
Linear Arithmetic Satisfiability Via Strategy Improvement

Azadeh Farzan
University of Toronto

azadeh@cs.toronto.edu

Zachary Kincaid
Princeton University

zkincaid@cs.princeton.edu

Abstract

Satisfiability-checking of formulas in the theory of
linear rational arithmetic (LRA) has broad appli-
cations including program verification and synthe-
sis. Satisfiability Modulo Theories (SMT) solvers
are effective at checking satisfiability of the ground
fragment of LRA, but applying them to quanti-
fied formulas requires a costly quantifier elimina-
tion step. This article presents a novel decision
procedure for LRA that leverages SMT solvers for
the ground fragment of LRA, but avoids explicit
quantifier elimination. The intuition behind the al-
gorithm stems from an interpretation of a quanti-
fied formula as a game between two players, whose
goals are to prove that the formula is either satisfi-
able or not. The algorithm synthesizes a winning
strategy for one of the players by iteratively im-
proving candidate strategies for both. Experimental
results demonstrate that the proposed procedure is
competitive with existing solvers.

1 Introduction
Satisfiability modulo theories (SMT) solvers have proven to
be extremely effective tools for solving a variety of prob-
lems. The traditional strength of SMT solvers has been in
testing satisfiability of ground (quantifier-free) formulas, but
many applications require quantifiers. For example, check-
ing verification conditions for deductive verification [Ge et
al., 2007], program synthesis [Solar-Lezama et al., 2006;
Solar-Lezama, 2008; Reynolds et al., 2015], and model
checking of array programs [Ghilardi and Ranise, 2010] all
make use of quantifiers.

Integrating support for quantifiers into SMT solvers has
been a long standing challenge. For theories that admit quan-
tifier elimination, such as linear rational arithmetic (LRA),
one option is to eliminate quantifiers and then apply an SMT
solver to the resulting ground formula. However, for ap-
plications that require only a yes or no answer to the sat-
isfiability problem, quantifier elimination is a computation-
ally expensive and unnecessary step. Heuristic quantifier
instantiation is a practical alternative to quantifier elimina-
tion [De Moura and Bjørner, 2007; Ge et al., 2007], but

it is incomplete and may return unknown on difficult prob-
lem instances. First-order theorem provers (such as Vam-
pire [Kovács and Voronkov, 2013] and E [Schulz, 2013]) are
well-tuned for solving quantified formulas, but have limited
support for reasoning modulo theories.

This article presents a novel procedure for checking sat-
isfiability of (quantified) LRA formulas. As with some
approaches to Quantified Boolean Formulas [Zhang, 2006;
Janota et al., 2012], the procedure takes intuition from game-
theoretical semantics of quantifiers [Hintikka, 1982]. We in-
terpret a quantified formula as a game played by two players,
SAT and UNSAT, whose goals are to prove that the formula
is satisfiable and unsatisfiable, respectively. The players take
turns instantiating quantifiers in the formula, with the existen-
tial quantifiers corresponding to moves of the SAT player and
universal quantifiers corresponding to moves of the UNSAT
player. SAT wins the game if the choices made by the players
results in a model of the remainder of the formula (after all
quantifiers have been instantiated); otherwise, UNSAT wins.
A quantified formula is satisfiable if and only if there is a win-
ning strategy for the SAT player; that is, if SAT has a way to
win the game no matter how UNSAT plays.

The decision procedure proposed in this paper is based on
synthesizing a winning strategy for one of the two players.
The algorithm operates by iteratively improving the strate-
gies for both players. At each step of the algorithm, one of
the players proposes a candidate strategy. If the candidate is
a winning strategy, then the status of the formula is known
and the algorithm terminates. If the candidate is not a win-
ning strategy, then the opposing player synthesizes a counter-
strategy to beat it. In the next round, the opposing player
proposes a new strategy that beats all previous strategies, and
the two players switch roles. The process continues until one
of the players obtains a winning strategy.

The next section defines the terminology and notation used
in the rest of the paper. In § 3 we define strategy skeletons.
Strategy skeletons are similar to classical strategies, but have
an order structure: our LRA decision procedure searches for
winning strategy skeletons by ascending in this (“improve-
ment”) order. § 4 describes a procedure for constructing a
counter-strategy to a candidate strategy skeleton. § 5 presents
the decision procedure for LRA. § 6 discusses how to extend
the strategy improvement procedure to other theories, in par-
ticular linear integer arithmetic. We present experimental re-

sults in § 7 and conclude in § 8.

2 Game Semantics for Linear Arithmetic
The definitions that follow are mostly standard, but the reader
who is unfamiliar with the game-theoretic interpretation of
quantifiers in first-order logic may wish to read § 2.2.

2.1 Linear Arithmetic
The syntax of linear rational arithmetic (LRA) is as follows.
The set of terms is defined by the following grammar

s, t ∈ Term ::= c | x | s+ t | c · t
where x is a variable symbol and c is a rational number.
Ground formulas are defined by the grammar

F,G ∈ Formula ::= t < 0 | t = 0 | F ∧G | F ∨G
Notice that we (without loss of generality) assume that for-
mulas are negation-free. A prenex formula is a formula of the
form

ϕ = Q1x1.Q2x2.· · · Qnxn.F ,
where each Qi is either ∃ or ∀, F is a ground formula, and
all variable symbols {x1, ..., xn} are assumed to be distinct.
For a formula ϕ, we use fv(ϕ) to denote the free variables
which appear in ϕ; similarly, fv(t) denotes the free variables
of the term t. A prenex formula is a sentence if it has no free
variables.

A valuation is a function M : V → Q, where V is some
finite set of variable symbols and Q denotes the set of rational
numbers. For a term t and a valuation V , we use JtKM to
denote the interpretation of t within the valuation M . We
use M |= ϕ to denote that M satisfies the formula ϕ (M is
a model of ϕ), defined in the usual way. Many modern SMT
solvers have the capability of computing satisfying valuations
for satisfiable ground formulas [De Moura and Bjørner, 2008;
Barrett et al., 2011; Dutertre, 2014].

For a valuation M , a variable x, and a rational number c,
we use M{x 7→ c} to denote the extension of M where x is
interpreted as c:

M{x 7→ c} , λy.if y = x then c else M(y)

For a formula ϕ, variable x, and term t, we use ϕ[x 7→ t]
to denote the formula obtained from ϕ by substituting each
free occurrence of x with t. For a sequence π, we use |π| to
denote the length of π and πi to denote the ith element of π.

2.2 Satisfiability Games
A prenex sentence

ϕ = Q1x1.Q2x2.· · · Qnxn.F
defines a satisfiability game, which is played as follows.
There are two players, SAT and UNSAT, which take turns
picking rational numbers. At round i of the game, if Qi is
∃, then SAT chooses a rational number to assign to the vari-
able xi; if Qi is ∀, then the choice belongs to UNSAT. After
playing this game for n rounds, the players’ choices define
a play ρ ∈ Qn: a sequence of rational numbers of length n.
This play can be identified with a valuation of the variables
Mρ : {x1, ..., xn} → Q where for each i, Mρ(xi) , ρi. The
SAT player wins ρ if Mρ |= F , otherwise UNSAT wins.

A strategy for a satisfiability game determines the next
move for a player as a function of the sequence of previous
moves in the game:

Definition 2.1 (Strategy). Let
ϕ = Q1x1.Q2x2.· · · Qnxn.F

be a prenex LRA sentence. A SAT strategy for the satisfiabil-
ity game ϕ is a function

f : {ρ ∈ Q∗ : |ρ| < n ∧Q|ρ|+1 = ∃} → Q
Similarly, an UNSAT strategy for ϕ is a function

g : {ρ ∈ Q∗ : |ρ| < n ∧Q|ρ|+1 = ∀} → Q

We say that a play ρ of ϕ conforms to a SAT strategy f if
for every i ∈ {1, ..., n} such that Qi is ∃, we have

ρi = f(ρ1...ρi−1) .

That is, ρi = f(ρ1...ρi−1) whenever f(ρ1...ρi−1) is defined.
Similarly, a play ρ of ϕ conforms to an UNSAT strategy g if
ρi = g(ρ1...ρi−1) whenever g(ρ1...ρi−1) is defined.

We say that a SAT strategy f is winning if SAT wins every
play that conforms to f . Similarly, an UNSAT strategy g is
winning if UNSAT wins every play that conforms to g. It is
easy to show that ϕ is satisfiable if and only if the SAT player
has a winning strategy of the satisfiability game for ϕ (and ϕ
is unsatisfiable if and only if the UNSAT player has a winning
strategy).

For any prenex sentence ϕ, we use ¬ϕ to refer to the
negation-free formula equivalent to the negation of ϕ, ob-
tained in the usual way. The formula ¬ϕ defines a dual game,
which is played as ϕ but with the roles of the SAT and UN-
SAT player reversed. It is often useful to define terminology
and algorithms for the SAT player and leave the analogous
definition for the UNSAT player implicit by appealing to du-
ality. For example, rather than defining UNSAT strategies
explicitly, we could define an UNSAT strategy to be a SAT
strategy for the dual game ¬ϕ. Note that, due to the com-
pleteness of the theory of linear rational arithmetic, we have:

Proposition 2.2. Let ϕ be a prenex sentence. UNSAT has
a winning strategy for ϕ if and only if SAT has a winning
strategy for the dual game ¬ϕ.

3 Strategy Skeletons
As defined in § 2.2, a strategy is a function that determines
the next move for a player starting from any position in the
game. A strategy skeleton determines a finite set of possi-
ble moves for any position. A key feature of strategy skele-
tons (which are formally defined below) is that they are or-
dered: one skeleton is “better” than another if it associates
more moves with every position. This order will be exploited
by the strategy improvement algorithm in § 5, that operates
by proposing a sequence of increasingly “better” candidate
strategy skeletons.

Definition 3.1 (Strategy Skeleton). Let
ϕ = Q1x1.Q2x2.· · · Qnxn.F

be a prenex LRA sentence. A SAT strategy skeleton for ϕ
is a finite, non-empty set S ⊆ (Term ∪ {•})n of sequences
over terms plus a distinguished placeholder •, where each

sequence π1· · ·πn ∈ S has length n and such that for all
i ∈ {1, ..., n},
• if Qi is ∃, then πi is a term and fv(πi) ⊆ {x1, ..., xi−1}
• if Qi is ∀, then πi is •

An UNSAT strategy skeleton for ϕ is defined to be a SAT
strategy skeleton for the dual game ¬ϕ.
Example 3.2. Consider the following formula:

ϕ , ∃w.∀x.∃y.∀z.(y < 1 ∨ 2w < y) ∧ (z < y ∨ x < z)

1

•
x+1
2 x+ 2

• •

One possible SAT strategy skeleton for
ϕ is:
{1•((x+ 1)/2)•, 1•(x+ 2)•} ,

which is visualized as the tree to the right.
This tree indicates the moves available to
a SAT player who plays according to this
skeleton: on turn 1, the SAT player must
choose 1. On turn 2, the choice belongs to the UNSAT player
(represented by the placeholder •). On turn 3, SAT may
choose between (x+1)/2 and x+2 (where x is the value the
UNSAT player chose in the previous turn). Turn 4 again be-
longs to the UNSAT player, after which the game is finished.

Similar to the way that a strategy can be interpreted as
a collection of plays (the plays that conform to that strat-
egy), a strategy skeleton can be interpreted as a collection
of strategies. We make this interpretation precise by defining
what it means for a strategy to conform to a skeleton. Let
ϕ = Q1x1.Q2x2.· · · Qnxn.F be a prenex LRA sentence,
and let S be a strategy skeleton for the SAT player on ϕ.
We say that a play ρ of ϕ conforms to S if there exists some
π1· · ·πn ∈ S such that for all i ∈ {1, ..., n} such that Qi is
∃, we have JxiKM

ρ

= JπiKM
ρ

. We say that a strategy f for ϕ
conforms to S if every play that conforms to f also conforms
to S. A strategy skeleton is winning if some winning strategy
conforms to it.

Winning formulas The goal of our decision procedure for
LRA is to compute a winning skeleton for one of the play-
ers. The next step in developing this algorithm is to give
a method for answering the question is a given candidate
strategy skeleton winning? This question can be encoded
into a universally quantified formula (the winning formula
for the skeleton) which is satisfiable if and only if the skele-
ton is winning. The intuition behind this encoding is that we
may replace each existential quantifier in the formula (rep-
resenting the infinitely many possible moves available to the
SAT player) with a finite disjunction (representing the finitely
many possible moves that are available to the SAT if the play
must conform to the given skeleton).

Formally, we define the winning formula win(S, ϕ) for a
strategy skeleton S for the game ϕ recursively as follows:

win(S,∃xi.ψ) ,
∨
{win(S′, ψ)[xi 7→ t] : S →t S′}

win(S,∀xi.ψ) , ∀xi.win({π : •π ∈ S}, ψ)

win(S, F) , F

where we write S →t S′ iff S′ = {π : tπ ∈ S} and S′ is
non-empty.

Proposition 3.3. Let ϕ be a formula and let S be a SAT
strategy skeleton for ϕ. There is a winning SAT strategy for
the game ϕ that conforms to S if and only if win(S, ϕ) is
satisfiable.

Example 3.4. Again consider the formula ϕ and SAT strat-
egy skeleton from Example 3.2. The winning formula is

∀x.(∀z.
(x+ 1

2
< 1 ∨ 2 <

x+ 1

2

)
∧
(
z <

x+ 1

2
∨ x < z

)
)

∨(∀z.(x+ 2 < 1 ∨ 2 < x+ 2) ∧ (z < x+ 2 ∨ x < z))

One may check that the winning formula is satisfiable, and
therefore the strategy skeleton is winning and ϕ is satisfiable.

4 Counter-strategies
If a given strategy skeleton is not winning, then the opposing
player has a counter-strategy skeleton that beats it (that is, the
counter-strategy wins against every strategy that conforms to
the given skeleton). In this section, we formalize counter-
strategies and give an algorithm for synthesizing them.

Given a formula ϕ, a SAT strategy skeleton S for ϕ, and an
UNSAT strategy skeleton U for ϕ, we say that U is a counter-
strategy for S (U beats S) if there exists a strategy f that
conforms to U such that every play that conforms to both S
and f is a win for UNSAT. Counter-strategies for UNSAT
strategy skeletons are defined similarly. We may observe the
following:

Observation 4.1 (Anti-symmetry). Let S be a SAT strategy
skeleton and U be an UNSAT strategy skeleton. It cannot be
the case that S is a counter-strategy for U and U is a counter-
strategy for S.

This kind of anti-symmetry is the key to our strategy
improvement algorithm making progress. Throughout the
course of the algorithm, SAT will propose a sequence of
strategies S0, S1, ... and UNSAT will propose a sequence of
strategies U0, U1, ..., that are arranged as follows:

S0 ⊆ S1 ⊆ S2 · · ·

U0 ⊆ U1 ⊆ U2 · · ·
beats (†)

The inclusions S0 ⊆ S1 ⊆ ... (and U0 ⊆ U1 ⊆ ...) hold
by construction: Si+1 is defined to be the union of Si and
a counter-strategy that beats Ui. Anti-symmetry ensures that
the inclusions are strict, so that the players make progress
towards a winning strategy.

We now consider the question of how counter-strategies
may be synthesized. Given a formula ϕ and a SAT strategy S,
Algorithm 1 either finds a counter-strategy to S or determines
that no counter-strategy exists (that is, S is a winning strategy
skeleton). (By duality, passing Algorithm 1 the formula ¬ϕ
and an UNSAT strategy U for ϕ finds a counter-strategy to U
or determines that U is winning).

We explain Algorithm 1 by illustrating its operation on the
formula from Example 3.2,

ϕ , ∃w.∀x.∃y.∀z.(y < 1 ∨ 2w < y) ∧ (z < y ∨ x < z)

1 Procedure has-counter-strategy(S, ϕ)
Input : LRA sentence ϕ = Q1x1 · · · Qnxn.F ,

SAT strategy S
Output: Counter-strategy to S if one exists;

None if no counter-strategy exists
/* Compute Herbrandized winning formula */

2 for each π such that π • π′ ∈ S for some π′ do
3 herbrand[π•]← fresh Herbrand constant
4 win← false
5 for π ∈ S do
6 G← F
7 for i← n downto 1 do
8 if Qi is ∃ then
9 G← G[xi 7→ πi]

10 else
11 G← G[xi 7→ herbrand[π1· · ·πi]]
12 win← win ∨G

/* win is the Herbrandized winning formula */
13 if ¬win is satisfiable then

/* Synthesize a counter-strategy for S */
14 Let M |= ¬win
15 (U,G)← css(ϕ,M, λx.⊥, ε, S) /* Alg. 2 */
16 return Counter-strategy U
17 else

/* S is a winning strategy */
18 return None

Algorithm 1: Check if a strategy has a counter-strategy

using the SAT strategy S = {0•x•, 0•(2x)•} for ϕ. Fol-
lowing the definition of win from the previous section, the
winning formula for S is as follows:

∀x.(∀z.(x < 1 ∨ 0 < x) ∧ (z < x ∨ x < z))

∨(∀z.(2x < 1 ∨ 0 < 2x) ∧ (z < 2x ∨ x < z))

Algorithm 1 begins by computing a Herbrandization of
this winning formula (replacing each universally quantified
variable with a fresh constant symbol), so that witnesses for
each quantified variable can be computed from a model of its
negation (should a model exist). The auxiliary map herbrand
keeps track of the symbols introduced by Herbrandization:

herbrand[0•]
herbrand[0•x•]

herbrand[0•(2x)•]

= x
= z1
= z2

After lines 2-12, the Herbrandized winning formula win is:
win = ((x < 1 ∨ 0 < x) ∧ (z1 < x ∨ x < z1))

∨((2x < 1 ∨ 0 < 2x) ∧ (z2 < 2x ∨ x < z2))

0

x

x 2x

z1 z2

Notice that there is only one Herbrand
constant (x) corresponding to the variable x
and there are two (z1 and z2) correspond-
ing to the variable z. The intuition behind
this can be illustrated by the structure of the
satisfiability game tree for ϕ when the SAT
player conforms to S, depicted to the right.
The SAT player begins the game by playing
0 for w. The UNSAT player responds by choosing a value for
x (which we call x). The SAT player then has a choice to play

1 Procedure css(ϕ,M,Mπ, π, S)
Input : LRA formula ϕ = Qxi· · · Qxn.F ,

Valuation M : Image(herbrand)→ Q
Valuation Mπ : {x1, ..., xi−1} → Q
Path π ∈ (Term ∪ {•})i−1
SAT strategy S for ϕ

Output: (U,G), where
U is an UNSAT strategy
G is a formula, and such that
Mπ |= G, and
For any M ′ |= G, U beats S starting from M ′

2 if i > n then
3 return ({ε},¬F)
4 ϕ′ ← Qi+1xi+1· · · Qnxn.F
5 if Qi is ∀ then
6 Mπ• ←Mπ{xi 7→ Jherbrand[π•]KM}
7 S′ ← {π′ : •π′ ∈ S}
8 (U,G)← css(ϕ′,M,Mπ•, π•, S′)
9 t← select(Mπ•, xi, G)

10 return ({tπ : π ∈ U}, G[xi 7→ t])
11 else
12 U ← ∅
13 G← true
14 for S →t S′ do
15 Mπt ←Mπ{xi 7→ JtKM

π}
16 (U+, G+)← css(ϕ′,M,Mπt, πt, S′)
17 G← G ∧ (G+[xi 7→ t])
18 U ← U ∪ U+

19 return ({•π : π ∈ U}, G)
Algorithm 2: Counter-strategy synthesis

either the same value that UNSAT played or twice that value.
For each of these two moves, the UNSAT player may choose
a different value for z: z1 corresponds to UNSAT’s choice in
the first case, and z2 corresponds to UNSAT’s choice in the
second.

After computing the Herbrandized winning formula
win, Algorithm 1 checks if ¬win is satisfiable using an
SMT solver. If ¬win is unsatisfiable then the proce-
dure returns: win is satisfiable and so S is a win-
ning strategy skeleton (by Proposition 3.3). Other-
wise, the SMT solver returns a model of ¬win, say

M = {x 7→ −2, z1 7→ −2, z2 7→ −3}
M corresponds to an UNSAT strategy that beats S:

g(ρ) =

−2 if |ρ| = 1

−2 if |ρ| = 3 ∧ ρ2 = ρ3 (left path)

−3 otherwise (right path)

The next step of Algorithm 1 is to use the model M to syn-
thesize a counter-strategy skeleton for S that generalizes the
strategy g, using Algorithm 2. Algorithm 2 traverses the satis-
fiability game tree pictured above: on the way down (travers-
ing a path π from the root to a leaf), it builds a valuation
(Mπ) representing the unique play of the game where SAT
conforms to π and UNSAT conforms to g. Since g beats S,
this play is a win for UNSAT (i.e., Mπ |= ¬((y < 1 ∨ 2w <

y) ∧ (z < y ∨ x < z))). For example, given the model M
above the two paths in the example give the models:

Left: {w 7→ 0, x 7→ −2, y 7→ −2, z 7→ −2}
Right: {w 7→ 0, x 7→ −2, y 7→ −4, z 7→ −3}

When Algorithm 2 moves up the tree, it builds a counter-
strategy skeleton U and a formula G such that:

(i) The model corresponding to the unfinished play π is a
model of G (i.e., Mπ |= G), and

(ii) U beats S starting from any play ρ such that Mρ |= G.
Thus, at a recursive call of Algorithm 2 of depth i, U is a
counter-strategy skeleton for S playing the part of the game
after the ith quantifier (leaving the first i moves fixed as in
Mπ), and G is a formula that constrains the moves before the
ith quantifier.

If depth i corresponds to an existential quantifier, then the
counter-strategy is extended by prepending the placeholder
value (line 18). If depth i corresponds to a universal quanti-
fier in ϕ, then Algorithm 2 uses a model-guided term selec-
tion function select to select an appropriate term with which
to extend the counter-strategy (making conditions (i) and (ii)
hold). § 4.1 gives an implementation of select.

•

−1

• •

y x+y
2

From property (ii) of Algorithm 2,
we can conclude that when the call
css(ϕ,M, λx.⊥, ε, S) terminates, it returns
a pair (U,G) where U is a counter-strategy
for S on the game ϕ, and G is true. The
final counter-strategy U that is synthesized
by Algorithm 2 on this example is pictured
to the right.

Finally, we summarize the preceding discussion in the fol-
lowing proposition:
Proposition 4.2. Let ϕ be a formula and let S be a strat-
egy skeleton for ϕ. If S is a winning strategy for ϕ, then
has-counter-strategy(S, ϕ) returns None. If S is not win-
ning, then has-counter-strategy(S, ϕ) returns a strategy
skeleton for the UNSAT player on ϕ that beats S.

4.1 Model-guided term selection
This sub-section defines select, the model-guided term selec-
tion procedure used in Algorithm 2. This function is inspired
by model-based projection, an under-approximate quantifier
elimination technique proposed in [Komuravelli et al., 2014],
and the decision procedure for LRA presented in [Weispfen-
ning, 1988] (a modification of the one proposed in [Ferrante
and Rackoff, 1975]).

Given a ground formula F , a model M |= F , and a vari-
able x ∈ fv(F), the model-guided term selection function
select(M,x, F) must find a term t such that x does not ap-
pear in t (fv(t) ⊆ fv(F) \ {x}) and M |= F [x 7→ t].

Observe that every atomic proposition in F that contains
x can be written (after re-writing using standard arithmetical
rules) in one of three forms: x = s, x < s, or s < x (where
x does not appear in s). Let EQ(M,x, F) be the set of all
terms s such that x = s appears in F and JxKM = JsKM , let
UB(M,x, F) be the set of all terms s such that x < s appears
in F and JxKM < JsKM , and let LB(M,x, F) be the set of

all terms s such that s < x appears in F and JsKM < JxKM .
Since (by assumption) M is a model of F , M is also a model
of F [x 7→ t] for any term t such that t satisfies the same
equations, lower bounds, and upper bounds as x (i.e., JtKM =
JsKM for all s ∈ EQ(M,x, F), JtKM < JsKM for all s ∈
UB(M,x, F), and JsKM < JtKM for all s ∈ LB(M,x, F)).

The procedure select(M,x, F) proceeds as follows. If
EQ(M,x, F) is non-empty, then we define eq(M,x, F) to
be some arbitrarily-chosen member. Otherwise, suppose that
UB(M,x, F) is non-empty. Then there exists a (not neces-
sarily unique) least upper bound u ∈ UB(M,x, F) such that
JuKM ≤ JsKM for all s ∈ UB(M,x, F). We let lub(M,x, F)
be an arbitrarily-chosen least upper bound for x if one exists.
Similarly, we define glb(M,x, F) to be an arbitrarily-chosen
greatest lower bound if one exists. Finally, we define select:
select(M,x, F) ,

eq(M,x, F) if EQ(M,x, F) 6= ∅
1
2 (lub(M,x, F) + glb(M,x, F))

if UB(M,x, F) 6= ∅
and LB(M,x, F) 6= ∅

lub(M,x, F)− 1 if UB(M,x, F) 6= ∅
glb(M,x, F) + 1 if LB(M,x, F) 6= ∅
0 otherwise

The term select(M,x, F) satisfies the same equations,
lower bounds, and upper bounds as x. As a result, we have
the following lemma, which is sufficient for the correctness
argument of Algorithm 2 (in particular, the lemma is suffi-
cient to prove that the algorithm maintains properties (i) and
(ii) above):

Lemma 4.3 (Model preservation). Suppose M |= F . Then
M |= F [x 7→ select(M,x, F)].

The function select also satisfies a finite-image property,
which is crucial for the termination argument of the decision
procedure for LRA that we present in the next section:

Lemma 4.4 (Finite Image). Let F be a formula and x be a
variable. The set {select(M,x, F) : M |= F} is finite.

Proof. Define an equivalence relation ≡F on valuations,
where M ≡F M ′ if and only if M and M ′ satisfy the
set of same atomic propositions in F . There are finitely
many equivalence classes of≡F (since there are finitely many
atomic propositions in F), and select selects equal terms for
equivalent models, and so the set {select(M,x, F) : M |=
F} is finite.

5 A strategy improvement algorithm for LRA
This section describes a decision procedure for linear rational
arithmetic based on strategy improvement. The algorithm is
given in Algorithm 3. Given an input formula

ϕ = Q1x1· · · Qnxn.F
the algorithm operates as follows. First, query an SMT solver
for a model of the formula F . If no model exists, then clearly
ϕ is unsatisfiable. If a model does exist, then we may use
it to construct an initial strategy skeleton for the SAT player,
similarly to the way that Algorithm 2 constructs a counter-
strategy from a model (lines 4-13).

Input : LRA sentence ϕ = Q1x1· · · Qnxn.F
Output: true if ϕ is satisfiable, false if ϕ is unsatisfiable

1 if F is unsatisfiable then
2 return false

/* Compute initial strategy for SAT */
3 Let M |= F
4 G← F
5 for i← n downto 1 do
6 if Qi is ∃ then
7 t← select(M,xi, G)
8 G← G[xi 7→ t]
9 πi ← t

10 else
11 G← G[xi 7→ select(M,xi, G)]
12 πi ← •
13 S ← {π1· · ·πn}
14 U ← ∅

/* Strategy improvement */
15 while true do
16 switch has-counter-strategy(S, ϕ) do
17 case Counter-strategy U ′
18 U ← U ∪ U ′
19 otherwise

/* No counter strategy⇒ S is winning */
20 return true
21 switch has-counter-strategy(U,¬ϕ) do
22 case Counter strategy S′
23 S ← S ∪ S′
24 otherwise
25 return false

Algorithm 3: Satisfiability modulo LRA

After constructing the initial strategy skeleton to SAT, we
begin the strategy improvement phase of the algorithm, de-
picted in Diagram †. At the start of the loop, we have a SAT
strategy skeleton S and an UNSAT strategy skeleton U , such
that S beats U (or U is empty). First, we try to synthesize a
counter-strategy to S. If counter-strategy synthesis fails, the
algorithm terminates: S is a winning strategy, so ϕ is satis-
fiable. If has-counter-strategy does synthesize a counter-
strategy, it is added to the candidate UNSAT strategy U (im-
proving it). Next, we repeat this process for the candidate
UNSAT strategy U , and either terminate upon proving that U
is a winning strategy or find a counter-strategy with which to
improve S and continue looping.

Algorithm 3 returns true only when it has synthesized a
SAT strategy skeleton for which the winning formula is sat-
isfiable (i.e., the negation of its winning formula is unsat-
isfiable), and returns false only when it has synthesized an
UNSAT strategy skeleton for which the winning formula is
satisfiable. Thus, partial correctness of Algorithm 3 is an im-
mediate corollary of Proposition 3.3: if Algorithm 3 returns
true, then ϕ is satisfiable, and if Algorithm 3 returns false,
then ϕ is unsatisfiable.

The termination argument for Algorithm 3 is based on two
properties: progress (as the algorithm progresses, the strat-
egy skeleton S is strictly increasing), and finiteness (there
is a finite bound on the size of S). The progress argument

(mentioned in § 4) comes from the anti-symmetry property
of counter-strategies (Observation 4.1). The finiteness argu-
ment is by induction on quantifier depth. The base case is
by Lemma 4.4. If we assume that the finiteness condition
holds for all strategies for a given formula ϕ of depth n, then
we prove the same holds for depth n + 1 by arguing that
the algorithm computes the first move of the game by call-
ing select(M,x, F), where F is some formula obtained by
substituting terms from a counter-strategy of depth n into a
negated, Hebrandized winning formula of strategy of depth
n, M is a model of F , and x is the variable associated with
the first move of the game. By the induction hypothesis, the
set of all possible such F is finite, so by Lemma 4.4, the set
of terms that could be selected for x is finite, and thus the set
of skeletons is finite.

Combining the above arguments for partial correctness and
termination, we close the section with the following theorem:

Theorem 5.1. Algorithm 3 is a decision procedure for LRA.

6 Beyond LRA
The focus of this article is satisfiability in the theory of linear
rational arithmetic, but the core ideas behind the strategy im-
provement algorithm can be extended to other theories. This
section discusses what we require of a theory in order to apply
our algorithm.

There are three assumptions on the theory that must be met
in order to use strategy improvement as a decision procedure.

1. The quantifier-free fragment of the theory in question
must be decidable, and models for satisfiable formulas
must be effectively constructable.

2. The theory must be complete. This is required because
Algorithm 3 checks that the (universally quantified) win-
ning formula for a skeleton is satisfiable by checking that
its (existentially quantified) negation is unsatisfiable.

3. The theory admits a model-guided term selection func-
tion that is model-preserving (Lemma 4.3) and has finite
images (Lemma 4.4).

Thus, the design work involved in extending the strat-
egy improvement algorithm to a new theory is in devising
a term selection function. In fact, condition 3 can be weak-
ened slightly to require only that a theory admits a model-
guided virtual term selection function. A virtual term is
a term that does not belong to the theory in question, but
which may be evaluated in any model of the theory and for
which substitution is theory-definable. Section 6.1 gives a
term selection function (based on ideas from [Cooper, 1972;
Komuravelli et al., 2014]) for linear integer arithmetic that
makes use of such virtual terms.

Remark 6.1. It is worth noting that our requirements for
virtual terms are stronger than ones usually employed by
quantifier elimination procedures [Cooper, 1972; Loos and
Weispfenning, 1993; Komuravelli et al., 2014; Bjørner and
Janota, 2015]. For example, the LIA quantifier elimination
procedure from [Cooper, 1972] makes use of the virtual term
∞, which does not meet our requirements because it cannot
be evaluated in the standard model of the integers.

We leave the development of term selection functions for
other theories as a promising direction for future work.

6.1 Term selection for Linear Integer Arithmetic
Linear integer arithmetic is an important theory for applica-
tion in program analysis and verification. The syntax of LIA
is the same as for LRA, except that constants are integers,
and the language is extended with divisibility predicates a|t
(where a ∈ Z is a positive integer and t is a term). In the
remainder of the section we will develop a virtual term selec-
tion function for linear integer arithmetic.

First we define virtual terms and virtual substitution. We
consider virtual terms of the form bt/ac + b, where t is a
term with fv(t) ⊆ fv(F) \ {x}, a ∈ Z is a positive integer,
and b ∈ Z is an integer. The syntax of LIA does not ad-
mit integral division bt/ac, so virtual terms do not belong to
the syntax of LIA. However, integral division can be inter-
preted in any valuation (Jbt/acKM is well-defined), and for
any formula ϕ, variable x, and virtual term bt/ac+ b, we can
perform a virtual substitution that yields a formula equivalent
to ϕ[x 7→ bt/ac+ b] but which belongs to the syntax of LIA:
Definition 6.2 (Virtual Substitution). Let ϕ be a formula, x
be a variable, and bt/ac + b be a virtual term. Without loss
of generality, we assume that every atomic proposition in ϕ
in which x appears takes one of the following forms:

cx < s s < cx d|cx+ s
where s denotes a term with x /∈ fv(s) and c and d denote
positive integers. (Note that the equality symbol is not needed
because s = s′ may be replaced by s < s′ + 1 ∧ s′ < s+ 1.)

We define the virtual subsitution ϕ[x bt/ac + b] to be
the formula obtained by renaming the bound variables in ϕ
to avoid capture and replacing each atomic proposition in ϕ
in which x appears as follows:

cx < s 7→
a−1∨
i=0

a|(t− i) ∧ c(t− i+ ab) < as

s < cx 7→
a−1∨
i=0

a|(t− i) ∧ as < c(t− i+ ab)

d|cx+ s 7→
a−1∨
i=0

a|(t− i) ∧ ad|c(t− i+ ab) + as

The development of the previous three sections can be re-
peated with virtual terms and virtual subsitution in place of
terms and classical substitution. The only thing that remains
to extend the strategy improvement algorithm to LIA is to de-
fine a virtual term selection function vselect that satisfies the
model preservation and finite image properties.

Let F be a LIA formula, let M |= F be a model, and let
x be a variable. We require vselect(M,x, F) to satisfy the
model preservation property

M |= F [x vselect(M,x, F)] .
Since F is negation-free, it is sufficient for model preserva-
tion to hold on all the atomic propositions of F that contain
x. Observe that every atomic propsition in F that contains x
can be written in one of three forms: (cx < s), (s < cx), or
(d|cx+ s) (where x does not appear in s). Let UB(M,x, F)

be the set of all atoms (cx < s) that appear in F such that
cJxKM < JsKM , let LB(M,x, F) be the set of all atoms
(s < cx) that appear in F such that JsKM < cJxKM , and
let Div(M,x, F) be the set of all divisibility atoms (d|cx+s)
in F such that d divides Jcx+ sKM .

First we consider the constraints that the divisibility atoms
Div(M,x, F) place on vselect(M,x, F). Let (d|cx + s) ∈
Div(M,x, F). Observe that for any integer z ∈ Z,

d|cz + JsKM ⇐⇒ cz ≡ cJxKM mod d

⇐⇒ z ≡ JxKM mod (d/ gcd(|c|, d))

Thus, the divisibility atom (d|cx+ s) is satisfied so long as
Jvselect(M,x, F)KM ≡ JxKM mod (d/ gcd(|c|, d)) .

To collect all such divisibility constraints into one, we define
∆(M,x, F) , lcm{ d

gcd(|c|,d) : (d|cx + s) ∈ Div(M,x, F)}
and require that

Jvselect(M,x, F)KM ≡ JxKM mod ∆(M,x, F) .

Next, we consider the constraints that the upper bound
atoms UB(M,x, F) place on vselect(M,x, F). Suppose
that UB(M,x, F) is non-empty. Then there exists a term
t, a positive integer a, and non-negative integer b less than
∆(M,x, F) such that:

1. (ax < t) ∈ UB(M,x, F),

2. Jb(t− 1)/ac − bKM ≡ JxKM mod ∆(M,x, F), and

3. For any other t′, a′, b′ with the above properties, we have
Jb(t− 1)/ac − bKM ≤ Jb(t′ − 1)/a′c − b′KM .

We define lub(M,x, F) to be a virtual term b(t−1)/ac−b sat-
isfying these three properties (picking one arbitrarily if there
are several choices). Property 2 ensures that lub(M,x, F)
satisfies all divisibility constraints in Div(M,x, F) and prop-
erty 3 ensures that lub(M,x, F) satisfies all upper bound
constraints UB(M,x, F). Property 2 and the fact that b is
less than ∆(M,x, F) implies that JxKM ≤ Jlub(M,x, F)KM ,
and so lub(M,x, F) also satisfies all lower bound constraints.
However, if UB(M,x, F) is empty, we need to consider lower
bound constraints explicitly, so we define glb(M,x, F) anal-
ogously to glb(M,x, F) if LB(M,x, F) is non-empty. Fi-
nally, we define vselect:
vselect(M,x, F) ,

lub(M,x, F) if UB(M,x, F) 6= ∅
glb(M,x, F) if LB(M,x, F) 6= ∅
JxKM mod ∆(M,x, F) otherwise

The argument that the finite image property holds for
vselect is the same as the one for select (Lemma 4.4).

7 Experimental Evaluation
We have implemented Algorithm 3 in a prototype tool called
SIMSAT. The tool is implemented in OCaml and uses Z3 to
solve ground formulas [De Moura and Bjørner, 2008].

Comparison with related techniques
Heuristic quantifier instantiation is a sound but incomplete
technique that is commonly used to handle quantifiers in SMT
solvers [De Moura and Bjørner, 2007; Ge et al., 2007]. Our

Ti
m

e
(s

ec
on

ds
)

0

75

150

225

300

Instances Solved

CVC4 Z3 SIMSAT
Ti

m
e

0

83

165

248

330

Instances Solved (easiest to hardest)

SIMSAT Z3 CVC4

~ 5.3 s

1879

Table 1-3

1 0.006

2 0.006

3 0.006

4 0.006

5 0.006

6 0.006

7 0.006

8 0.006

9 0.006

10 0.006

11 0.006

12 0.006

13 0.006

14 0.006

15 0.006

16 0.006

17 0.006

18 0.006

19 0.006

20 0.006

21 0.006

22 0.006

23 0.006

24 0.006

25 0.006

26 0.006

27 0.006

28 0.006

29 0.006

30 0.006

31 0.006

32 0.006

33 0.006

34 0.006

35 0.006

36 0.006

37 0.006

38 0.006

39 0.006

40 0.006

41 0.006

42 0.006

43 0.006

44 0.006

45 0.007

46 0.007

47 0.007

48 0.007

49 0.007

50 0.007

51 0.007

52 0.007

53 0.007

54 0.007

55 0.007

56 0.007

57 0.007

58 0.007

59 0.007

60 0.007

61 0.007

62 0.007

63 0.007

64 0.007

65 0.007

66 0.007

67 0.007

68 0.007

69 0.007

70 0.007

71 0.007

72 0.007

73 0.007

74 0.007

75 0.007

76 0.007

77 0.007

78 0.007

Table 1-2

1 0.004

2 0.005

3 0.005

4 0.005

5 0.005

6 0.005

7 0.005

8 0.005

9 0.005

10 0.005

11 0.005

12 0.005

13 0.005

14 0.005

15 0.006

16 0.006

17 0.006

18 0.006

19 0.006

20 0.006

21 0.006

22 0.006

23 0.006

24 0.006

25 0.006

26 0.006

27 0.006

28 0.006

29 0.006

30 0.006

31 0.006

32 0.006

33 0.006

34 0.006

35 0.006

36 0.006

37 0.006

38 0.006

39 0.006

40 0.006

41 0.006

42 0.006

43 0.006

44 0.006

45 0.006

46 0.006

47 0.006

48 0.006

49 0.006

50 0.006

51 0.006

52 0.006

53 0.006

54 0.006

55 0.006

56 0.006

57 0.006

58 0.006

59 0.006

60 0.006

61 0.006

62 0.006

63 0.007

64 0.007

65 0.007

66 0.007

67 0.007

68 0.007

69 0.007

70 0.007

71 0.007

72 0.007

73 0.007

74 0.007

75 0.007

76 0.007

77 0.007

78 0.007

Table 1

1 0.008

2 0.008

3 0.008

4 0.009

5 0.009

6 0.009

7 0.009

8 0.009

9 0.009

10 0.009

11 0.009

12 0.01

13 0.01

14 0.01

15 0.01

16 0.01

17 0.01

18 0.01

19 0.01

20 0.01

21 0.01

22 0.011

23 0.011

24 0.011

25 0.011

26 0.011

27 0.011

28 0.012

29 0.013

30 0.013

31 0.014

32 0.014

33 0.014

34 0.014

35 0.015

36 0.015

37 0.015

38 0.015

39 0.015

40 0.015

41 0.015

42 0.015

43 0.015

44 0.015

45 0.016

46 0.016

47 0.016

48 0.016

49 0.016

50 0.017

51 0.017

52 0.017

53 0.017

54 0.017

55 0.017

56 0.017

57 0.017

58 0.017

59 0.018

60 0.018

61 0.018

62 0.018

63 0.018

64 0.018

65 0.018

66 0.018

67 0.018

68 0.018

69 0.018

70 0.018

71 0.018

72 0.018

73 0.018

74 0.018

75 0.018

76 0.018

77 0.018

78 0.018

~ 298 s

1729

22720 21341798

Ti
m

e
(s

ec
on

ds
)

0

1

1,000

Instances Solved

SIMSAT Z3 CVC4

18160

1401

�1

Figure 1: Distribution of run-time over solved instances

experimental evaluation compares with the experimental con-
figuration of CVC4 [Barrett et al., 2011], which won the
LRA category in the 2015 SMT competition. CVC4 uses
a portfolio of quantifier instantiation techniques.

Bjørner and Janota recently developed a decision proce-
dure for LRA (as well as other theories) that is based on the
intuition of satisfiability games [Bjørner and Janota, 2015].
Conceptually, their procedure solves satisfiability games by
exploring the game tree in a forwards direction. The SAT
and UNSAT player take turns instantiating quantifiers until
one of them loses, and then backjumps to an earlier quan-
tification level and learns a blocking clause to remove a part
of the search space that will result in a loss for that player.
In contrast, in Algorithm 3, players take turns synthesizing
strategies for the entire game, rather than synthesizing the
next move. Algorithm 3 requires solving larger formulas
(corresponding to the whole game), but the payoff is a more
“global” perspective of the game.

Dutertre developed an efficient algorithm for solving ∃∗∀∗
in the theory of linear rational arithmetic [Dutertre, 2015]. At
a high level, Dutertre’s algorithm operates similarly to Algo-
rithm 3 when restricted to the ∃∗∀∗ fragment. Dutertre uses
a term selection function similar to the one in § 4.1, but with
some interesing heuristic improvements (that do not extend
to the case of arbitrary quantification in an obvious way).

Monniaux developed a lazy quantifier elimination algo-
rithm for LRA formulas with alternating quantifiers that is
based on geometric quantifier elimination (polyhedra projec-
tion) [Monniaux, 2010]. This algorithm was implemented in
a satisfiability procedure in Z3 [Phan et al., 2012]. The exper-
imental evaluation in [Bjørner and Janota, 2015] shows that
Bjørner and Janota’s algorithm outperforms lazy quantifier
elimination, so we omit it from our evaluation.

Results
We evaluated SIMSAT on a suite of benchmarks drawn from
SMT-LIB2 [Barrett et al., 2010] and Mjollnir [Monniaux,
2010]. The experimental evaluation was performed on a
Linux machine with Intel Core i5 2.80GHz processors and
4GB of memory. The time limit was set to 300 seconds.

The table below summarizes the number of solved prob-

Table 1

21 1

21 1

21 9

21 1

23 10

23 1

23 7

23 1

23 1

23 1

23 7

23 10

23 1

23 13

23 1

23 1

23 1

23 1

23 1

23 7

23 1

23 13

23 1

23 10

23 1

23 1

23 1

23 1

27 5

27 1

27 1

27 1

27 1

27 10

27 7

27 10

27 11

27 10

27 13

27 14

27 10

27 7

27 10

27 11

W
in

ni
ng

 F
or

m
ul

a
Si

ze

0K

10K

20K

30K

40K

50K

Formula Size
0 600 1200 1800 2400 3000

Industrial Random Timeout Random

Table 1-1

359 8521

419 35806

919 29477

585 31263

999 30140

959 93171

731 19675

981 46467

685 24583

961 33902

537 21732

791 35881

899 12209

795 43836

677 23848

801 15677

865 22758

935 28995

817 16097

791 52205

925 18676

957 22250

525 16182

521 23754

875 36729

999 13319

923 14239

877 15679

Table 1-2

113 197

113 201

113 201

113 197

113 203

113 193

113 197

113 197

113 199

113 195

111 195

111 197

111 199

107 189

111 197

111 195

111 201

113 197

113 197

113 199

113 197

113 201

109 187

109 189

113 197

113 201

�1

Figure 2: Formula size vs. Winning formula size

lem instances by each tool. The results are divided into three
categories: industrial benchmarks (from SMT-LIB2) with an
∃∗∀∗ quantifier prefix, industrial benchmarks (from SMT-
LIB2) with a non-∃∗∀∗ quantifier prefix (all of which hap-
pened to have a quantifier prefix of the form ∃∗∀∃), and ran-
dom benchmarks (from both SMT-LIB2 and Mjollnir). SIM-
SAT, Z3 (implementing the algorithm from [Bjørner and Jan-
ota, 2015]), CVC4, and Yices (implementing the algorithm
from [Dutertre, 2015]) all solve all industrial ∃∗∀∗ bench-
marks (all tools have a mean running time of less than 0.01
seconds). On the remaining industrial benchmarks, SIMSAT
and Z3 solve all instances (SIMSAT mean time 1 second, Z3
mean time 0.02 seconds) while CVC4 solves 83%. On the
random benchmarks, SIMSAT dominates (93%), followed by
Z3 (86%) and CVC4 (71%).

SIMSAT Z3 CVC4 YICES
Industrial ∃∗∀∗ (247) 247 247 247 247
Industrial ∃∗∀∃ (144) 144 144 119 –
Random (2030) 1881 1743 1432 –

The distribution of running times of the three tools across
random benchmarks is depicted in the cactus plot in Fig-
ure 1 (a point (x, y) in the plot represents that x instances are
solved in y seconds). Note that SIMSAT can solve in ∼5.3s
as many instances as Z3 can solve in 300s.

Figure 2 plots the size of input formulas against the size
of the winning formula for the winning strategy computed by
SIMSAT (or the last candidate strategy if SIMSAT did not ter-
minate within 300 seconds). Formula size is measured as the
number of nodes in a DAG representation of the formula. For
legibility, the plot truncates input formula size at 3000 and
the winning formula size at 50000. Note that on the indus-
trial benchmarks, the relationship between input formula size
and winning formula size is linear.
Linear integer arithmetic We also evaluated SIMSAT as
a decision proecedure for linear integer arithmetic, using
the virtual term selection procedure described in § 6. The
benchmarks are drawn from SMT-LIB2 and randomly gener-
ated benchmarks. The table below summarizes the number
of solved problem instances by each tool (excluding Yices,

which does not implement an LIA solver). SIMSAT and Z3
both solve all industrial instances (SIMSAT mean time 1.2
seconds, Z3 mean time 0.1 seconds), while CVC4 solves
59%. On the random benchmarks, SIMSAT solves the most
instances (71%), followed by CVC4 (70%) and Z3 (58%).

SIMSAT Z3 CVC4
Industrial (390) 390 390 231
Random (300) 212 174 211

8 Conclusion
This article presents a decision procedure for the theory of
linear arithmetic based on strategy improvement for satisfia-
bility games. There are several avenues for future work in this
direction. The strategy improvement algorithm is very sensi-
tive to model selection, so it would be interesting to experi-
ment with heuristics for different models of ground formulas.
Another promising direction is to extend the strategy synthe-
sis algorithm to other decidable theories, such as the theory of
algebraic data types. Another direction is to investigate uses
for the strategy synthesis capability of the algorithm: just as
there are many applications for models of ground formulas,
we believe there may be interesting uses for winning strate-
gies of quantified formulas.

References
[Barrett et al., 2010] Clark Barrett, Aaron Stump, and Ce-

sare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2010.

[Barrett et al., 2011] Clark Barrett, Christopher L Conway,
Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim
King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In
CAV, pages 171–177, 2011.

[Bjørner and Janota, 2015] Nikolaj Bjørner and Mikolas
Janota. Playing with quantified satisfaction. In LPAR,
2015.

[Cooper, 1972] David C Cooper. Theorem proving in arith-
metic without multiplication. Machine Intelligence, 7(91-
99), 1972.

[De Moura and Bjørner, 2007] Leonardo De Moura and
Nikolaj Bjørner. Efficient E-matching for SMT solvers.
In CADE, pages 183–198. 2007.

[De Moura and Bjørner, 2008] Leonardo De Moura and
Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS,
pages 337–340, 2008.

[Dutertre, 2014] Bruno Dutertre. In CAV, pages 737–744,
2014.

[Dutertre, 2015] Bruno Dutertre. Solving exists/forall prob-
lems with Yices. In Workshop on Satisfiability Modulo
Theories, 2015.

[Ferrante and Rackoff, 1975] Jeanne Ferrante and Charles
Rackoff. A decision procedure for the first order theory
of real addition with order. SIAM Journal on Computing,
4(1):69–76, 1975.

[Ge et al., 2007] Yeting Ge, Clark Barrett, and Cesare
Tinelli. Solving quantified verification conditions using
satisfiability modulo theories. In CADE, pages 167–182.
2007.

[Ghilardi and Ranise, 2010] Silvio Ghilardi and Silvio
Ranise. MCMT: A model checker modulo theories. In
Automated Reasoning, pages 22–29. 2010.

[Hintikka, 1982] Jaakko Hintikka. Game-theoretical seman-
tics: insights and prospects. Notre Dame Journal of For-
mal Logic Notre-Dame, Ind., 23(2):219–241, 1982.

[Janota et al., 2012] Mikoláŝ Janota, William Klieber, Joao
Marques-Silva, and Edmund Clarke. Solving QBF with
counterexample guided refinement. In SAT, pages 114–
128. 2012.

[Komuravelli et al., 2014] Anvesh Komuravelli, Arie
Gurfinkel, and Sagar Chaki. SMT-based model checking
for recursive programs. In CAV, pages 17–34, 2014.

[Kovács and Voronkov, 2013] Laura Kovács and Andrei
Voronkov. First-order theorem proving and Vampire. In
CAV, pages 1–35, 2013.

[Loos and Weispfenning, 1993] Rüdiger Loos and Volker
Weispfenning. Applying linear quantifier elimination. The
Computer Journal, 36(5):450–462, 1993.

[Monniaux, 2010] David Monniaux. Quantifier elimination
by lazy model enumeration. In CAV, pages 585–599, 2010.

[Phan et al., 2012] Anh-Dung Phan, Nikolaj Bjørner, and
David Monniaux. Anatomy of alternating quantifier satis-
fiability (work in progress). In Workshop on Satisfiability
Modulo Theories, page 6, 2012.

[Reynolds et al., 2015] Andrew Reynolds, Morgan Deters,
Viktor Kuncak, Cesare Tinelli, and Clark Barrett.
Counterexample-guided quantifier instantiation for syn-
thesis in SMT. In CAV, pages 198–216. 2015.

[Schulz, 2013] Stephan Schulz. System Description: E 1.8.
In LPAR, pages 735–743, 2013.

[Solar-Lezama et al., 2006] Armando Solar-Lezama, Liviu
Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. Combinatorial sketching for finite programs. In
ASPLOS, pages 404–415, 2006.

[Solar-Lezama, 2008] Armando Solar-Lezama. Program
synthesis by sketching. PhD thesis, University of Califor-
nia, Berkeley, 2008.

[Weispfenning, 1988] Volker Weispfenning. The complexity
of linear problems in fields. Journal of Symbolic Compu-
tation, 5(1):3–27, 1988.

[Zhang, 2006] Lintao Zhang. Solving QBF with combined
conjunctive and disjunctive normal form. In AAAI, 2006.

