
CSC2414 - Metric Embeddings
�

Lecture 8: Sparsest Cut and Embedding to
���

Notes taken by Nilesh Bansal
revised by Hamed Hatami

Summary: Sparsest Cut (SC) is an important problem with various ap-
plications, including those in VLSI layout design, packet routing in dis-
tributed networking, and clustering. But since sparsest cut is NP-hard, we
need to find approximate algorithms. Solution to uniform Multi Commod-
ity Flow (MCF) problem using Linear Programming (LP) can be used to
approximate SC by �����
	���
�� in polynomial time.

We then discuss, Poincaré inequalities for ��� metrics, which can be used
to find lower bounds for distortion for embedding a metric to ��� . This
discussion is further continued, and we define � -gonal inequalities and
hypermetrics.

1 Sparsest Cut

Definition 1.1. Flux of a graph ����������� � is defined as,!#" � $�%
&')(+*-,/. '0. 1#. *2. 3�4 5 �6��72� 7�� 55 7 5 � where 78�9�;:<72=
The cut 7 which minimizes the flux is known as the minimum quotient separator.

Computing minimum quotient separator is NP-complete.

Definition 1.2. Sparsity of a graph �����>�?�@��� is defined as,A " ��$�%
&')(+* 5 �6��72� 7�� 55 7 5CBD5 7 5 =
The cut 7 which minimizes the sparsity is known as the sparsest cut (SC), which is

NP-hard to compute.

Remark 1.3. Sparsity and flux of a graph are closely related.! "FE 
 A "FEHG ! "I
Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.
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1.1 Approximate Solutions to Sparsest Cut

Lemma 1.4. Solving sparsest cut is equivalent to solving

minimize JKMLON�P Q ��RS�UTV�
subject to JK , LON * Q �WR��UTD����XQZY �[�

Proof. If \ ' represents the metric corresponding to the cut 7 , we can write,5 �6�>72� 7�� 55 7 5�BV5 7 5 �^] K , LON�P \ ' �WRS��TD�]H_ K , L \ ' �WRS��TD� �
and therefore, $�%
&' 5 �6�>72� 7�� 55 7 5�BV5 7 5 �H$�%
&' ] K , LON�P \ ' ��RS��TD�]H_ K , L \ ' ��RS�UTV� =
Recall that �C� metrics are linear combinations of cut metrics, and therefore cut metrics
are extreme rays of �C� . From the lemma proved in the last lecture, ratio in the equation
above is minimized at one of the extreme rays of the cone. Therefore,

$`%
&' 5 �6�>72� 7�� 55 7 5CBa5 7 5 �H$�%
&b N�ced ] K , LON�P Q KfL]g_ K , L Q KfL =
Since this is invariant to scaling, without loss of generality, we can assume that the sum] _ K , L Q KML ��X .

If we relax our requirement from QhY �C� to Q is a metric by adding i#j>k lnm triangle
inequalities, we can solve this problem in polynomial time using Linear Programming
(LP). The relaxed LP to solve is.

minimize JKMLON�PoQ �WRS��TD�
subject to J_ K , LON * Q �WR��UTD�?�pXQ ��RS��TD�rqgs , and Q �WRS��TD��� Q �tTa�@Ru�Q ��RS��TD� E Q �WR��S�v�xw Q �
T��S�v�y= (1)

Theorem 1.5. There exists an ���W�t	a�?
�� approximate algorithm for the sparsest cut
problem.

Theorem 1.5 is due to [LLR94] but it originally appeared in [LR88].
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Proof. Equation 1 can be solved using LP to get a solution Q)z (which is a metric).
Using the Bourgain’s theorem [Bou85], we can find an embedding of Q{z to Q|Y�[�y}�~/� �@�y� k�� with distortion �����
	���
�� . Now Q can be expressed as a linear combination
of ����
��
	�� 4 
�� cut metrics.

Q ��J' N��<� ' \ ' , where � is a collection of cuts.

Since Q is in the cone of cut metrics,

$�%t&' N�� ] K , LON�P \ ' ��RS��TD�]H_ K , L \ ' ��RS��TD� E ] K , LON�P Q KML]H_ K , L Q KfL =
From Bourgain’s theorem,

] K , LON�P Q KML] _ K , L Q KML E �����
	���
�� ] K , LON�P QDzKML] _ K , L Q zKML =
But, ] K , LON�P Q-zKML] _ K , L Q zKML � $`%
&bS� is metric

] K , LON�P QV�KfL] _ K , L Q �KfL E $`%
&_ ' ] K , LON�P \ ' �WR��UTD�] _ K , L \ ' �WRS��TD� =
Therefore,

$�%t&' N�� ] K , LON�P \ ' ��RS��TD�] _ K , L \ ' ��RS��TD� E �����
	��?
�� ] K , LON�P Q-zKfL] _ K , L Q zKfL E �����
	��?
��-$`%
&_ ' ] K , LON�P \ ' �WRS��TD�] _ K , L \ ' �WRS��TD� =
1.2 Non-Uniform Sparsest Cut

What we have discussed till now can be generalized to the case of non-uniform sparsest
cut, where we have to minimize

] _ K , L0� KfL \ ' ��RS��TD�] _ K , L+� KfL \ ' �WRS��TD� =
For the problem of uniform sparsest cut, � KML ��X if RS��T Y � , and 0 otherwise; and� KML ��X always.

2 Multi Commodity Flow Problem

In a Multi Commodity Flow (MCF) problem, there are ��q�X commodities, each with
its own source � K , sink � K and demand � K . The aim is to simultaneously route all
the commodities from their source to sink in a way that total amount of commodity
passing through an edge is not more than the capacity of the edge. In our analysis we
will only discuss a special kind of MCF that we call a uniform multi-commodity flow
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problem. In this special case, all edges have capacity X , and demand � K is same for all
the commodities. Hence the problem statement in the uniform multi-commodity flow
problem is to ship simultaneously maximum amount � of commodity between each
pair of vertices.

Remark 2.1. Uniform multi-commodity flow problem forms the dual to the approxi-
mate sparsest cut problem presented in Equation (1).

2.1 Uniform Sparsest Cut

If we want to ship � units from each vertex in 7 to 7 , the total flow across the cut will
be
5 7 5t5 7 5 . Since the number of edges carrying this load is �6�>7�� 7�� , the maximal flow� between each pair is bounded by

� E �6�>72� 7��5 7 5
5 7 5 =

7 7

Any feasible solution to uniform MCF must therefore have � E A " , where
A " is

the solution to sparsest cut problem,
A " �;$�%
& ')(+* . P ~ 'V, ' � .. '{. �/. '{. . While � E A " is neces-

sary, it is not always sufficient for a uniform MCF to have a flow of size � . Since MCF
forms dual to approximate �y�[��� " , from Theorem 1.5,

A " E ���W�t	a�?
�� � . Therefore,

� E A "�E ���W�t	a�?
�� � =
Now we will prove that ���W�t	a�?
�� is a tight bound by providing an example whereA " q����W�t	a��
�� � . Consider a constant degree expander graph � with degree � . We

want to ship � units of commodity between every pair of vertices. The contribution to
total load from flow between two vertices � and � is at least � Q " �����e�v� , where Q " �W���e�v�is the length of shortest path. Hence total load is at least � ]H_ K , L Q " �WRS��TD� . Since for
a constant degree graph, a large fraction of pair of vertices are in distance �����
	���
��
asymptotically, � J_ K , LxQ " �WR��UTD��� � ����
 4 �
	��?
��y=
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Since total number of edges is 
+��� G with capacity 1 each,

� ����
 4 �t	a��
�� E 
+�G B Xa=
Therefore � �;��� �k � ��� k � .

Since
. P ~ 'V, ' � .��  ¡ ~ . '0. ,/. '). � q�¢ for every 7F£g� in expander graphs,5 �6�>7�� 7�� 55 7 5CBV5 7 5 q X
 B 5 �6��72� 7?� 5$�%
&�� 5 7 5 � 5 7 5 � �¤��� X
 �y=

The difference in the solution to MCF and SC in this case is �����
	���
�� .
Remark 2.2. Sparsest Cut is NP-hard. MCF is solvable using linear programming.
Solution to MCF is within ���W�t	a�?
�� to the solution of the sparsest cut. Hence we can
use MCF to find �����
	���
�� approximation to sparsest cut.

3 Lower Bound for Embedding to ¥ X
To compute the lower bounds for distortion when embedding to � � , we will first con-
struct an inequality that holds for ��� , and then use this inequality to say something
about distortion while embedding to ��� . The inequality we will construct falls under
the general class of Poincaré inequalities, and is of form,J K , L ! KMLD¦ � K+§ � LV¦ � qHJ K , L A KMLD¦ � K+§ � LV¦ � = (2)

We need to determine ! � A such that Equation (2) holds true. Distortion for embedding
a metric Q to � � will be at least, ] K , L A KfL Q ��RS�UTV�] K , L ! KML Q ��RS��TD� �
if Equation (2) holds true for all �C� metrics.

Since linear metrics can be expressed as a linear combination of cut metrics, for
every Q � Y �[� , Q �¨� ] ' N�� � ' \ ' . Thus Equation (2) will hold true if the equation
below holds true for all 7 Y � .J K , L ! KML \ ' ��RS��TD�©q J K , L A KfL \ ' �WRS��TD�ª JK , L separated by ' ! KfL q JK , L separated by ' A KML (3)

Let � be a graph with Q " as the metric induced by it, then one possible attempt to
determine ! and

A
can be to set,! KfL � X if RS�UT Y � and s otherwise ( � is the edge set),

and
A KfL � A

, a constant.
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In this case, for a cut 7 , JK , L separated by ' ! KML � 5 �6�>7�� 7?� 5 �
and JK , L separated by ' A KML � A Ba5 7 5CBD5 7 5 =

Since this must hold true for all 7 , we can set
A �|$�%
& ' . P ~ 'V, ' � .. '0. �/. 'v. for the Poincaré

inequality in Equation 2 to hold true. Therefore, the minimum distortion for embedding
a metric Q in �[� is at least,

] K , L A KML Q ��RS��TD�] K , L ! KML Q �WR��UTD� � $�%
&
' . P ~ 'V, ' � .. '0. �/. '{. B ] K , L Q �WR��UTD�5 � 5

For a constant degree expander � with 
 nodes and degree � this becomes,«k B ���W
 4 �
	���
��
+� �;�����
	���
��O�
because in a constant degree graph, a constant fraction of 
 4 pair of vertices have length�����
	���
�� asymptotically.

Theorem 3.1. A constant degree expander graph requires distortion ���W�t	a��
�� for em-
bedding to � � .
3.1 ¬ -Gonal Inequalities

Let � be an 
 -dimensional integral vector, � Y®­ k , such that ] K � K ��X . Equation (2)
holds true if we set 1, ! KML ����� K � L �y¯ and

A KfL �°�>� K � L ��±<=
1For a real number ² , ³´²nµ>¶¸·®² if ²�¹¸º and º otherwise. ³
²[µu»�·¼³
²[µW¶¾½`² . Examples, ³À¿yµ>¶Á·Â¿ ,³W½�¿yµ>¶6·�º , ³W½�ÃOµW¶¨·Äº , ³>½�ÃOµU»6·�Ã .
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This can proved by proving the Equation (3) for all 7 .JK , L separated by ' § ! KML w JK , L separated by ' A KML� JK , L separated by ' �@�>� K � L �S¯Äw¤�>� K � L ��±��� JK , L separated by ' � K � L
� ÅxJ K�N ' � K�Æ B�ÇÈ JL 3N ' � LOÉÊ
� Å J K�N ' � K�Æ B ÇÈ X § JLON ' � LyÉÊ because J K � K ��X� Ë B ��X § Ë�� where ËÌ� J KWN ' � K is an integerE s

Remark 3.2. For all � Y¸­ k , such that ] K � K ��X ,J K , L �>� K � L � ¯ ¦ � Kx§ � LD¦ � q J K , L �>� K � L � ± ¦ � K+§ � LV¦ � � (4)

is a valid inequality. This inequality is known as � -gonal inequality, with ��� ] K 5 � K 5 .
Example 3.3. Let � K �pX , � L ��X and �SÍx� § X and all other �ÏÎÐ�¤s . Equation 4 can be
written as, � K � LV¦ � K+§ � LV¦ � wÑ� K � Í ¦ � K+§ � Í ¦ � wF� L � Í ¦ � Í § � LV¦ � E s)�

i.e., ¦ � K+§ � LV¦ � E ¦ � Kx§ � Í ¦ � w ¦ � Í § � LV¦ � �
which is the well known triangle inequality.

Example 3.4. Consider a vector �o�Ò�eX��ÏXa�ÏXa� § X�� § X[� Y¼­ÔÓ . Thus if a metric Q is in�[� , it must satisfy,

Q � 4 w Q 4 l w Q � l w Q�Õ Ó E Q � Õ w Q 4 Õ w Q l Õ w Q � Ó w Q 4 Ó w Q l Ó = (5)

Consider the bipartite graph Ö 4Ï, l with metric QV× �eØ Ù . For this graph metric, LHS of
Equation (5) is 8, while RHS is 6. Hence Ö 4Ï, l can not be isometrically embedded to�[� , and the distortion must be at least ÚÛ .
Remark 3.5. If a metric Q satisfies the all the � -gonal inequalities, then Q is a hyper-
metric. Therefore, �C� is a hypermetric.
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Figure 1: Ö 4O, l bipartite graph

all metrics

hypermetrics

� 4 �[�

Figure 2: A schematic diagram showing that all � 4 metrics are � � , which in turn are
hypermetrics.
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