CSC2414 - Metric Embeddings* Lecture 1: Embnedding trees into Euclidian space

Notes taken by

Abstract

Summary: In this tutorial we discuss a result of Bourgain which says that every binary tree can be embedded with distortion $O(\sqrt{\log \log n})$ into ℓ_{2}.

1 Introduction

In this tutorial we discuss a result of Bourgain regarding the distortion of the Euclidian embeddings of a binary tree. First let us notice that every tree metric is ℓ_{1}.

Theorem 1.1. Let T be a tree. There exists an isometric embedding of T into ℓ_{1}^{n}.
Proof. The proof is by induction on n, the number of vertices. The base of induction is trivial. Let T be a tree on n vertices and v be a leaf of T. By induction hypothesis there exists an isometric embedding f from $T-v$ to ℓ_{1}^{n-1}. Define the map g from f to ℓ_{1}^{n} by $g(u):=f(u) \oplus 0$ for every $u \in T-v$ and $g(v):=f(w) \oplus 1$ where w is the unique neighbor of u in T. Now it is easy to see that g is an isometric embedding of T into ℓ_{1}^{n}.

Now let us consider the Euclidian space, ℓ_{2}. Let T be a complete binary tree and f be its embedding into ℓ_{1}^{n} as it is defined in the proof of Theorem 1.1. What is the distortion of the embedding f when we consider it as a mapping into ℓ_{2}^{n} ? It is easy to see that the new distance of two vertices u and v in ℓ_{2} is $\sqrt{d_{T}(u, v)}$. Since the maximum value of $d_{T}(u, v)$ is $2 \log _{2} n$, we conclude that the distortion of f is $\sqrt{2 \log _{2} n}$. But this is not optimal. Bourgain in a short paper showed that it is possible to improve this bound to $O(\sqrt{\log \log n})$, and this is sharp.

Theorem 1.2. Let T be the complete binary tree of height h. It is possible to embed T into ℓ_{2} with distortion $O(\sqrt{h})$.
Proof. Label the vertices of T by $1, \ldots, n$, where $n=2^{h+1}-1$ is the number of vertices, and denote by $h(i)$ the distance of i from the root of the tree. Consider the embedding $f: T \rightarrow \ell_{2}^{n}$ defined as

$$
f(i)_{j}= \begin{cases}\sqrt{1+h(i)-h(j)} & j \text { is an ancestor of } i \\ 0 & \text { otherwise }\end{cases}
$$

[^0]For example if T is a complete binary tree with three vertices labelled as $1,2,3$ (where 1 is the root). Then

$$
\begin{aligned}
& f(1)=(1,0,0) \\
& f(2)=(\sqrt{2}, 1,0) \\
& f(3)=(\sqrt{2}, 0,1)
\end{aligned}
$$

First let us notice that the contraction of f is a constant. Consider two vertices i and j of distance d, and the shortest path between them $i_{0}(=i), i_{1}, \ldots, i_{d-1}, i_{d}(=j)$. Suppose that i_{r} is the common ancestor of i and j. Then for $0 \leq k<r$ we have $f(i)_{i_{k}}=\sqrt{k+1}$ while $f(j)_{i_{k}}=0$. Also for $r<k \leq d$, we have $f(i)_{i_{k}}=0$ while $f(j)_{i_{k}}=\sqrt{d-k+1}$. This shows that

$$
\|f(i)-f(j)\|_{2} \geq \sqrt{\sum_{k=0}^{r-1}(k+1)+\sum_{k=r+1}^{d}(d-k+1)} \geq \sqrt{\sum_{k=1}^{d / 2} k} \geq \frac{\sqrt{d}}{2}
$$

So it remains to compute the expansion of f. Lemma 1.3 below shows that we only need to compute the expansion on the edges of the tree. Let $i j$ be an edge of the tree where i is the parent of j. The two vectors $f(i)$ and $f(j)$ are the same except on the coordinates corresponding to the vertices of the path from i to the root. For any vertex t on this path $f(j)_{t}=\sqrt{1+h(j)-h(t)}$ while $f(i)_{t}=\sqrt{1+h(i)-h(t)}=$ $\sqrt{h(j)-h(t)}$. So

$$
\begin{aligned}
\|f(i)-f(j)\|_{2} & =\sqrt{\sum_{k=0}^{h(j)}(\sqrt{k+1}-\sqrt{k})^{2}}=\sqrt{\sum_{k=0}^{h(j)}\left(\frac{1}{\sqrt{k+1}+\sqrt{k}}\right)^{2}} \\
& \leq \sqrt{\sum_{k=0}^{h(j)}\left(\frac{1}{2 \sqrt{k+1}}\right)^{2}} \approx \frac{\sqrt{\ln h(j)}}{2} \leq \sqrt{h} / 2
\end{aligned}
$$

Lemma 1.3. Let G be a weighted graph and d, its corresponding metric. Let (X, ρ) be a metric space and $f:(G, d) \rightarrow(X, \rho)$. Then the expansion of f is

$$
A:=\max _{u v \in G} \frac{\rho(f(u), f(v))}{d(u, v)}
$$

Proof. Consider two arbitrary vertices v and w and the shortest path between them $v_{1}(=v), \ldots, v_{k}(=w)$. Then

$$
\begin{aligned}
\frac{\rho(f(v), f(w))}{d(v, w)} \leq & \frac{\sum_{i=1}^{k-1} \rho\left(v_{i}, v_{i+1}\right)}{\sum_{i=1}^{k-1} d\left(v_{i}, v_{i+1}\right)} \leq \\
& \frac{\sum_{i=1}^{k-1} d\left(v_{i}, v_{i+1}\right)\left(\max _{u v \in G} \frac{\rho(f(u), f(v))}{d(u, v)}\right)}{\sum_{i=1}^{k-1} d\left(v_{i}, v_{i+1}\right)}=\max _{u v \in G} \frac{\rho(f(u), f(v))}{d(u, v)} .
\end{aligned}
$$

N. Linial, A. Magen and M. Saks showed that every tree can be embedded into the Euclidian space with distortion $O(\log \log n)$.

Theorem 1.4. Let T be a tree on n vertices. It is possible to embed T into ℓ_{2} with distortion $O(\log \log n)$.

The result is improved by Matoušek.
Theorem 1.5. Let T be a tree on n vertices. It is possible to embed T into ℓ_{2} with distortion $O(\sqrt{\log \log n})$.

[^0]: * Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

