
CSC2414 - Metric Embeddings∗

Lecture 5: Dimension Reduction

Notes taken by Igor Naverniouk and Ilya Sutskever
revised by Hamed Hatami

Summary: In this lecture, we prove the Johnson-Lindenstrauss lemma
[JL84], which shows that it is possible to embed any`2 metric spaceX on
n points into`k2 with distortion(1 + ε), wherek = O(log(n)/ε2).

1 Required Dimension in`1

Recall that in`2, n points can be isometrically embedded into`n−1
2 . Does a similar

statement hold for̀1? Givenn points in`N1 , what is the dimension that we really need?
First let us show that it is possible to decrease the dimension to a function ofN .

Claim 1.1. if (X, d) embeds isometrically intò1, then it embeds isometrically intòn!
1

Proof. We sayi ∼ j if for all pointsx, y ∈ X, xi ≤ yi if and only ifxj ≤ yj . Note that
∼ is easily seen to be an equivalence relation. Trivially there are at mostn! equivalence
classes defined by∼. Denote byF the set of equivalence classes. For everyx and every
equivalence classF ∈ F let xF =

∑
i∈F xi. Now definef : X → `n!

1 as

f(x) =
∑
F∈F

xF eF ,

whereeF are the natural basis of`|F|1 . So herexF is a coordinate ofx in `N1 . To see
thatf is an isometry, note that

f(x)− f(y) =
∑
F∈F

∣∣∣∣∣∑
i∈F

(xi − yi)

∣∣∣∣∣ =
∑
F∈F

∑
i∈F
|xi − yi| = ‖x− y‖1,

where the second inequality is valid becausesign(xi − yi) is constant for alli ∈ F .
This shows thatf is an isometry.

However,N =
(
n

2

)
also suffices.
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Claim 1.2. Assume that(X, d) embeds isometrically intò1. Then it also embeds

isometrically intò M
1 , whereM =

(
n

2

)
.

Proof. By Claim 1.1, we can assume that(X, d) is in `N1 . Let ci : X2 → [0,∞) be the
distance between the points on theith coordinate, where1 ≤ i ≤ N . Therefore,

d(x, y) =
∑

1≤i≤N

ci(x, y).

In addition, we may viewd and ci as elements ofRM whereM =
(
n
2

)
with non-

negative entries. Sinced ∈ span(ci)i≤N , thend =
∑
i αici, andαi ∈ R may be

chosen so that all but at most
(
n
2

)
of them are0. But all the components ofci andd are

positive. Does it mean that we may choose theαi’s to be positive as well? If theαi’s

are positive, then we immediately get an`
(n2)
1 metric for the points by

x 7→ (αixi)i:αi 6=0 ∈ `
(n2)
1 .

The answer is affirmative and can be obtained by an application of the Carathéodory’s
Fundamental Theorem (see e.g. [Eck93]), which we state here without the proof:

Theorem 1.3. Each point in the convex hull of a setS in Rn is in the convex combina-
tion ofn+ 1 or fewer points ofS.

Next consider the following sets inR(n2):

C = {
∑

1≤j≤N

βjcj : βj ≥ 0},

and
D = {λd : λ ≥ 0},

and the plane

E = {x ∈ R(n2) : xi ≥ 0,
∑
i

xi = 1}.

Trivially C ∩ E is an
(
n
2

)
− 1 dimensional convex set, andD ∩ E is a pointλd ∈

C ∩ E. To apply Caratheodory’s theorem, note thatC ∩ E is the convex hull ofλici,
whereλi are chosen in such a way thatλici ∈ E. Applying the theorem onC∩E with
the pointλd ∈ C ∩ E ∩D, we get that

λd =
∑
i

wiλici

with
(
n
2

)
terms in the summation, and with all the constantswi, λi ≥ 0. Dividing the

above expression byλ gives us the desired expression ofd as a linear combination of
at most

(
n
2

)
of theci’s with positive coefficients.
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2 Johnson-Lindenstrauss lemma

In the previous section we considered isometric dimension reductions: ifX ⊂ `1,

|X| = n, then we can isometrically embedX into `
(n2)
1 . If X ⊂ `2, thenX can be

isometrically embedded intòn−1
2 . What can be said about the dimension if we relax

the isometry condition to having distortion1 + ε? Johnson and Lindenstrauss [JL84]
answered this question for`2:

Theorem 2.1. (Johnson-Lindenstrauss) IfX ⊂ `2, |X| = n, then for everyε > 0,

X
1+ε
↪→ `

O( logn
ε2 )

2 .

To prove the theorem we will give a linear embeddingT : `n−1
2 → `

O( logn
ε2 )

2 . It is
sufficient forT to satisfy

(1− ε/4)M‖x− y‖2 ≤ ‖T (x)− T (y)‖2 ≤ (1 + ε/4)M‖x− y‖2,

for someM > 0 and everyx, y ∈ X (The distortion will be at most1+ε/4
1−ε/4 ≤ 1 + ε).

SinceT is linearT (x)− T (y) = T (x− y), and so the above is equivalent to

(1− ε/4)M‖v‖2 ≤ ‖T (v)‖2 ≤ (1 + ε/4)M‖v‖2, (1)

for all the possible
(
n
2

)
vectorsv between the points ofX.

The linear transformationT will be in fact an orthogonal projection into a random1

subspaceE of `n2 with dim(E) = O
(

logn
ε2

)
:

Remember that a finite dimensional linear subspace of`2 is the span of exactly
k := dim(E) orthonormal vectors,u1, . . . , uk, where orthonormality means:

• 〈ui, ui〉 = 1 for i = 1, . . . , k.

• 〈ui, uj〉 = 0 for i 6= j.

Note that the subspaceE is indeed isometrically isomorphic tòk2 with the embed-
ding u 7→

∑k
i=1〈ui, u〉ei, whereu is a vector inE, andei are the natural basis of

`k2 .
Now the orthogonal projectionP from `2 ontoE is defined byP (v) :=

∑k
i=1〈v, ui〉ui

for everyv ∈ `2. Note that

(i) 〈P (v), w〉 = 〈v, w〉 for everyw ∈ E;

(ii) 〈v − P (v), w〉 = 0 for everyw ∈ E.

Exercise 2.2.Prove the properties (i) and (ii ) of orthogonal projections and show that
these two properties define the projection uniquely.

Exercise 2.3.Prove that every projectionP satisfies‖P (v)‖2 ≤ ‖v‖2 for all v ∈ `2.

Next we need to specify that what do we mean by a random subspaceE. First we
need to define the Haar measure on the Sphere.

1will be defined formally below
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2.1 Haar measure on the Sphere

If we want to pick a point at random on the surface of a sphere inR
n, we need to

define a probability distributionµ onSn−1. If we want our point to be “uniform”, then
the measureµ must be invariant under rotations, i.e.µ(A) = µ(TA) whereT is an
arbitrary rotation. First we need to show that such a measure exists.

Definition 2.4. Let A ⊆ Sn−1. DefineAε as the set of points of distanceε from A,
where the distance is the geodesic distance on the sphere. More formally

Aε := {x ∈ Sn−1 : ρ(x,A) ≤ ε},

whereρ is the geodesic distance.

Remark 2.5. In Definition 2.4 we used geodesic distance and this will appear repeat-
edly in this lecture note. The geodesic distance between two points on the sphere is the
length of the smallest arc between them. Note that forx, y ∈ Sn−1, we have

2
π
ρ(x, y) ≤ ‖x− y‖2 ≤ ρ(x, y),

and so the geodesic distance and the Euclidian distance are within a constant factor of
each other.

WhenA = {x},Aε is called a cap centered atx ∈ Sn−1 . Define the measure of a
capC as

µ(C) =
area(C)

area(Sn−1)
.

Note thatµ(Sn−1) = 1. The extension of this measure to all Borel2 sets on the sphere
is called the Haar measure on the sphere (intuitivelyµ(A) is the normalized area of
A ⊆ Sn−1). Note that this measure is invariant under the rotation, and in fact this is
the unique probability measure on Borel sets that satisfies this property.

Remark 2.6. To choose a point uniformly at random (according to Haar measure) on
Sn−1, one might consider a sequence(X1, X2, . . . , Xn) of normally distributed ran-
dom variables. Then, by the property of Gaussians, the vector(X1, X2, . . . , Xn) ∈ Rn
is a rotationally invariantn-dimensional Gaussian. Now normalize(X1, X2, . . . , Xn),
and we get a uniformly random point onSn−1.

2.2 An example: Embedding into one dimension

The simple case is embedding into one dimension. Letφ(x) = 〈u, x〉, whereu ∈ Sn−1

is chosen uniformly at random. What do we expect to happen? The value ofφ(x) might
range from0 (whenx is orthogonal tou) to ‖x‖2 (whenx andu are parallel). Butu is
chosen randomly, and to understand the behavior ofφ(x) we need to see that what is a
“typical” u with respect to all the possible

(
n
2

)
vectorsv between the points ofX.

2Borel sets are the sets that can be constructed from open or closed sets by repeatedly taking countable
unions and intersections
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Figure 1: Enclosing a cone inside a sphere

2.3 Isoperimetric Inequality

Consider a fixed vectorx. We may assume that‖x‖2 = 1, asφ(x) = ‖x‖2〈u, y〉
wherey = x

‖x‖2 and so‖y‖2 = 1. Since everything is rotationally invariant, let

x = (0, 0, . . . , 0, 1). What is〈u, x〉 in this case? Think of the Earth (S2), with x being
the North Pole andu being a random point on the surface. Then〈u, x〉 is the latitude
of u, normalized to the range[−1, 1].

What percentage of the Earth’s area is farther than latitudet from the equator? In
other words, what is the probability, under the uniform measure, that|〈u, x〉| > t?
What is the expected valueE[〈u, x〉2], the expected value of the square of the last
coordinate ofu? The answer is

E[〈u, x〉2] = E[u2
n] =

1
n

n∑
i=1

E[u2
i ] =

1
n
E

[
n∑
i=1

u2
i

]
=

1
n
,

by symmetry. Now we want to say that〈u, x〉 is well-concentrated around its expected
value.

Lemma 2.7. If u is a uniformly random unit vector inRn, then

Pr[|un| ≥ t] ≤ 2e−
t2n
2 .

Proof. Note thatPr[|un| ≥ t] is simply the surface area of that part of the unit sphere
in n dimensions that is above the horizontal planeun = t or below the horizontal plane
un = −t. The two caps are symmetric, so let us find the measure (normalized area) of
the top cap.

Since we have a unit sphere, the measure of the top cap is equal to the volume
of the cone, whose point is at the origin and whose base is the top cap. From the
triangleAOB, we can get that the radius of the base of the cone is half ofAB and is
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equal to
√

1− t2. Then we can enclose the whole cone inside a sphere of that radius.
That sphere will be centered at the midpoint ofAB and will have volume at most
(
√

1− t2)n. Since we have to take care of the bottom cap as well, the total volume of
the two required spheres is at most

2(
√

1− t2)n ≤ 2(e−t
2
)n/2 = 2e

−t2n
2 .

Recall the definition ofAε, Definition 2.4. How small canµ(Aε) be with respect
to µ(A). Intuitively µ(Aε) minimizes whenA is a cap with measureµ(A), and in fact
this intuition is true although the proof is not easy.

Lemma 2.8. For each0 < a < 1 andε > 0,

min{µ(Aε) : A ⊆ Sn−1, µ(A) = a}

exists and is attained onAo is a cap withµ(Ao) = a.

Consider the hemisphereC = {x ∈ Sn−1 : xn ≤ 0} which is a cap of measure
1/2. Lemma 2.7 shows that

µ({x : d(x,C) ≤ ε}) ≥ 1− e ε
2n
2 ,

whered(x,C) is the Euclidian distance. Note that on the other hand for everyA ⊆
Sn−1, we have that{x : d(x,A) ≤ ε} = Aδ for someδ that can be calculated accord-
ing toε. Now from Lemma 2.8 we know that among all setsA∩Sn−1 of measure1/2,
the measure ofAδ minimizes whenA is a hemisphere. So the above bound holds for
every setA of measure at least1/2.

Lemma 2.9 (Isoperimetric inequality I). LetA ⊆ Sn−1 with µ(A) ≥ 1/2. Then

µ({x : d(x,A) ≤ ε}) ≥ 1− 2e−
ε2n
2 ,

whered(x,A) is the Euclidian distance.

Remark 2.10. A similar result holds for hypercubes{0, 1}n. If |A| ≥ 1
22n andA ⊆

{0, 1}n, then

|{x ∈ {0, 1}n : d(x,A) > t}| ≤ 2n · 4e− t2
2n ,

whered(x,A) is the Hamming distance fromx to the setA.

The isoperimetric inequality has an important application, namely the Levy’s lemma [Lév51].
Consider a continuous functionf : Sn−1 → R. Themedianof f isMf ∈ R such that
µ({x : f(x) ≤Mf}) ≥ 1/2 andµ({x : f(x) ≥Mf}) ≥ 1/2.

Lemma 2.11 (Levy’s Lemma I). If f : Sn−1 → R is a-Lipschitz3, then

Pr
x∈Sn−1

[|f(x)−Mf | > t] ≤ 4e
−t2n
2a2 .

3f : (X, d) → (X′, d′) is calleda-Lipschitz if d′(f(x), f(y)) ≤ a × d(x, y). So here we have
|f(x)− f(y)| ≤ a‖x− y‖2.
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Proof. LetA := {x : f(x) ≤Mf} andB := {x : f(x) ≥Mf} and note that

{x : |f(x)−Mf | > t} ⊆ {x : d(x,A) > at} ∪ {x : d(x,B) > at},

and use Lemma 2.9.

Sometimes it is desirable to substitute the median in Lemma 2.11 with the expected
value. Next corollary shows that under some conditions the expected value is close to
the median.

Corollary 2.12. If f : Sn−1 → R
≥0 is a-Lipschitz, then

|E[f ]−Mf | ≤
2
√
πa√
n
.

Proof. By Lemma 2.11 we have

µ({x : |f(x)−Mf | > t}) ≤ 4e
−t2n
2a2 .

So

|E[f ]−Mf | ≤ E|f(x)−Mf | ≤ 4
∫ ∞

0

e
−t2n
2a2 dt ≤ 4a√

n

∫ ∞
0

e
−s2

2 ds =
2
√
πa√
n
.

2.3.1 Isoperimetric inequality for geodesics distance.

One can actually calculate the area of caps to obtain:

Lemma 2.13 (Isoperimetric inequality II4). LetA ⊆ Sn+1 with µ(A) ≥ 1/2. Then

µ(Aε) ≥ 1−
√
π/8e−

ε2n
2 .

Similar to Lemma 2.11.

Lemma 2.14 (Levy’s Lemma II). Letf : Sn+1 → R be continuous and letA = {x :
f(x) = Mf}. Then

µ(Aε) ≥ 1−
√
π/2e−ε

2n/2.

Proof. Note thatAε = {x : f(x) ≤Mf}ε ∩ {x : f(x) ≥Mf}ε and use Lemma 2.13.

4Note that the lemma is stated forSn+1 instead ofSn−1.
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3 Proof of the Johnson-Lindestrauss Theorem

Now the goal is to move tok dimensions. To construct the Johnson-Lindenstrauss
embedding, projectX onto a raondomk-dimensional linear subspace. How do we
pick a “randomk-dimensional subspace”? Consider rotatingRn randomly. Then pick
the firstk dimensions (coordinates). Ifπk is the projection onto the firstk dimensions,
then the random projection we use isT := πk ◦R, whereR is a random rotation5.

Exercise 3.1.Show that the above is equivalent to choosing ak-dimensional subspace
and then projecting the point on it.

Since we rotated the sphere randomly,R(x) is a uniformly random point onSn−1

when‖x‖2 = 1. So the question is: what is the norm of the firstk dimensions of a
random unit vector inRn?

LetM := Median(
√∑k

i=1 u
2
i ). Then we need to show that

Pr

∣∣∣∣∣∣
√√√√ k∑

i=1

u2
i −M

∣∣∣∣∣∣ > ε

4
M

 < 1
n3
. (2)

If this is true, then

(1− ε/4)M‖x‖2 ≤ ‖T (x)‖ ≤ (1 + ε/4)M‖x‖2

with probability≥ 1−n−3. So, with probability≥ 1−n−1, this is true for all the
(
n
2

)
difference vectors. Let

f(u) =

√√√√ k∑
i=1

u2
i .

Thenf is 1-Lipschitz (see Exercise 2.3) and Lemma 2.11 implies that

Pr[|f(x)−Mf | > t] ≤ 4e
−t2n

2 ,

or equivalently,

Pr
[
|f(x)−Mf | >

ε

4
Mf

]
≤ 4e

−ε2n
8 M2

f . (3)

whereε = t/Mf .
What we would like is to replaceM2

f with the mean off2. Firstly, note that, by
symmetry,

E[f2] = E

[
k∑
i=1

u2
i

]
=
k

n
.

Since the maximum value thatf2 can get isk, for every∆ > 0, we have

E[f2] ≤ (Mf + ∆)2 + Pr[f(x) ≥Mf + ∆]k ≤ (Mf + ∆)2 + 4ke
−∆2n

2 .

5R can be expressed as a random orthonormal matrix with determinant1.
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So
E[f2] ≤ 2M2

f + 2∆2 + 4ke
−∆2n

2 .

Now set∆ =
√
k/(8n). We get

k

n
≤ 2M2

f + 2
k

8n
+ 4ke−k/16,

which shows thatM2
f ≥ k

4n for k ≥ 32 log(n). Now substituting this in (3) completes
the proof.

4 Remarks

There is an elementary proof of the Johnson-Lindenstrauss lemma by Dasgupta and
Gupta [DG99].

The embedding used in the proof of the lemma is randomized, but it is possible to
derandomize it.
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