
CSC2414 - Metric Embeddings
�

Lecture 9: Dimension reduction in
���

and Planar
Metrics

Notes taken by Ilya Sutskever
revised by Hamed Hatami

Summary: We provide a neat proof that ��� , unlike ��� , does not have good
dimension reduction. We also show that the existence of a certain type of
partition on a graph yields a good embedding of the planar graphs to �	� .

1 Dimension Reduction in 
��
The aim of this section is to prove that �	� does not have good dimension reduction. See
[BC03]. We follow [LN04].

Theorem 1.1. There is an  -point metric space that is � � and that an embedding with
distortion at most � into � � requires dimension ���� ��������� .

In particular, to get ������ dimensions, � � must be ������ �!�"�#�$�"�#�� .

1.1 The Idea

The key idea is to relate distortion with dimension. Observe that if % embeds to �	& �
with distortion � then % embeds to �(' with distortion �*)�+ �(,����-' .

For the proof, we will make use of the identity embedding from �.� to �/' .0(1�0 '�2 0(1�0 �32 + �(,����-' ) 041!0 '65
where the second inequality follows from Hölder’s inequality, specifically

041!0 �87:9;=< & � )�> 1 ; > 2
?@ 9;=< & > 1 ; > '	AB ���C' ) ?@ 9;D< & � � �/,E�F�-'��HG6I(AB

�(,����C' 7 041!0 ' )4+ �/,E�F�-'KJ
Thus the identity embedding has distortion + �(,����C' , and the embedding from % to� � has distortion � , therefore the distortion of the composition is at most �L)4+ �/,E�F�-' .M
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This is the link from distortion to dimension.
Now for � 7 ��� � �������$+ we get+ �(,����C' 7 + �F� � ����� �	� & � 2 + ���
� ��� & 7� � ��� & �
� �	� & 7���� ��� J (1)

Suppose that we produce a metric embeddable to �.� with constant distortion and
in addition, for all ����� � 5	��� , �/' � % � 7���� � �"! � � �"�#�� � where ��' � % � is the best
distortion of an embedding of the metric % to � ' .

Then let � 7 ��� � �!�"�#�$+ where + is the number of dimensions. We get � '#� % � 7����$ �"�#�� �!�"�#�$+ � .
If % embeds to ��& � with distortion � , then % embeds with distortion ��� � � to � ' by

(1), which must be greater than � '%� % � :
�'& � (*) �"�#� �"�#��+,+ 5

and for this to be true, + must be  ��� �������F� .
An example of such a metric space is the diamond graph discussed in the tutorial

from week 6.

2 Planar Metrics

Definition 2.1. A metric % is called planar if it is the metric induced by a (weighted)
planar graph

Theorem 2.2. Every planar metric % embeds to � � with distortion ��� � �����  �
The theorem is due to [Rao99].

2.1 Conventions and notations

For the proof, we will use a distribution over partitions, similar to the one used in
Lecture 4.

Let �.- 5 % � be our  -points planar metric space. Consider a probability distribu-
tion over partitions of - , associated with parameters �0/ 5�1 � , satisfying the following
properties.

1. 2%35476 �08 � 7��� / � with probability 1.

2. For all
1

, the probability that the ball centered at
1

of radius / � 1 is entirely in
one set of the partition is bigger than � � � (the partitions are “solid”).

Clearly such a partition can not exist for all settings of the parameter. In particular,
we want / to be large and 1 to be small. Part of the proof involves showing that 1 is
unusually small for planar metrics, which we do not show here.

For a metric space - , let 1:9 be the smallest possible 1 such that for all / there is
a partition with parameters � / 5�1:9 � .
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Figure 1: The partition

Theorem 2.3. For every metric space - , we have� � �.- � 7 ��� 1 9 ) $ �"�#�� �
Theorem 2.4. If - is planar, 1 9 7���� ��� .

The above theorems imply that planar graphs embed with distortion ��� � ������ � to��� .
2.2 Proof of Theorem 2.3

Given a Probability distribution over the partitions of - as above, create a distribution
over subsets. Fix / . Pick ����� 8 � , a partition. Generate a random subset of - by
picking each set in the partition � � with probability 1/2 independently and take the
union of these sets. Call this random subset

� � .
Let

1 5�� � - with � � /
	 % � 1 5�� � 	 � � � / ( � � is a constant that is independent of , and is hidden in the ���0/ � ). Then
1

and � will be separated by every partition with
parameter / , since every element of the partition has diameter smaller than % � 1 5�� � .

Let us examine > % � 1 5 � � � ! % ��� 5 � � � >
On the one hand, this is less than % � 1 5�� � , which is less than � ��� / by assumption.

On the other hand, if
1

happens to be in
� � (an event occurring with probability 1/2),

and the � is not in
� � (an independent event occurring with probability 1/2 since

1
and � are in different elements of the partition) and that the ball of radius �.��� 1� ) /
around � is in the element of the partition containing � (yet an independent event with
probability at least 1/2, since the previous events did not depend on the way the partition
was formed) then with probability at least � ���> % � 1 5 � � � ! % ��� 5 � � � >��,� ��� 1 9 ) /
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Let us construct a Frechet embedding using these
� � sets. Specifically, let us, for

each choice of parameter / create � 7 ���E������ independent copies of
� � . In addition,

let us first assume that the weights of the graph are unit weights, so the distance is in�  � . Therefore, we shall restrict the parameter / to be among � 5 � 5�� 5 J J�J 5	��� ,E� 5 � � � �	���	� .
Thus we get a Frechet embedding to ��� �"�#� �  � dimensions.

Let us analyze it:0�
 � 1 � ! 
 ��� � 0 �� & 9� <� � � ����� > % � 1 5 � � � ! % ��� 5 � � � > � & � �	� � � /1 9�� � ) � �"�#�� � ) ���
where in the first inequality we choose a suitable / for the distance. Here � � is

some constant independent of  . Then we note that since the
� � are independent, and

the above inequality holds with probability at least � � � per
� � , the probability that it

holds for at least � ��� � of all � ’s is negligible, so that with positive probability, there
exists a choice of the

� � ’s that makes this inequality true for all
1

and � .
Suppose that this event occurs, i.e. for all

1
and � the above inequality holds. Then

��� % � 1 5�� � � �"�#� �  � & 0�
 � 1 � ! 
 ��� � 0 �� & ��� �"�#�  � ) � /1 9�� � & ��� % � 1 5�� � � ������ � � 1 �9
Where the first inequality holds since every coordinate > % � 1 5 � � ! % � � 5 � � > of the
Frechet embedding is non-expanding and there are ��� ����� �  � coordinates. The sec-
ond inequality holds since the above / differs at most by a fixed factor from % � 1 5�� � .

Therefore, the distortion of % is ���01:9 � ������ � .
2.3 The proof for weighted graphs

To prove the result for weighted graphs, we need to use a different construction of
� � .

In particular, we will not use a partition and then select sets at random from it, but
construct the set directly. We loosely follow [Mat02].

First we describe the construction and state its properties. This construction has
only one parameter, / . We still assume that the distances are in � � 5 J J�J 5 �� , i.e. that
we have a unit weight graph. This assumption will later be removed.

Let � be the set of vertices.
The algorithm:� Pick an arbitrary vertex

1 ��� .� Pick a radius � � uniformly from ��� 5 � 5 J�J�J 5 / ! � � .� Construct annuli around
1

:� � 1 5 � � � 5� � 1 5 � � � / � ! � � 1 5 � � � 5� � 1 5 � � � � / � ! � � 1 5 � � � / � 5J J�J
� Remove all the vertices that are on the boundaries between the annuli.
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Figure 2: The making of the set

� Repeat the same for each of the connected components, i.e. pick a starting vertex1 ; and a radius � � uniformly in � � 5 � 5 J J�J 5	/ ! � � .
This procedure is only repeated once, and it is not recursive.
Denote by

�
the set of all vertices removed. For a planar metric, we state the

properties of
�

and � ! �
.

It can be shown that there are universal constants ��� 5 ��� 5 � � such that

1. The diameter of each connected component of � ! �
is at most � � / .

2. For each vertex � � � , % � � 5 � � � / � � with probability at least ��� � � .

Note how the connected components resemble the partition.
We now will define the embedding, similar to the one in the previous section. We

then extend it to the case of arbitrary weighted graph.
For each connected component of � ! �

assign randomly and independently a
value from � ! � 5 � � , and let �  be the value assigned to the component of

1
. Let �  be� if

1 � �
.

Define

 � ��� � 7 ����% ��� 5 � � , be one coordinate of the embedding. Here

�
was

constructed as above with parameter / . Let

	 ��� � ��
 � 7 
 � ��� �
be the embedding itself, where  ranges over ��� �����  � independent copies of


 � and/ ranges over � 5	� 5 J�J J 5	��� � � �����.� so that
	�� -�� � � � � ���(� �.�� . Let us investigate its

properties.
Let

1 5�� � � and let / 7 � � , (� ��� ) be such that� � / 	 % � 1 5�� � 	 � ) � � / 5
and let

�
be the result of the above construction with parameter / .
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Since the diameter of each component of � ! � 	 � � / ,
1

and � can’t belong to
the same component, so �  may not be equal to ��� .

Consider > 
 � � 1 � ! 
 � � � � > 7 > % � 1 5 � � �  ! % ��� 5 � � � � >
If �  �7 � � and if % � 1 5 � � &�� � / then > % � 1 5 � � �  ! % � � 5 � � � � > ��� � / , an event

that occurs with probability at least � � � � . Thus with 1-exponentially small probability
this inequality holds for a constant fraction of the independent copies, hence0 	 � 1 � ! 	 ��� � 0 �� & ���0/ � �"�#�� � 7��� % � 1 5�� � � ������ �
with a very high probability. Therefore, this inequality holds simultaneously for all
pairs

1 5�� with non-zero probability.
In addition, > % � 1 5 � � �  ! % ��� 5 � � ��� > 	 � 6�4����	�  
 � % ��
 5 � � 	 � � � /
	 � % � 1 5�� � ,

implying that
0 	 � 1 � ! 	 � � � 0 �� 2 ��� % � 1 5�� � � ����� �  � .

From this point, the analysis is as in the previous section: On the one hand, we
have

0 	 � 1 � ! 	 � � � 0 �� 2 ��� % � 1 5�� � � ����� �  � and on the other hand, for every pair
1 5��

with very high probability
0 	 � 1 � ! 	 � � � 0 �� & ��� % � 1 5�� � � �"�#�� � , thus with non-zero

probability this inequality holds for all
1 5�� . This gives the ��� � ������ � distortion in ��� .

2.3.1 applying the construction on weighted graphs

Now we show how to generalize this to an arbitrarily weighted graph. We modify the
graph in a way that depends on / , so


 � � 1 � is using different graphs for different / ’s.
The first modification that we make is that when creating the set

�
with parameter/ , we modify the graph so that if ��!5 � � ��� and % ��!5 � � 	�/ � � � �# , then we set% ��!5 � � 7 � . So short edges get contracted.

This is done in order make sure that
0 	 � 1 � ! 	 ��� � 0 �� is not being made much larger

by coordinates with a very large / , compared to % � 1 5�� � .
Having contracted some edges, we modify the graph as follows:
Given / , in the construction of the set

�
we used the vertices of distances � � �  /

from
1

to be in
�

. But the weighted graph may not have such vertices, so
�

may end
up being empty which is not good.

To overcome this problem we add a virtual vertex � on every edge ��!5 � � such
that % � 1 5�� � 7 � � �  / !�� and % � 1 5 � � 7 � � �  / � � � , so that the end result is% � 1 5 � � 7 �	� �  / . Note that a very long edge on the original graph may get many
virtual vertices added. Similarly, in the same way add similar virtual vertices to the
connected components of � ! the first set of annuli (see the algorithm).

It can be shown that as a result of this construction
�

will satisfy exactly the same
properties it satisfied for the unweighted graph, a fact that will be used implicitly in the
analysis of both the upper and lower bounds.

Denote by % � the graph metric that we get from these two modifications.
Let us then define the embedding:

	 � 1 � ��
 � 7 
 � � 1 � , where

 � � 1 � 7 % � � 1 5 � � �  .

�  is defined is as in the previous section. / ranges over a sufficiently large range of
powers of 2, to contain all the distances in the graph. � ranges over ��� �"�#�  � indepen-
dent copies of


 � for each / .
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Figure 3: Adding virtual vertices

The set
�

is created with the above modifications for each / ; The graph has extra
vertices, and some of the original edges are contracted to 0.

	 � - � ���� for some
possibly very large

�
.

Let us analyze this embedding.0 	 � 1 � ! 	 ��� � 0 �� 7 9 ��
 � > 
 � � 1 � ! 
 � � � � > �
If / � � � �.E% � 1 5�� � , then > 
 � � 1 � ! 
 � � � � > 7 � , since for such a large / ,

�
was

constructed with % � � 1 5�� � 7 � . So
1

and � are in the same connected component of� ! �
(or both are in

�
) with the appropriate / , so �  7 ��� and had % � � 1 5 � � 7% � ��� 5 � � . So > % � � 1 5 � � �  ! % � ��� 5 � � � � > 7 � .

If / 	 % � 1 5�� � , then > 
 � � 1 � ! 
 � ��� � > 	 / since in the event where / is much
smaller than % � 1 5�� � , 1 and � will necessarily be in different connected components
which have small diameter (or both are in

�
, so % � 1 5 � � 7 � and % � � 5 � � 7 � ).

Therefore, the sum-total of the small / ’s contribute little and the / ’s above � E% � 1 5�� �
don’t contribute at all to

0 	 � 1 � ! 	 � � � 0 �� . This leaves us with ��� �����  � / ’s, each of
which has ��� �����  � independent copies of


 � , and the contribution of each coordinate
is bounded by ��� % � 1 5�� � � � .

Therefore, we conclude that
0 	 � 1 � ! 	 � � � 0 �� 2 ��� % � 1 5�� � � ����� �  � .

To have a good distortion, we need to show that the embedding doesn’t contract too
much. We will show that > 
 � � 1 � ! 
 � � � � >%& ��� % � 1 5�� ��� for � � � / 2 % � 1 5�� � 2 � � � /
with probability bounded below by a constant (Note the slightly different choice of / ).
This will imply that with non-zero probability,

0 	 � 1 � ! 	 � � � 0 & ��� % � 1 5�� � � �"�#�� �
for all

1 5�� simultaneously, which implies that the distortion is ��� � �"�#�  � .
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For this to be true, the only thing we need is that
1

and � belong to different con-
nected components of � ! � in the modified graph % � . This is the only way �  may be
not equal to � � with probability � � � . If

1
and � indeed belong to different components

with probability 1, then the analysis of the last section shows that the desired inequality
holds with probability bounded from zero by a constant.

2.3.2 Some details

We will show that % � 1 5�� � 	 � % � � 1 5�� � if � � � / 2 % � 1 5�� � 2 � � � / . From that we
get � � / 	 % � � 1 5�� � , i.e.

1
and � belong to different connected components in the

modified graph % � , as desired.
For the proof, consider the shortest path in the original graph between

1
and � . At

most  edges may be contracted (since we contracted the original graph without virtual
vertices), each of length at most / � � � �# . Therefore, % � � 1 5�� � & % � 1 5�� � !  / � � � �# .
Since / � � 	 � % � 1 5�� � , we get that % � 1 5�� � !  / � � ���. & % � 1 5�� � ! % � 1 5�� � � � . Thus

1
and � belong to different components in � ! �

in % � .
Combining the two inequalities we get % � 1 5�� � � � 2 % � � 1 5�� � .
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