CSC2414 - Metric Embeddings*
 Lecture 4: Big Core Theorem.

Notes taken by Hamed Hatami

Summary: In this tutorial we prove that a lower bound for the size of a core in a Negative type metric.

1 Introduction

In this tutorial we prove an asymptotically sharp lower bound for the size of a core in a Negative type metric. This result which improves the bound of [ARV04] is obtained by James Lee [Lee05]. As we saw in the lectures assuming the contrary of the structure theorem leads to the existence of certain structure in the metric, namely a core:

Definition 1.1. Matching covers and cores: For a finite set X let $\mathcal{M}(X)$ denote the set of partial matchings on X. Given a subset $Y \subseteq X$ we say that Y is (σ, δ, ℓ) matching covered by X, if there exists a map

$$
M: S^{d-1} \rightarrow \mathcal{M}(X)
$$

such that

1. For every $u \in S^{d-1}$ and $(x, y) \in M(u)$, we have $\langle x-y, u\rangle \geq \sigma / \sqrt{d}$ and $\|x-y\| \leq \ell$.
2. For every $y \in Y$,

$$
\operatorname{Pr}[\exists x \in X:(x, y) \in M(u)] \geq \delta
$$

M is called the matching cover of Y. If Y is (σ, δ, ℓ)-matching covers itself, we call it a (σ, δ, ℓ)-core.

Our goal now is to prove the main theorem of this tutorial.
Theorem 1.2. Suppose $C \subseteq \mathbb{R}^{d}$ is a (σ, δ, ℓ)-core for some $\sigma, \delta \in(0,1 / 2]$. Suppose furthermore that $d(x, y)=\|x-y\|^{2}$ is a metric on C. Then

$$
|C| \geq \exp \left(\Omega\left(\frac{\sigma^{6}}{\ell^{4} \log ^{2}(1 / \delta)}\right)\right)
$$

[^0]This theorem will finish the proof of the structure theorem as for the parameters that we get from there Theorem 1.2 implies that $|C|>n$, a contradiction.

Definition 1.3. We say that a point $x \in \mathbb{R}^{d}$ is (σ, δ, ℓ)-covered by a set $C \subseteq \mathbb{R}^{d}$ if the following condition is satisfied:

$$
\operatorname{Pr}_{u \in S^{d-1}}\left[\exists y \in C \cap B(x, \ell):\langle x-y, u\rangle \geq \frac{\sigma}{\sqrt{d}}\right] \geq \delta
$$

We also say that a set of points $S \subseteq \mathbb{R}^{d}$ is (σ, δ, ℓ)-covered by C if every $x \in S$ is (σ, δ, ℓ)-covered by C.

The following lemma is a well-known fact.
Lemma 1.4. If $z \in \mathbb{R}^{d}$, then

$$
\operatorname{Pr}\left[\langle z, u\rangle \geq \frac{\sigma}{\sqrt{d}}\right] \leq \exp \left(\frac{-\sigma^{2}}{2\|z\|^{2}}\right)
$$

We can use this lemma to prove a lower bound for the size of a cover.
Lemma 1.5. If x is (σ, δ, ℓ)-covered by a set C, then

$$
|C| \geq \delta \exp \left(\frac{\sigma^{2}}{2 \ell^{2}}\right)
$$

Exercise 1.6. Prove Lemma 1.5.
A key step in the proof our main theorem is to attach a chain of covers together. The following lemma is the first step in this direction which shows that if x is covered by C, then the cover can be extended to a nearby point y with only a small loss in parameters.

Lemma 1.7. Suppose that x is (σ, δ, ℓ)-covered by C, and $z \in \mathbb{R}^{d}$. Then for every $t \geq 0, z$ is $\left(\sigma-t\|x-z\|, \delta-\exp \left(-t^{2} / 2\right), \ell+\|x-z\|\right)$-covered by C.

Proof. In order to have $\langle x-y, z\rangle \geq \sigma / \sqrt{d}$ for some $y \in C$, but

$$
\langle z-y, u\rangle<\frac{\sigma-t\|x-y\|}{\sqrt{d}}
$$

it must be the case that $\langle z-y, u\rangle \geq \frac{t\|x-y\|}{\sqrt{d}}$. But by Lemma 1.4, the probability of this over a random u is at most $\exp \left(-t^{2} / 2\right)$. In addition, clearly $\|y-z\| \leq \ell+\|x-z\|$ for every $y \in C$.

Now we can apply this lemma to sets and get the following corollary.
Corollary 1.8. If $S \subseteq \mathbb{R}^{d}$ is (σ, δ, ℓ)-covered by C, then for every $t, \epsilon \geq 0$, the neighborhood $S_{\epsilon}=\left\{z \in \mathbb{R}^{d}: d(z, S) \leq \epsilon\right\}$ is $\left(\sigma-\epsilon t, \delta-\exp \left(-t^{2} / 2\right), \ell+\epsilon\right)$-covered by C.

The following lemma which can be proven by Levy's lemma shows that in a (σ, δ, ℓ) cover by decreasing σ slightly we can increase δ a lot.

Lemma 1.9. Suppose that x is (σ, δ, ℓ)-covered by C, thenfor every $\gamma>\sqrt{2 \log (2 / \delta)}+$ t, x is also $\left(\sigma-2 \ell \gamma, 1-\exp \left(-t^{2} / 2\right), \ell\right)$-covered by C.

Exercise 1.10. Prove Lemma 1.9.

1.1 proof of Theorem 1.2

To prove Theorem 1.2 we will show that there exists a set $S_{R} \subseteq C$ of size

$$
R=\left\lfloor\frac{\sigma^{2}}{2^{11} \ell^{2} \log \left(8 / \delta^{2}\right)}\right\rfloor
$$

such that S_{R} is $\left(\frac{\sigma R}{4}, 1-\delta / 2,1\right)$-covered by C. Combining this with Lemma 1.5 completes the proof as

$$
|C| \geq \exp \left(\Omega(\sigma R)^{2}\right) \geq \exp \left(\Omega\left(\sigma^{6} / \ell^{4} \log ^{2}(1 / \delta)\right)\right)
$$

To prove that such a S_{R} exists we start with $S_{0}=C$ which is trivially $(0,1,0)$ covered by C. Then we "attach" matching edges to this cover inductively to obtain S_{R}. Lemma 1.11 below which is a major step towards the proof of Theorem 1.2 shows that how one can attach matching edges from a core to a cover to obtain a better cover. For subsets $S \subseteq Y \subseteq \mathbb{R}^{d}$, define

$$
\Gamma_{Y}(S, r)=\{y \in Y: d(y, S) \leq r\}
$$

Additionally, for $k \in \mathbb{N}$, define $\Gamma_{Y}^{k}(S, r)$ inductively by

$$
\Gamma_{Y}^{k}(S, r)=\Gamma_{Y}\left(\Gamma_{Y}^{k-1}(S, r), r\right)
$$

with $\Gamma_{Y}^{1}(S, r)=\Gamma_{Y}(S, r)$.
Lemma 1.11. Suppose that $C \subseteq \mathbb{R}^{d}$ is a $\left(\sigma_{0}, \delta_{0}, \ell_{0}\right)$-core. Additionally, suppose that $S \subseteq C$ is $\left(\sigma, 1-\frac{\delta_{0}}{2}, \ell\right)$-covered by C. Let $\beta=\frac{|S|}{\Gamma_{C}\left(S, \ell_{0}\right)}$. Then there exists a subset $S^{\prime} \subseteq \Gamma_{C}\left(S, \ell_{0}\right)$ with the following properties.

- $\left|S^{\prime}\right| \geq \frac{\delta_{0}|S|}{4}$.
- S^{\prime} is $\left(\sigma+\sigma_{0}, \frac{\delta_{0} \beta}{4}, \ell+\ell_{0}\right)$-covered by C.

Proof. Let $M: S^{d-1} \rightarrow \mathcal{M}(C)$ be the matching cover of C by itself. Consider a point $x \in S$. Since S is $\left(\sigma, 1-\frac{\delta_{0}}{2}, \ell\right)$-covered by C, for a $1-\delta_{0} / 2$ fraction of directions $u \in S^{d-1}$, there exists some $y_{u} \in B_{C}(x, \ell)$ such that $\left\langle x-y_{u}, u\right\rangle \geq \frac{\sigma}{\sqrt{d}}$. In addition (since C is a core), for a δ_{0} fraction of $u \in S^{d-1}$, there exists a point z_{u} such that $\left(z_{u}, x\right) \in M(u)$, which implies that $\left\langle z_{u}-x, u\right\rangle \geq \frac{\sigma_{0}}{\sqrt{d}}$ and $z \in B_{c}\left(x, \ell_{0}\right)$ (in particular, $\left.z \in \Gamma_{C}\left(S, \ell_{0}\right)\right)$.

By a trivial intersection bound, for a $\delta_{0} / 2$ fraction of $u \in S^{d-1}$, both events happen simultaneously, and we have $\left\langle z_{u}-y_{u}, u\right\rangle \geq \frac{\sigma+\sigma_{0}}{\sqrt{d}}$. In this case, we define $A\left(z_{u}, u\right)=$ y_{u}. Observe that this is well-defined; since $M(u)$ is a matching, $A\left(z_{u}, u\right)$ is assigned at most once. Doing this for every $x \in S, u \in S^{d-1}$ defines a partial assignment $A: C \times S^{d-1} \rightarrow C$.

Define a measure μ_{A} on C by

$$
\mu_{A}(z)=\operatorname{Pr}_{u \in S^{d-1}}[A(z, u) \text { is defined }] .
$$

First, we have $\mu_{A}(C) \geq \frac{\delta_{0}}{2}|S|$ by construction. Secondly, we have $\mu_{A}(z)>0$ only if $z \in \Gamma_{c}\left(S, \ell_{0}\right)$, and trivially $\mu_{A}(z) \leq 1$ for every $z \in C$. define

$$
S^{\prime}=\left\{z \in C: \mu_{A}(z) \geq \frac{\delta_{0} \beta}{4}\right\}
$$

and observe that

$$
\frac{\delta_{0}}{2}|S|=\mu_{A}(C) \leq\left|\Gamma_{C}\left(S, \ell_{0}\right)\right| \frac{\delta_{0} \beta}{4}+\left|S^{\prime}\right|=\frac{\delta_{0}}{4}|S|+\left|S^{\prime}\right|
$$

We conclude that $\left|S^{\prime}\right| \geq \frac{\delta_{0}}{4}|S|$. Additionally, every $z \in C$ is $\left(\sigma+\sigma_{0}, \mu_{A}(z), \ell+\ell_{0}\right)$ covered by the set $\{A(z, u): A(z, u)$ is defined $\}$, so S^{\prime} itself is $\left(\sigma+\sigma_{0}, \frac{\delta_{0} \beta}{4}, \ell+\ell_{0}\right)$ covered by C.

As we said above to prove Theorem 1.2 it is sufficient to show that there exists a set $S_{R} \subseteq C$ of size

$$
R=\left\lfloor\frac{\sigma^{2}}{2^{11} \ell^{2} \log \left(8 / \delta^{2}\right)}\right\rfloor
$$

such that S_{R} is $\left(\frac{\sigma R}{4}, 1-\delta / 2,1\right)$-covered by C. We prove this by induction, where we show that:

For $0 \leq r \leq R$, there exists $S_{r} \subseteq C$ satisfying

1. S_{r} is $\left(\frac{\sigma r}{4}, 1-\delta / 2,2 \ell \sqrt{r}\right)$-covered by C.
2. $\left|S_{r}\right| \geq\left(\frac{\delta}{4}\right)^{r}|C|$.
3. $\left|S_{r}\right| \geq \delta\left|\Gamma_{C}\left(S_{r}, \ell\right)\right|$ (i.e. $\beta \geq \delta$ in Lemma 1.11).

The base case: Let $S_{0}=C$. Then since S_{0} is trivially $(0,1,0)$-covered by C, the inductive assumption is satisfied.

Now assume that S_{r-1} satisfies the inductive assumption and that $r \leq R$. The construction of S_{r} proceeds in three steps.
(S1) Use the core to extend the set S_{r-1} to $S_{r}^{\prime} \subseteq \Gamma_{C}\left(S_{r-1}, \ell\right)$.
We apply Lemma 1.11 to the set S_{r-1} and the core C to obtain S_{r}^{\prime}. Observe that by property (3) of S_{r-1}, the value of β in Lemma 1.11 is at least δ. It follows that S_{r}^{\prime} is $\left(\frac{\sigma}{4}(r-1)+\sigma, \delta^{2} / 4, \ell^{\prime}\right)$-covered by C for some ℓ^{\prime} (the value of which we address in step (S3)). Additionally, using property (1) of Lemma 1.11, $\left|S_{r}^{\prime}\right| \geq(\delta / 4)\left|S_{r-1}\right| \geq(\delta / 4)^{r}|C|$.
(S2) Grow S_{r}^{\prime} until it stops expanding. The set S_{r}^{\prime} obtained above does not satisfy the property (3) of induction hypothesis. To fix this we do the following. Let $k \geq 0$ be the first value of which $\left|\Gamma_{C}^{k}\left(S_{r}^{\prime}, \ell\right) \geq \delta\right| \Gamma_{C}^{k+1}\left(S_{r}^{\prime}, \ell\right) \mid$. Let $S_{r}=\Gamma^{k}\left(S_{r}^{\prime}, \ell\right)$. Notice that the neighborhood condition (3) is satisfied by construction. Condition (2) is satisfied since $S_{r} \supseteq S_{r}^{\prime}$.
We claim that S_{r} is $\left(\frac{\sigma}{4}(r-1)+\frac{\sigma}{2}, \delta^{2} / 8, \ell^{\prime \prime}\right)$-covered by C for some $\ell^{\prime \prime}$ addressed in (S3). First, since we had $\left|S_{r}^{\prime}\right| \geq(\delta / 4)^{r}|C|$ it follows that

$$
\begin{equation*}
k \leq \log _{1 / \delta}\left(\frac{4}{\delta^{2}}\right)^{r} \leq 3 r \tag{1}
\end{equation*}
$$

It follows that for every $a \in S_{r}$, there exists a $b \in S_{r}^{\prime}$ and a sequence $a=$ $a_{0}, \ldots, a_{k}=b$ of points in C such that $\left\|a_{i}-a_{i+1}\right\| \leq \ell$ for $i=0, \ldots, k-1$. Now use the fact that $d_{C}(x, y)=\|x-y\|^{2}$ is a metric on C to conclude that

$$
\begin{equation*}
\|x-y\|^{2} \leq \sum_{i=0}^{k-1}\left\|a_{i}-a_{i+1}\right\|^{2} \leq 3 r \ell^{2} \tag{2}
\end{equation*}
$$

i.e. $\|x-y\| \leq \ell \sqrt{3 r}$. So $S_{r} \subseteq N_{\epsilon}\left(S_{r}^{\prime}\right)$ for $\epsilon=\ell \sqrt{3 r}$. Applying Corollary 1.8 to S_{r}^{\prime} with $t=\sigma /(2 \epsilon)$, we conclude that S_{r} is $\left(\frac{\sigma}{4}(r-1)+\sigma / 2, \sigma^{2} / 4-\right.$ $\left.\exp \left(-t^{2} / 2\right), \ell^{\prime}\right)$-covered by C. This yields our desired conclusion as long as $\exp \left(-t^{2} / 2\right) \leq \delta^{2} / 8$. This is true as long as

$$
\begin{equation*}
r \leq \frac{\sigma^{2}}{24 \ell^{2} \log \left(8 / \delta^{2}\right)} \tag{3}
\end{equation*}
$$

which holds true since $r \leq R$.
(S3) Bounding $\ell^{\prime \prime}$ and boosting the cover to $1-\frac{\delta}{2}$.
First we consider the size of $\ell^{\prime \prime}$. Observe that in (S1), in augmenting our cover with Lemma 1.11, we go at most "one step" (along some "edge" of the matching cover) when passing from S_{r-1} to S_{r}^{\prime} (this corresponds to the fact that in property (2) of Lemma 1.11 the set S^{\prime} is covered by vectors of length at most $\ell+\ell_{0}$, where ℓ_{0} is the length of a vector in the matching cover). Additionally using the bound (1), we see that the total number of steps taken by (S2) is at most $3 r$. using a similar calculation to the one in (2) we conclude that $\ell^{\prime \prime} \leq 2 \ell \sqrt{r}$.
Lemma 1.9 with $\gamma=\sigma /\left(8 \ell^{\prime \prime}\right)$ and $t=\sqrt{2 \log (2 / \delta)}$ to conclude that S_{r} is also $\left(\frac{\sigma}{4} r, 1-\frac{\delta}{2}, 2 \ell \sqrt{r}\right)$-covered by C. This is possible as long as

$$
\gamma>\sqrt{2 \log (2 / \delta)}+t=2 \sqrt{2 \log (2 / \delta)}
$$

which holds whenever

$$
r<\frac{\sigma^{2}}{2^{11} \ell^{2} \log (2 / \delta)}
$$

which is true since $r \leq R$.
This completes the induction.

References

[ARV04] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and graph partitioning. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pages 222-231 (electronic), New York, 2004. ACM.
[Lee05] James R. Lee. Distance scales, embeddings, and metrics of negative type. In SODA '05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 92-101, Vancouer, BC, Canada, 2005.

[^0]: * Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

