CSC2414 - Metric Embeddings
Lecture 5: Dimension Reduction

Notes taken by Igor Naverniouk and Ilya Sutskever
revised by Hamed Hatami

Summary: In this lecture, we prove the Johnson-Lindenstrauss lemma
[JL84], which shows that it is possible to embed dnynetric spaceX on
n points into/% with distortion(1 + €), wherek = O(log(n)/€?).

1 Required Dimension in¢;

Recall that infy, n points can be isometrically embedded in¥§0*1. Does a similar
statement hold fof; ? Givenn points in¢Y¥, what is the dimension that we really need?
First let us show that it is possible to decrease the dimension to a functign of

Claim 1.1. if (X, d) embeds isometrically int&, then it embeds isometrically intg'

Proof. We sayi ~ j ifforall pointsz,y € X, z; <y, ifandonlyifz; < y;. Note that
~ is easily seen to be an equivalence relation. Trivially there are atwhesguivalence
classes defined by. Denote byF the set of equivalence classes. For eveand every
equivalence clast € F letzr = ), z;. Now definef : X — E?’ as

flx) =" zper,

FeF

whereer are the natural basis aﬁif'. So herery is a coordinate of: in /). To see
that f is an isometry, note that

Z (xi —yi)

i€F

= Z Zm — il = llz —yl,

FeFieF

OENOEDS

FeF

where the second inequality is valid becasigsi(x; — y;) is constant for ali € F.
This shows thaf is an isometry. d

However,N = <Z> also suffices.

* Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.



Claim 1.2. Assume that.X,d) embeds isometrically inté;. Then it also embeds
isometrically into/}, whereM = (g) )

Proof. By Claim 1.1, we can assume tha¥, d) is in¢Y. Letc; : X? — [0, 00) be the
distance between the points on title coordinate, wheré < i < N. Therefore,

d(z,y) = Y cilx,y).

1<i<N

n

In addition, we may view! andc; as elements oR* where M = (7) with non-
negative entries. Sincé € span(c;)i<n, thend = > . aic;, anda; € R may be
chosen so that all but at mo(é}) of them are). But all the components eof andd are
positive. Does it mean that we may choosedhs to be positive as well? If the;’s

are positive, then we immediately getéi(r%) metric for the points by

(%)

T = (Q%)iras0 € 477

The answer is affirmative and can be obtained by an application of the Eadaity’s
Fundamental Theorem (see e.g. [Eck93]), which we state here without the proof:

Theorem 1.3. Each point in the convex hull of a s&tin R™ is in the convex combina-
tion ofn 4 1 or fewer points of5.

Next consider the following sets (%)

C={ Z Bjcj : Bj = 0},

1<GEN

and
D ={\d: \>0},

and the plane
E= {xeR(g) txy > O,in =1}

Trivially C'N E'is an(}) — 1 dimensional convex set, add N E is a pointAd €
C N E. To apply Caratheodory’s theorem, note than £ is the convex hull of\;¢;,
where); are chosen in such a way that;; € E. Applying the theorem o’ N E with
the pointAd € C' N E N D, we get that

with (’2’) terms in the summation, and with all the constants\; > 0. Dividing the
above expression by gives us the desired expressiondodis a linear combination of
at most(};) of thec;'s with positive coefficients. O



2 Johnson-Lindenstrauss lemma

In the previous section we considered isometric dimension reductions: df ¢,

|X| = n, then we can isometrically embeXi into Z@. If X C ¢, thenX can be
isometrically embedded int;~'. What can be said about the dimension if we relax
the isometry condition to having distortidn+ €? Johnson and Lindenstrauss [JL84]
answered this question fds:

Theorem 2.1. (Johnson-Lindenstrauss) ¥ C /5, | X| = n, then for every > 0,

logn
x b 005,

To prove the theorem we will give a linear embeddifig ¢5~* — 620
sufficient forT to satisfy
(I—e/HMlz —yll2 < [T(z) =Tz < (1 + e/4) M|z — y|2,

for someM > 0 and everyr,y € X (The distortion will be at mosﬁ%ﬁ <1+4e).

SinceT is linearT (z) — T'(y) = T(x — y), and so the above is equivalent to
(1 —e/4)M|vlls < 1T (v)ll2 < (1 + €/4)M]lv]|2, 1)

for all the possible(g/) vectorsv between the points oX .

The linear transformatiof® will be in fact an orthogonal projection into a randbm
subspacé® of £3 with dim(E) = O (ﬁ#):

Remember that a finite dimensional linear subspacé, a$ the span of exactly
k := dim(FE) orthonormal vectorsy,, . . ., ux, where orthonormality means:

o (uj,u;)=1fori=1,... k.

° <u7;,uj> =0forq #]

Note that the subspadgis indeed isometrically isomorphic t with the embed-
dingu — Zfﬂ(ui,wei, whereu is a vector inE, ande; are the natural basis of
5.

Now the orthogonal projectioR from ¢; onto E is defined byP(v) := Zle (v, ui)u;
for everyv € ¢5. Note that

(i) (P(v),w) = (v, w) for everyw € E;
(i) (v— P(v),w)=0foreveryw € E.

Exercise 2.2. Prove the properties)(and (i) of orthogonal projections and show that
these two properties define the projection uniquely.

Exercise 2.3.Prove that every projectioR satisfieg|P(v)||2 < ||v|2 for all v € 5.

Next we need to specify that what do we mean by a random subgpa€st we
need to define the Haar measure on the Sphere.

1will be defined formally below



2.1 Haar measure on the Sphere

If we want to pick a point at random on the surface of a sphef®@"inwe need to
define a probability distributiop on S ~. If we want our point to be “uniform”, then
the measure: must be invariant under rotations, i.e(A) = u(TA) whereT is an
arbitrary rotation. First we need to show that such a measure exists.

Definition 2.4. Let A C S*~!. Define A, as the set of points of distanedrom A,
where the distance is the geodesic distance on the sphere. More formally

Aci={x e S" 1 :p(z,A) < e},
wherep is the geodesic distance.

Remark 2.5. In Definition 2.4 we used geodesic distance and this will appear repeat-
edly in this lecture note. The geodesic distance between two points on the sphere is the
length of the smallest arc between them. Note thatfgr< S*~!, we have

2
Zp(ey) <z = yll2 < play),

and so the geodesic distance and the Euclidian distance are within a constant factor of
each other.

WhenA = {z}, A, is called a cap centeredatc S"~! . Define the measure of a

capC as
~area(C)
o) = area(Sn—1)’

Note thatu(S™~!) = 1. The extension of this measure to all Bérstts on the sphere

is called the Haar measure on the sphere (intuitiyglyl) is the normalized area of

A C S"~1). Note that this measure is invariant under the rotation, and in fact this is
the unique probability measure on Borel sets that satisfies this property.

Remark 2.6. To choose a point uniformly at random (according to Haar measure) on

Sm—1, one might consider a sequenck;, X», ..., X,,) of normally distributed ran-
dom variables. Then, by the property of Gaussians, the véatorX,, ..., X,,) € R®
is a rotationally invariant-dimensional Gaussian. Now normalizg,, X, ..., X,,),

and we get a uniformly random point ¢ 1.

2.2 An example: Embedding into one dimension

The simple case is embedding into one dimensiongle} = (u, r), whereu € S"~!

is chosen uniformly at random. What do we expect to happen? The valie ofight
range from0 (whenz is orthogonal tas) to ||z||2 (Wwhenz andwu are parallel). But: is
chosen randomly, and to understand the behavigi(ef we need to see that what is a
“typical” u with respect to all the possib@) vectorsv between the points of .

2Borel sets are the sets that can be constructed from open or closed sets by repeatedly taking countable
unions and intersections



)

™

(

Figure 1: Enclosing a cone inside a sphere

2.3 Isoperimetric Inequality

Consider a fixed vectar. We may assume thditc||s = 1, as¢(xz) = ||z||2(u, y)
wherey = =t and so[jy|l. = 1. Since everything is rotationally invariant, let
x = (0,0,...,0,1). What is(u, z) in this case? Think of the Eartl$%), with = being
the North Pole and being a random point on the surface. Thenz) is the latitude
of u, normalized to the rande-1, 1].

What percentage of the Earth’s area is farther than latitiden the equator? In
other words, what is the probability, under the uniform measure, |that)| > ¢?
What is the expected valug[(u, z)?], the expected value of the square of the last
coordinate ofu? The answer is

El{u,2)’) = Elul] = - Y E[uf] = E

i=1

n
1
> -1
by symmetry. Now we want to say that, ) is well-concentrated around its expected

value.

Lemma 2.7. If u is a uniformly random unit vector iR", then

t2n

Prlju,| >t] <2e” 2

Proof. Note thatPr[|u,| > t] is simply the surface area of that part of the unit sphere
in n dimensions that is above the horizontal plane= ¢ or below the horizontal plane
u, = —t. The two caps are symmetric, so let us find the measure (normalized area) of
the top cap.

Since we have a unit sphere, the measure of the top cap is equal to the volume
of the cone, whose point is at the origin and whose base is the top cap. From the
triangle AO B, we can get that the radius of the base of the cone is half®fand is



equal tov/1 — 2. Then we can enclose the whole cone inside a sphere of that radius.
That sphere will be centered at the midpoint4B and will have volume at most
(V1 —¢2)". Since we have to take care of the bottom cap as well, the total volume of
the two required spheres is at most

7,27'1,
2(v/1—2)" < 2(e )2 = 2e75",

O

Recall the definition ofd., Definition 2.4. How small cam(A.) be with respect
to u(A). Intuitively u(A.) minimizes whenA is a cap with measure(4), and in fact
this intuition is true although the proof is not easy.

Lemma 2.8. For each0 < a < 1 ande > 0,
min{u(A.) : AC S" 1 u(A) = a}
exists and is attained oA, is a cap withu(A4,) = a.

Consider the hemispherg = {r € S*~! : z,, < 0} which is a cap of measure
1/2. Lemma 2.7 shows that

2n

n({z: d@,0) < &) > 1— e,

whered(z, C) is the Euclidian distance. Note that on the other hand for every
Sn=1 we have thaf{z : d(z, A) < ¢} = A; for somes that can be calculated accord-
ing toe. Now from Lemma 2.8 we know that among all séts) S" ! of measurd /2,

the measure ofi; minimizes whenA is a hemisphere. So the above bound holds for
every setd of measure at leasy/2.

Lemma 2.9 (Isoperimetric inequality 1). LetA C S™~! with u(A) > 1/2. Then

271

p({z:d(z,A) <e}) >1—2e 7,

whered(z, A) is the Euclidian distance.

Remark 2.10. A similar result holds for hypercubg®, 1}". If |A] > 12" and A C
{0,1}™, then

o € {0.1)" : d(x, A) > 1} < 2" -de b,
whered(z, A) is the Hamming distance fromto the setA.

The isoperimetric inequality has an important application, namely the Levy’s lemeva1l.
Consider a continuous functigh: S~ — R. Themedianof f is M; € R such that

u{z: fl@) < My}) > 1/2andu({z : f(z) > My}) > 1/2.
Lemma 2.11 (Levy’s Lemmall). If f : S»~! — R is a-LipschitZ, then

—t2n
P — Myg| > t] < 4de=2a? .
P (@) = Myl > < e

3f . (X,d) — (X',d") is calleda-Lipschitz if d'(f(x), f(y)) < a x d(x,y). So here we have
[f(z) = fW)] < allz — yll2.



Proof. Let A := {z: f(z) < M} andB := {z : f(z) > M;} and note that
{z:|f(z) — My| >t} C{z:d(z,A) > at} U{z : d(z, B) > at},
and use Lemma 2.9. O

Sometimes it is desirable to substitute the median in Lemma 2.11 with the expected
value. Next corollary shows that under some conditions the expected value is close to
the median.

Corollary 2.12. If f : S~ ' — R0 is a-Lipschitz, then

B - Myl < 22

NG

Proof. By Lemma 2.11 we have

w{a s 1f(2) = My| > 1)) < de o

So

7252 ds — Zﬁa

c>c>L277 4a [ee)
\E[f]fo|§IE|f(z)fo\§4/O e dtgﬁ/o e N

2.3.1 Isoperimetric inequality for geodesics distance.
One can actually calculate the area of caps to obtain:

Lemma 2.13 (Isoperimetric inequality 114). Let A C S™*! with u(A) > 1/2. Then

Zn

n(Ae) 21— \/7"—/867 2.

Similar to Lemma 2.11.

Lemma 2.14 (Levy’s Lemmalll). Let f : S”*! — R be continuous and let = {x :

f(x) = My}. Then
w(A) >1— \/7r/26762"/2.

Proof. Note thatd, = {x : f(z) < My} N{x: f(z) > M} and use Lemma 2.13.
O

4Note that the lemma is stated f6f**1 instead ofS™ 1.



3 Proof of the Johnson-Lindestrauss Theorem

Now the goal is to move t& dimensions. To construct the Johnson-Lindenstrauss
embedding, projecKk onto a raondonk-dimensional linear subspace. How do we
pick a “randomk-dimensional subspace”? Consider rotafitigrandomly. Then pick
the firstk dimensions (coordinates). 4, is the projection onto the firgt dimensions,
then the random projection we uselis= 7, o R, whereR is a random rotatioh

Exercise 3.1.Show that the above is equivalent to choosirigdimensional subspace
and then projecting the point on it.

Since we rotated the sphere randondtyy) is a uniformly random point o™ !
when|jz|2 = 1. So the question is: what is the norm of the fitstlimensions of a
random unit vector ifR™?

Let M := Median(4/ Zle u?). Then we need to show that

)

If this is true, then
(I —e/M|[z|2 < [[T(2)]| < (1 +€/4) M|zl

with probability> 1 — n=3. So, with probability> 1 — !, this is true for all the(})
difference vectors. Let

Thenf is 1-Lipschitz (see Exercise 2.3) and Lemma 2.11 implies that

—th
Pr[|f(z) — My| > t] <4e” 7,

or equivalently,

- 2’”

Pr||f(x) — My| > iMf} < de~5MS, 3

wheree = t/Mjy.
What we would like is to replacé/; with the mean off*. Firstly, note that, by
symmetry,

Since the maximum value th#t can get isk, for everyA > 0, we have

N

E[f?] < (My + A)* + Prf(z) > My + Alk < (My + A)? + dke 2

5R can be expressed as a random orthonormal matrix with deterrinant




So
—A2%n

E[f%] < 2M7 + 2A% + dke™>

Now setA = /k/(8n). We get
k

n

k
<2M7+ 20+ 4ke k16
n

which shows thaM]% > ﬁ for k > 32log(n). Now substituting this in (3) completes
the proof.

4 Remarks

There is an elementary proof of the Johnson-Lindenstrauss lemma by Dasgupta and
Gupta [DG99].

The embedding used in the proof of the lemma is randomized, but it is possible to
derandomize it.
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