
CSC2414 - Metric Embeddings∗

Lecture 2: Expander graphs

Notes taken by Hamed Hatami

Summary: In this tutorial we discuss expander graphs, Cheeger constant
and its relation to eigenvalues of the Laplacian.

1 Introduction

Expander graphs are of great importance in computer science, combinatorics, and many
other areas of mathematics. To define the notion of a family of expanders first we need
some definitions: Consider a graphG(V,E) with possibly loops and multiple edges on
n vertices.

• Edge Boundary: For a setS ⊆ V , define∂(S) = E(S, Sc), whereSc = V \S.

• Cheeger Constant:Cheeger constant,h(G), is defined as

h(G) = min
S⊆V

|∂(S)|
min(|S|, |Sc|)

.

Remark 1.1. In some texts∂(S) denotes thevertex boundaryof S which is {u :
d(u, S) = 1}.

A sequence of distinct graphs{Gi}∞i=1 is called afamily of expander graphsif there
exists a constantε > 0 such thath(Gi) > ε for everyi ≥ 1. For example{Ki+1}∞i=1 is
a family of expanders, whereKi is the complete graph oni vertices. To overrule such
trivial examples we need another assumption and that is everyGi is d-regular, whered
is a fixed constant.

Exercise 1.2.Ford < 3, show that there is no family ofd-regular expander graphs.

Before studying the properties of the family ofd-regular expander graphs, we need
to show that they do exist.

Theorem 1.3. For d ≥ 3 there exists a family ofd-regular expander graphs.
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Proof. The proof is very simple. We show that there existsε > 0 such that for every
evenn > 0, if we pick a randomd-regular graphG, then with positive probability
h(G) > ε.

Consider a perfect matching ondn vertices. Partition these vertices inton sets
S1, . . . , Sn, each of sized. Identify the vertices inSi to one single vertexi with-
out eliminating any edge. We obtain ad-regular graphG with n vertices labelled as
{1, . . . , n} with possibly loops and multiple edges. LetS ⊆ {1, . . . , n} be such that
|S| ≤ n/2. To bound∂(S) from below we need to bound the number of edges insideS
from above. Let us bound the probability that at least|S|(d/2− ε) edges are insideS.
Note that we can assumeS = {1, . . . , |S|} (why?), and then any matching edge that
lies insideS1 ∪ . . . ∪ S|S| will be insideS in the graphG. So we need to bound from
above the probability that if we choose|S|d vertices from the originaldn vertices we
pick at least|S|(d/2− ε) edges (why?). This probability is bounded by(

dn/2
|S|(d/2−ε)

)(
dn−|S|(d−2ε)

2ε|S|
)(

dn
d|S|
) .

Tedious but straightforward calculation shows that for sufficiently smallε > 0,

n/2∑
s=1

(
n

s

)( dn/2
s(d/2−ε)

)(
dn−|S|(d−2ε)

2εs

)(
dn
sd

) < 1.

Note that this is the probability thath(G) < ε.

Although the above theorem shows that the proof of existence is easy, explicit con-
struction turns out to be very difficult. There are up to date only few methods of explicit
constructions of families of expanders. The first such family is constructed by the fa-
mous mathematician Margulis in 1973[Mar73]:

For every integerm considerGm the graph whose vertices isZm ×Zm. The eight

neighbors of a vertexx =
[
x1

x2

]
are the followings:

(
1 1
0 1

)
x

(
1 −1
0 1

)
x

(
1 0
1 1

)
x

(
1 0
−1 1

)
x

(
1 1
0 1

)
x+

[
1
0

] (
1 −1
0 1

)
x+

[
1
0

]
(

1 0
1 1

)
x+

[
0
1

] (
1 0
−1 1

)
x+

[
0
1

]
,

where all operations are inZm × Zm. Although this construction is very simple, the
proof that this provides a family of expanders is difficult and it is based on the works
of Kazhdan (another great mathematician) in representation theory of semi-simple Lie
groups (see [Lub94]).

2



2 The Cheeger inequality

Although Cheeger constant is a nice combinatorial notion, it is not very convenient to
work with it directly. For example it is NP-hard to compute the Cheeger constant of a
given graph. So it is desirable to find a more convenient notion that approximates it.
To this end we need to define the Laplacian of a graph.

Definition 2.1. The Laplacian of ad-regular graphG is the matrixLG := dI − AG,
whereAG is the adjacency matrix ofG.

SinceLG is symmetric it is diagnoisable, and thus hasn (not necessarily distinct)
eigenvaluesλ1 ≤ . . . ≤ λn. It is easy to see thatLG is positive semi-definite, i.e. its
eigenvalues are nonegative.

Exercise 2.2.Show thatLG is positive semi-definite and0 is one of its eigenvalues.

The above exercise shows that the eigenvalues ofLG are0 = λ1 ≤ λ2 ≤ . . . ≤ λn.
The second eigenvalue,λ2 captures many interesting properties of the graph including
an approximation of the Cheeger constant.

Before proving this, let us recall some basic facts from linear algebra. Suppose that
v1, . . . , vn are orthonormal eigenvectors corresponded toλ1, . . . , λn, respectively, i.e.

• Lvi = λivi.

• 〈vi, vj〉 = 0 for i 6= j.

• 〈vi, vi〉 = 1.

Exercise 2.3. Show that for every vectorx ∈ Rn, we havex =
∑n
i=1 aivi, where

ai = 〈x, vi〉. Moreover

‖x‖22 =
n∑
i=1

a2
i .

Note that one can takev1 = 1√
n

(1, . . . , 1) as the corresponding eigenvector of
λ1 = 0. Consider the set of all vectorsx such that〈x, v1〉 = 0 or equivalently

∑
xi =

0. What is the minimum value ofx
tLx
‖x‖22

over all such vectorsx. We claim that

λ2 = min
x:〈x,v1〉=0

xtLx

‖x‖22
. (1)

To prove this first note that forx := v2,

xtLx

‖v2‖22
=
vt2λ2v2

‖v2‖22
= λ.

On the other hand takex to be any vector that satisfies〈x, v1〉 = 0. Thenx =∑n
i=2 aivi and so

xtLx

‖x‖22
=
∑n
i=2 λia

2
i∑n

i=2 a
2
i

≥ λ2.
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Theorem 2.4. For anyd-regular graphG,

h(G)2

2
≤ λ2 ≤ 2h(G).

Proof. We only prove the first inequality. First note that

xtLx = dxtx− 2
∑
ij∈E

xixj =
∑
ij∈E

(xi − xj)2.

Now supposeh(G) is acheived by the cut(S, Sc), where|S| ≤ |Sc|. Consider the
vectorx defined as

xi =

{
1
|S| i ∈ S
−1
|Sc| i 6∈ S

Then

xtLx =
∑
ij∈E

(xi − xj)2 = |∂S|
(

1
|S|

+
1
|Sc|

)2

= |∂S|
(

n

|S||Sc|

)2

,

and

‖x‖22 = |S| 1
|S|2

+ |Sc| 1
|Sc|2

=
n

|S||Sc|
.

So

λ2 ≤
xLxt

xtx
=
|∂S|n
|S||Sc|

≤ 2h(G),

as we assumed|S| ≤ |Sc|.

As we mentioned above instead of Cheeger constant is not very convenient to work
with, and usually the second eigenvalue of the Laplacian is being used to measure how
good an expander is. The following Theorem of Alon and Boppana shows that for
constantd the best we can hope for isd− 2

√
d− 1.

Theorem 2.5. For everyd-regular graph:

λ ≥ d− 2
√
d− 1 + o(1).

Lubotzky-Phillip-Sarnak [LPS88] and Margulis [Mar88] independently constructed
families of expanders (so called Ramanujan expanders because the proof of the above
theorem is directly connected to the Ramanujan conjectures1) for which λ2 ≥ d −
2
√
d− 1.

1now, theorems.
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