CSC2414 - Metric Embeddings
Lecture 2: Expander graphs

Notes taken by Hamed Hatami

Summary: In this tutorial we discuss expander graphs, Cheeger constant
and its relation to eigenvalues of the Laplacian.

1 Introduction

Expander graphs are of great importance in computer science, combinatorics, and many
other areas of mathematics. To define the notion of a family of expanders first we need
some definitions: Consider a gragtiV, E) with possibly loops and multiple edges on

n vertices.

e Edge Boundary: For asetS C V, defined(S) = E(S, S¢), whereS¢ = V'\ S.
e Cheeger Constant:Cheeger constant,(G), is defined as

~ i [0(5)]
S & NN

Remark 1.1. In some textsd(S) denotes thevertex boundanof S which is {u :
d(u,S) =1}.

A sequence of distinct grapK§; }2°, is called efamily of expander graphithere
exists a constant> 0 such that.(G;) > e for everyi > 1. For exampld K11 }2, is
a family of expanders, whetE; is the complete graph anvertices. To overrule such
trivial examples we need another assumption and that is évgiy/d-regular, wherel
is a fixed constant.

Exercise 1.2.Ford < 3, show that there is no family af-regular expander graphs.

Before studying the properties of the family®fegular expander graphs, we need
to show that they do exist.

Theorem 1.3. For d > 3 there exists a family af-regular expander graphs.

* Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.



Proof. The proof is very simple. We show that there exists 0 such that for every
evenn > 0, if we pick a randond-regular graphz, then with positive probability

h(G) > e.
Consider a perfect matching ain vertices. Partition these vertices intosets
S1,...,S5,, each of sizel. Identify the vertices inS; to one single vertex with-

out eliminating any edge. We obtaindaregular graphGG with n vertices labelled as
{1,...,n} with possibly loops and multiple edges. L&tC {1,...,n} be such that
|S| < n/2. To bound)(S) from below we need to bound the number of edges inSide
from above. Let us bound the probability that at ld&$td/2 — ¢) edges are insid#.
Note that we can assunfe= {1,...,|S|} (why?), and then any matching edge that
lies insideS; U ... U S|g) will be inside S in the graphG. So we need to bound from
above the probability that if we choo$g|d vertices from the originadn vertices we
pick at leas{.S|(d/2 — €) edges (why?). This probability is bounded by

(1s16a/2-0) (" 5ls )
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Tedious but straightforward calculation shows that for sufficiently smzllo,

n/2 dn/2 )(dn—\S|(d—26))
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Note that this is the probability tha{G) < e. O

<1

Although the above theorem shows that the proof of existence is easy, explicit con-
struction turns out to be very difficult. There are up to date only few methods of explicit
constructions of families of expanders. The first such family is constructed by the fa-
mous mathematician Margulis in 1973[Mar73]:

For every integefn considerG,,, the graph whose vertices’s,, x Z,,. The eight

neighbors of a vertex = | !

(0 1)
(A1)
Cv)= 0] Ay 8]

where all operations are i,,, x Z,,. Although this construction is very simple, the
proof that this provides a family of expanders is difficult and it is based on the works
of Kazhdan (another great mathematician) in representation theory of semi-simple Lie
groups (see [Lub94]).

are the followings:



2 The Cheeger inequality

Although Cheeger constant is a nice combinatorial notion, it is not very convenient to
work with it directly. For example it is NP-hard to compute the Cheeger constant of a
given graph. So it is desirable to find a more convenient notion that approximates it.
To this end we need to define the Laplacian of a graph.

Definition 2.1. The Laplacian of al-regular graphG is the matrixL¢ := dI — Ag,
whereA¢ is the adjacency matrix af.

SinceL¢ is symmetric it is diagnoisable, and thus ha@ot necessarily distinct)
eigenvalues\; < ... < \,. Itis easy to see thdl. is positive semi-definite, i.e. its
eigenvalues are nonegative.

Exercise 2.2. Show thatL is positive semi-definite an@lis one of its eigenvalues.

The above exercise shows that the eigenvalués;adre0 = A; < Ao <... < A,
The second eigenvalug; captures many interesting properties of the graph including
an approximation of the Cheeger constant.

Before proving this, let us recall some basic facts from linear algebra. Suppose that
vy, ..., U, are orthonormal eigenvectors correspondeshto. ., A\, respectively, i.e.

o Lv; = \v;.
o (v;,v;) =0fori#j.
o (v, v;) =1
Exercise 2.3. Show that for every vectar € R”, we havex = Z?:l a;v;, where

a; = (x,v;). Moreover
n
l2ll3 = a?.
=1

Note that one can take, = ﬁ(l, ..., 1) as the corresponding eigenvector of
A1 = 0. Consider the set of all vectogssuch thatz, v,) = 0 or equivalently) " z; =
0. What is the minimum value oﬁtr‘L—lﬁ over all such vectors. We claim that
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A2 = min 5.
z:(x,v1)=0 ||Z‘H2
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To prove this first note that for := v,
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On the other hand take to be any vector that satisfigs;,v;) = 0. Thenz =
Yo, a;v; and so
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Theorem 2.4. For anyd-regular graphG,

Proof. We only prove the first inequality. First note that

2L = date — 2 Z T = Z (x; — xj)Q.
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Now supposéi(G) is acheived by the cutS, S¢), where|S| < |S¢|. Consider the

vectorz defined as
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as we assumejd| < |S¢|.
O

As we mentioned above instead of Cheeger constant is not very convenient to work
with, and usually the second eigenvalue of the Laplacian is being used to measure how
good an expander is. The following Theorem of Alon and Boppana shows that for
constant/ the best we can hope fordis— 2v/d — 1.

Theorem 2.5. For everyd-regular graph:

A>d—2Vd—1+0(1).

Lubotzky-Phillip-Sarnak [LPS88] and Margulis [Mar88] independently constructed
families of expanders (so called Ramanujan expanders because the proof of the above
theorem is directly connected to the Ramanujan conjedufes which A\, > d —

2¢/d — 1.

Ihow, theorems.
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