
CSC2414 - Metric Embeddings
�

Lecture 4: Big Core Theorem.

Notes taken by Hamed Hatami

Summary: In this tutorial we prove that a lower bound for the size of a
core in a Negative type metric.

1 Introduction

In this tutorial we prove an asymptotically sharp lower bound for the size of a core in a
Negative type metric. This result which improves the bound of [ARV04] is obtained by
James Lee [Lee05]. As we saw in the lectures assuming the contrary of the structure
theorem leads to the existence of certain structure in the metric, namely a core:

Definition 1.1. Matching covers and cores: For a finite set
�

let ��� ��� denote the
set of partial matchings on

�
. Given a subset �	� �

we say that � is ��

������� � -
matching covered by

�
, if there exists a map������������� ��� ���

such that

1. For every  "! � ����� and �$#%�'& � ! � �$ � , we have (�#*)+&,�' 
-/.0
%1�2 3 and4 #5)6& 487 � .
2. For every &9!:� , ;�<�= > #?! �@� ��#%�'& � ! � �� �BA .C�ED�
is called the matching cover of � . If � is �F

�'���G� � -matching covers itself, we call it

a �F

�'���G� � -core.

Our goal now is to prove the main theorem of this tutorial.

Theorem 1.2. Suppose HI�KJ � is a ��

������� � -core for some 

���L!M��NO�QPR1TS A . Suppose
furthermore that 3,�$#%�'& �VU 4 #5)�& 4QW is a metric on H . ThenX H X .ZYQ[]\ ^`_a^ 
�b�dc�egf�h W ��PR1E� ��iji Dk
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This theorem will finish the proof of the structure theorem as for the parameters
that we get from there Theorem 1.2 implies that

X H XmlZn , a contradiction.

Definition 1.3. We say that a point #�!?J � is ��

�'�E��� � -covered by a set Ho�MJ � if the
following condition is satisfied:;V<p�q�r]s�tvu = > &w!xHzyw{9�$#|��� �}� (�#5)6&,�' 
-~. 
2 3 A .C��D

We also say that a set of points
� �zJ � is �F

�'���G� � -covered by H if every #6! � is��

������� � -covered by H .

The following lemma is a well-known fact.

Lemma 1.4. If ��!xJ � , then;�<�� (��`�G �-�. 
2 3%� 7 Yd[�\ ^ )j
 WS 4 � 4 W i D
We can use this lemma to prove a lower bound for the size of a cover.

Lemma 1.5. If # is �F

�'���G� � -covered by a set H , thenX H X .C��Yd[�\ ^ 
 WSR� W i D
Exercise 1.6. Prove Lemma 1.5.

A key step in the proof our main theorem is to attach a chain of covers together.
The following lemma is the first step in this direction which shows that if # is covered
by H , then the cover can be extended to a nearby point & with only a small loss in
parameters.

Lemma 1.7. Suppose that # is ��

�'�E��� � -covered by H , and ��!�J � . Then for every� .�N , � is �F
:) � 4 #�)6� 4 ���j)6Yd[�\%��) � W 1ES � �G�V� 4 #�)*� 4 � -covered by H .

Proof. In order to have (�#5)�&
���v-�.z
%1 2 3 for some &5!?H , but(���)6&
�G �-~� 
:) � 4 #�)�& 42 3 �
it must be the case that (F��)9&
�' 
-�."����� �,� �� � . But by Lemma 1.4, the probability of this

over a random  is at most Yd[�\%�G) � W 1TS � . In addition, clearly
4 &�)�� 4�7 �~� 4 #:)�� 4

for every &9!LH .

Now we can apply this lemma to sets and get the following corollary.

Corollary 1.8. If
� �MJ � is ��

������� � -covered by H , then for every

� ����.MN , the neigh-
borhood

�%�~U�� �5!/J � � 3,���`� �V� 7 ��� is ��
L)�� � �'��)*Yd[�\��G) � W 1TS � �G�V��� � -covered byH .
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The following lemma which can be proven by Levy’s lemma shows that in a �F

�'���G� � -
cover by decreasing 
 slightly we can increase � a lot.

Lemma 1.9. Suppose that # is ��

������� � -covered by H , then for every � l � S¡egf�hO�FSv1�� � ��
, # is also ��
:)*S��¢����P�)6Yd[�\%�G) � W 1ES � ��� � -covered by H .

Exercise 1.10. Prove Lemma 1.9.

1.1 proof of Theorem 1.2

To prove Theorem 1.2 we will show that there exists a set
�%£ �zH of size¤¥U@¦ 
 WS ��� � W e§fTh,��¨]1�� W ��©

such that
��£

is �Qª £c ��P�)/�T1TS���P � -covered by H . Combining this with Lemma 1.5 com-
pletes the proof asX H X .�YQ[]\|� _ ��
 ¤�� W � .CYd[�\%� _ ��
 b 1«� c e§fTh W ��P�1�� �'�G� D

To prove that such a
� £

exists we start with
��¬:U H which is trivially ��NO�QP��'N � -

covered by H . Then we “attach” matching edges to this cover inductively to obtain
� £

.
Lemma 1.11 below which is a major step towards the proof of Theorem 1.2 shows that
how one can attach matching edges from a core to a cover to obtain a better cover. For
subsets

� �z�o�CJ � , define­|® � � �'¯ ��UK� &w!L� � 3,�$&
� �V� 7 ¯v��D
Additionally, for °9!:± , define

­¡²® � � �G¯ � inductively by­ ²® � � �'¯ �~U ­�® � ­ ² ���® � � �G¯ � �'¯ � �
with

­ �® � � �G¯ �~U ­ ® � � �G¯ � .
Lemma 1.11. Suppose that H³��J � is a �F
 ¬ �'� ¬ ��� ¬R� -core. Additionally, suppose that� �oH is ��

��P´)oµB¶W �G� � -covered by H . Let · U ¸ r ¸¹�º�» rv¼ ½ ¶�¾ . Then there exists a subset�À¿ � ­%Á � � ��� ¬ � with the following properties.Â X �À¿ X . µ ¶ ¸ r ¸c .Â � ¿ is ��
5��
 ¬ � µ ¶BÃc �G�V��� ¬ � -covered by H .

Proof. Let
����� ����� � ���FH � be the matching cover of H by itself. Consider a point#z! � . Since
�

is ��

�QP�) µ ¶W �G� � -covered by H , for a P�)�� ¬ 1ES fraction of directions �! � ����� , there exists some & p !�{ Á �$#%�G� � such that (�#:)�& p �G �-´.Äª� � . In addition

(since H is a core), for a � ¬ fraction of  ¥! � ����� , there exists a point � p such that��� p �G# � ! � �� � , which implies that (F� p )�#%�G �-~. ª ¶� � and �5!:{�Å«�$#|��� ¬«� (in particular,��! ­ Á � � ��� ¬R� ).
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By a trivial intersection bound, for a � ¬ 1TS fraction of  ?! � ����� , both events happen
simultaneously, and we have (�� p )�& p �' 
-~. ª�Æ�ª ¶� � . In this case, we define ÇÈ��� p �G �ÀU& p . Observe that this is well-defined; since

� �$ � is a matching, ÇÈ��� p �G � is assigned
at most once. Doing this for every #É! � ,  É! � ����� defines a partial assignmentÇ � HÉÊ � ����� � H .

Define a measure Ë%Ì on H byË�Ì}��� �VU ;�<pTq�r]s�tvu = ÇÈ���`�G � is defined
A D

First, we have Ë Ì ��H � .oµ ¶W X � X by construction. Secondly, we have Ë Ì ��� � l N only
if ��! ­ Å«� � ��� ¬R� , and trivially Ë%Ì}��� � 7 P for every ��!?H . define� ¿ U"Í ��!xH � Ë�Ì}��� � . � ¬ ·ÎÐÏw�

and observe that� ¬S X � X U Ë Ì �FH � 7¥X ­|Á � � ��� ¬ � X � ¬ ·Î � X � ¿ X U � ¬Î X � X � X � ¿ X D
We conclude that

X � ¿ X .oµB¶c X � X . Additionally, every ��!LH is ��
%�´
 ¬ �GË Ì ��� � �G�«��� ¬ � -
covered by the set

� ÇÑ�F�O�' �~� ÇÑ�F�O�' � is defined � , so
� ¿

itself is �F
w��
 ¬ � µB¶ Ãc �����*� ¬ � -
covered by H .

As we said above to prove Theorem 1.2 it is sufficient to show that there exists a
set
� £ �+H of size ¤¥U@¦ 
 WS ��� � W e§fTh,��¨]1�� W � ©

such that
� £

is ��ª £c �QP�)*�T1ESm�QP � -covered by H . We prove this by induction, where we
show that:

For N 7 ¯ 7 ¤ , there exists
��Ò �zH satisfying

1.
� Ò

is � ª Òc ��P�)6�T1TS��ÓSR� 2 ¯ � -covered by H .

2.
X ��Ò X .K� µc � Ò X H X .

3.
X ��Ò X .C� X ­ Á � ��Ò ��� � X (i.e. ·*.C� in Lemma 1.11).

The base case: Let
� ¬ U H . Then since

� ¬
is trivially ��NO�QPT��N � -covered by H , the

inductive assumption is satisfied.
Now assume that

� Ò ��� satisfies the inductive assumption and that ¯ 7 ¤
. The

construction of
� Ò

proceeds in three steps.

(S1) Use the core to extend the set
� Ò ��� to

� ¿Ò � ­|Á � � Ò ��� ��� � .
We apply Lemma 1.11 to the set

� Ò ��� and the core H to obtain
� ¿Ò

. Observe
that by property (3) of

��Ò ��� , the value of · in Lemma 1.11 is at least � . It
follows that

� ¿Ò
is ��ª c �$¯¡)xP � �:

�'� W 1 Î ��� ¿ � -covered by H for some � ¿ (the value of

which we address in step (S3)). Additionally, using property (1) of Lemma 1.11,X � ¿Ò X .K�F�T1 Î]� X ��Ò ��� X .¥���T1 Îv� Ò X H X .
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(S2) Grow
� ¿Ò

until it stops expanding. The set
� ¿Ò

obtained above does not sat-
isfy the property (3) of induction hypothesis. To fix this we do the follow-
ing. Let °M.IN be the first value of which

X ­¡²Á � � ¿Ò ��� � .I� X ­ ² Æ �Á � � ¿Ò �G� � X . Let��Ò�U ­|² � � ¿Ò �G� � . Notice that the neighborhood condition (3) is satisfied by con-
struction. Condition (2) is satisfied since

�%Ò�Ô+�À¿Ò
.

We claim that
� Ò

is � ª c ��¯�)�P � � ª W �'� W 1�¨O��� ¿ ¿ � -covered by H for some � ¿ ¿ addressed
in (S3). First, since we had

X � ¿Ò X .¥���T1 Îv� Ò X H X it follows that° 7 egf�h �'Õ µ ^ Î� W i Ò 7zÖ ¯�D (1)

It follows that for every ×Ø! � Ò , there exists a Ù�! � ¿Ò and a sequence × U× ¬ �QDQD�DQ��× ² U Ù of points in H such that
4 ×�Ú�)�×]Ú Æ � 4�7 � for Û U Nm�QD�DQDd�Ó°�)+P .

Now use the fact that 3 Á �$#|�G& �VU 4 #�)6& 4 W is a metric on H to conclude that4 #�)6& 4 W 7 ² ���Ü Ú§Ý ¬ 4 × Ú )*× Ú Æ � 4 W 7CÖ ¯«� W (2)

i.e.
4 #*)M& 4z7 � 2 Ö ¯ . So

� Ò �ßÞ � � � ¿Ò � for � U � 2 Ö ¯ . Applying Corol-
lary 1.8 to

� ¿Ò
with

� U 
%1���SE� � , we conclude that
� Ò

is � ª c �$¯�)�P � ��
%1ES���
 W 1 Î )YQ[�\%��) � W 1ES � ��� ¿§� -covered by H . This yields our desired conclusion as long asYQ[�\%��) � W 1ES � 7 � W 1E¨ . This is true as long as¯ 7 
 WS Î � W egf�h`�F¨v1�� W � (3)

which holds true since ¯ 7 ¤ .

(S3) Bounding � ¿ ¿ and boosting the cover to P�) µW .
First we consider the size of � ¿ ¿ . Observe that in (S1), in augmenting our cover
with Lemma 1.11, we go at most “one step” (along some “edge” of the matching
cover) when passing from

� Ò ��� to
�À¿Ò

(this corresponds to the fact that in property
(2) of Lemma 1.11 the set

� ¿
is covered by vectors of length at most �]��� ¬ , where� ¬ is the length of a vector in the matching cover). Additionally using the bound

(1), we see that the total number of steps taken by (S2) is at most
Ö ¯ . using a

similar calculation to the one in (2) we conclude that � ¿ ¿ 7 S�� 2 ¯ .
Lemma 1.9 with � U 
%1��F¨�� ¿ ¿ � and

� U � S¡e§fThO��S�1�� � to conclude that
��Ò

is also� ª c ¯��QP�) µW ��SR� 2 ¯ � -covered by H . This is possible as long as� l � S¡e§fTh,�FSv1�� � � � U S � S¡egf�h`��S�1�� � �
which holds whenever ¯È� 
 WS ��� � W e§fTh,�FS�1E� � �
which is true since ¯ 7 ¤ .

This completes the induction.
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