial number of
repetitions we get a probability of failure which is exponentially small. That is, we
have a randomized algorithm for this problem.

Proof of Lemma 4.3 - Main lemma. The idea behind the proof is to make use of a “gen-
eral” argument regarding the distribution of points of a randomly constructed set and
the points in the metric space. For this we introduce the notion of balls around the
points (in this not-necessarily euclidean space). Our goal is to show for every two
points % ��� 1<� that both probabilities of the randomly constructed set to intersect the
ball around % and to not intersect the ball around � is bounded away from zero and one.

For a point % 1 � we define the (closed) ball of radius � � � as � ��% � � � &( � ;  ��%���� ��" � , and the open ball of radius � � � as ������% � � � & ( � ;  ��%���� � � � , .
Note that for a set � � � , when the ball around % intersects � , the radius of the ball is
larger than the distance of % from � .

For a pair %���� let � ' be the minimum � such that ; �'��%�� � � ; � ; � ���K� � � ; � / ' . We
show the existence of the splitting of the distance (as mentioned above) by defining� ' & � ' � � ' 3 � . By definition the sum : ' � ' telescopes and thus : ' � ' & � � and

we may define � � as � � @?A B �� (without having the two balls intersecting each other).
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Without loss of generality assume that ; � � �
�K� � ' � ;�� / ' and of course we have that; � ��% � � ' 3 � � ; � / ' 3 � . Intuitively, this since ��� �
�K� � ' � is not very large with a constant
probability � * ' does not intersect it and also since �'��%�� � ' 3 � � is not very small with a
constant probability � * ' intersects it. More formally:

To avoid dealing with dependencies we bound from below the probability
�

of the
event that  B��% ��� * ' � �  B���K��� * '9� � � ' (we denote this event by � @
B* ' ) by the easier to
compute probability of the following event3:

5 � E � * '�� � � �
�K� � 'J� &�� and � * '�� �'��%�� � ' 3 � � �&�� F & 	��9� 
 � 7"� � � �
Let us precisely compute this probability:

�
	 &����	3 � @ B* '�
 � 5 � E � * '�� � � ���K� � 'J��&�� and � * '�� � ��%�� � ' 3 � � �&�� F& 5 � E � * ' � � � ���K� � ' ��&�� F 5 � E � * ' � � ��% � � ' 3 � � �&�� F �
since the two events are independent4. It suffices to lower bound the two probabilities
such that their product is bounded below by a constant (i.e. away from zero and one).

5 � E � * ' � � � ���K� � ' ��&�� F & �-5 � / 3 ' � � ��� � B2A !�� � � � �-5 � / 3 ' � � � � 5
(

F
Similarly, we compute 5 � E � * ' � � ��%�� � ' 3 � � &�� F � �� . Therefore,

��� ���� .
We complete the proof by applying Chernoff bound [Che52] in order to show that

for each % ��� there exists a constant fraction of � * ' sets which are good with high
probability. Here is the version of Chernoff bound we will use.

Theorem 4.5. Let � � �E� � �
F F F �E� 
 be binary random variables, with � ��� * � ��� ,5%" � " 9 . Let �4& : * � * . Then,

5 � ��� " �-5 ���?� � 9<� " & 3�� ��� 
 D *
We define the indicator variable � * to be 5 iff � @ B* ' happens. Therefore, � ��� * � &

5 � ��� * & 5J� & � � ���� . Therefore, 5 � ��� "I�-5 � �#� ���� 9 � " & 3�� � 
 D �"! . We wish to
show that for a fixed ) the good event happens for a constant fraction ( 5 ��� ) of the 9 ,
� * ' sets with probability at least 5 �85��9� * . For this we require:5& � � � ��� 
 ��
 1 D �"! � 5� *$# � � 5�( ( 
���� �(&% � ' 
������
���� & # � � ' 5
���� & �
and thus there exists such a constant � � � � 5 . In particular, we choose � & 5�� )
and thus �E5 � 5�� )�����5	, & �� 
 of the 9 � * ' sets are good with probability greater than5 � 5��9� * .

3It is clear that first event is a superset of the event for which we compute the probability.
4The two events are independent since the two balls do not intersect and in the definition of the probability

space we choose elements in (*) + independently; that is why in the constructed product probability space the
two events are independent.
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We proved the theorem only for the case of
���

. Now we extend it to any
���

. Surpris-
ingly, the same embedding + works for every

� �
. Let �4&)5�( (���
���� ��� � be the number

of coordinates. First note that= + ��%B� � + ��� � = � & � A * A ' ;  B��% ��� * ' � �  B���K��� * ' � ; � � �ED-�
" ���  B��% ��� � � � � D-� &�� � D-�  B��% ��� �?� (2)

by Lemma 3.1. Next we need to lower bound
= + ��%B� � + ��� � = � . This can be done by

Hölder’s Inequality:

Theorem 4.6 (Hölder’s Inequality). For % ���'1 � � and
�� �

�
� we haveA ; % *���* ; " = % = � = � = � F

By Hölder’s inequality we obtain= + ��%B� � + ��� � = � � �ED � � A * A ' ;  B��%���� * '9� �  �
�K��� * '9� ;& = + ��%K� � + ��� � = � � � ��
��������- B��%���� �?� (3)

where in the last inequality we used Bourgain’s theorem for
� �

which we have already
proved. Now combining (2) and (3) gives

� 3 � D � � ��
���� ���E ��%���� � " = + ��%B� � + ��� � = � "�� � D-�  B��% ��� �
which shows that the distortion is bounded by

�
� DL�
�
� D � � � ��
�������� & 
���
�������� F
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