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Abstract
Counting arguments are among the most basic proof methods in
mathematics. Within the field of formal verification, they are use-
ful for reasoning about programs with infinite control, such as pro-
grams with an unbounded number of threads, or (concurrent) pro-
grams with recursive procedures. While counting arguments are
common in informal, hand-written proofs of such programs, there
are no fully automated techniques to construct counting arguments.
The key questions involved in automating counting arguments are:
how to decide what should be counted?, and how to decide when a
counting argument is valid? In this paper, we present a technique
for automatically constructing and checking counting arguments,
which includes novel solutions to these questions.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Correctness Proofs; F.3.1 [Logics and Meanings of
Programs]: Specifying, Verifying and Reasoning about Programs

General Terms Languages, Verification

Keywords Concurrency, Verification, Static Analysis

1. Introduction
A counting argument (in the context of formal methods) is a pro-
gram proof that makes use of one or more counters, which are not
part of the program itself, but which are useful for abstracting pro-
gram behaviour. For example it may be useful to refer to the num-
ber of threads that have requested access to a shared resource, or the
number of times a recursive procedure has been called. Despite the
usefulness of counting arguments in hand-written proofs, the prob-
lem of constructing such arguments automatically is little explored.
This paper presents one such approach.

The main intellectual challenge of constructing counting argu-
ments automatically is that we must design an algorithm which can
choose what to count. This is a task that, when carried out by hu-
mans, seems to require genuine creativity. The question of whether
machines are capable of simulating this type of creativity is a chal-
lenging problem in formal verification. It is also a fundamental
one: counters may be viewed as a class of auxiliary variables (á
la Owicki-Gries [41]), in the sense that they remember useful in-
formation about the program history that can be used in a formal ar-
gument. The problem of “choosing what to count” can be viewed as
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one incarnation of the well-known (and yet under-explored) prob-
lem of auxiliary variable synthesis.

This paper presents a strategy for automatically constructing
counting arguments for program verification. This strategy is out-
lined in Figure 1. The input to our algorithm is a program P and
a pre/postcondition specification ψpre/ψpost. The algorithm can be
viewed as a kind of language inference algorithm. The program P
is treated as a black box: we can sample traces from P , but we may
not inspect its internal structure (so effectively, we identify P with
a language of traces). The goal of our algorithm is to learn a count-
ing proof 〈A,ϕ〉 for P . A counting proof consists of a counting
automaton A, which determines a language of traces, and an anno-
tation ϕ, which is a proof that all traces in the language ofA satisfy
the specification ψpre/ψpost. If our algorithm can learn a counting
proof 〈A,ϕ〉 such that A recognizes all the traces from P , then P
is correct with respect to the specification ψpre/ψpost.

The algorithm in Figure 1 operates as follows. We start by (a)
constructing a counting proof 〈A,ϕ〉 for set of sample traces Tr .
We then (b) check if every program trace in P is recognized by
the counting automatonA. If the check succeeds, the algorithm has
learned a counting proof for P . If it fails, it produces a counterex-
ample τ (a program trace that is not recognized by A). We then (c)
check whether τ satisfies the specification ψpre/ψpost. If not, we are
done: τ is a counterexample which shows thatP is incorrect. If yes,
then (d) we add τ to the set of sample traces Tr , and repeat. Note
that in the first iteration (since initially Tr is empty) the language
of A is empty, so τ is any program trace.

Construct a counting proof hA,'i from Tr.Add ⌧ to Tr.

Does A accept
all traces of P?

yes

no

P is correct.P is incorrect.

(a)

(b)
(c)

(d)

Does ⌧ satisfy
 pre/ post ? counterexample ⌧

yes

no

Correctness specification  pre/ post

Tr = ;

Program P

Figure 1. Counting proof inference.

Before we explain counting proofs further, we remark on the
important distinction between discovery and synthesis of auxiliary
variables (and counters in particular). Counter discovery is essen-
tially a white-box technique: the goal is to expose existing coun-
ters in a program which are relevant for a proof (for example, dis-
covery of relevant program counters for Owicki-Gries proofs, as
in [23]). Counter synthesis is a black-box technique: the goal is
to discover new counters which are useful for a proof, which do
not necessarily correspond to anything in the program. This pa-
per addresses the latter problem. This is the motivation behind our



language-theoretic model of program correctness: by treating the
P as a language of traces, we are forced to synthesize counting ar-
guments from scratch. Our interest in counter synthesis stems from
the fact that the internal control structure of P may be very compli-
cated. Counter synthesis gives a strategy for constructing proofs for
P that avoids reasoning about its control and data simultaneously.

t++

assume(s >= t)

`0

`1

`error`2

s++

We will explain counting proofs and
our proof inference algorithm by way of
an example. Consider the program that
consists of an arbitrary number of threads
whose control flow graph is pictured to
the right. The (global) integer variables s
and t are initially 0. The task is to auto-
matically construct a proof that the error
location `error is unreachable (i.e., the program satisfies the spec-
ification s = t = 0/false). The task is complicated by the fact
that the seemingly simple program has a complex control structure,
since it must retain the control location for every thread (of which
there are unboundedly many).

We begin by sampling an error trace from this program, say

τ = t++; t++; s++; assume(s >= t)

A correctness proof for τ is a sequence of intermediate asser-
tions, shown below in Figure 2(a). This proof can be generalized
to a proof for a whole language of program traces. This is done
by constructing a finite automaton annotated with a Floyd/Hoare
proof (with one state for each distinct assertion) as pictured in Fig-
ure 2(b). It is easy to see that any trace accepted by this automaton
satisfies the given specification.

t++ s++{0 = t � s} {1 = t � s} {2 = t � s} {false}t++ assume(s>=t){1 = t � s}

s++

t++
t++

assume(s>=t)

false

1 = t � s 2 = t � s0 = t � s

(a)

(b)

Figure 2. Proof for the sample trace τ .

Unfortunately, this automaton does not accept every trace of the
program. We could continue by sampling a new trace, for instance

τ ′ = t++; t++; t++; s++; assume(s >= t),

but it is already clear that this strategy is doomed to fail. There is no
regular language which contains all the program traces and which
does not contain incorrect traces.

t++/inc

s++/dec
assume(s>=t)/tst

�
false
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 q0

q1 ⌃/nop

Our solution to this problem is
pictured to the right. This counting
proof consists of a counting automa-
ton A (a kind of restricted counter
machine) paired with an annotation
ϕ mapping the states of A to asser-
tions. The counting automaton A is
a finite automaton equipped with a
N-valued counter denoted k (initially
0). Each transition of the automaton is equipped with an action for
k, which may be inc (increment the counter), dec (decrement, but
block unless the counter is ≥ 1), tst (block unless the counter is
≥ 1), or nop (do nothing). The annotation ϕ associates with each
state of this automaton a formula over the program variables and
the counter variable k. This annotation is inductive in the sense that
each transition is associated with a valid Hoare triple: for example,

{k = t− s} t++; k++ {k = t− s}
{k = t− s} s++; k-- {k = t− s}
{k = t− s} assume(s>=t); assume(k≥1) {false}
A trace is accepted by A if it labels a path from q0 (the initial

state) to q1 (the final state), and none of the counter actions block.
Every trace which is accepted byA is associated with a sequence of
intermediate assertions which prove its correctness. This sequence
is obtained from the accepting run ofA by taking, for each position
in the run, the assertion at the current state with k replaced by its
current value. For example, the proof for the trace τ above is as
follows:

t++ s++

{0 = t � s} {1 = t � s} {2 = t � s} {false}

q0, k = 0 q0, k = 1 q0, k = 2
inc dec

t++ assume(s>=t)

inc
q0, k = 1

{1 = t � s}

tst
q1, k = 1

This counting proof works not only for the trace τ , but for
every trace of the program (that is, the proof is enough to show
that `error is unreachable). The key to this proof is the use of the
counter variable k, which intuitively counts the number of t++
statements in excess of s++ statements along a trace. Using this
auxiliary counter allows us to make a simple, succinct argument
for the correctness of this program.

There are two algorithmic problems associated with our proof
inference strategy: (1) how to construct a counting proof for a set of
sample traces (Figure 1 (a)), and (2) how to prove that a counting
proof recognizes all program traces (Figure 1 (b)).

The essential idea for our solution to (1) is to encode the proof
construction problem as an SMT query. Our encoding requires us
to specify the “size” of the candidate proof to find (e.g., the number
of states that may be used), and will always succeed if a proof of
that size exists. The main insight behind our proof construction
procedure is that by looking for small proofs, we can force an SMT
solver to synthesize nontrivial counting arguments. For example,
we can force an SMT solver to “discover” the need to count the
number of t++ statements in excess of s++ statements in the proof
above completely automatically, simply by asking for a proof with
2 states.

Our solution to (2) is based on the observation that counting
automata can be converted into a kind of labelled Petri nets. To
enable our language inclusion checking procedure we use control
flow nets as our program model. A control flow net is a hybrid of
a control flow graph and a Petri net. As in a control flow graph, a
transition is labelled with an imperative program statement (over
infinite data domains). As in a Petri net, tokens can be used to
model infinite control, such as (parametrized) concurrency. Once
we have modelled a program with a control flow net, problem (2)
reduces to a Petri net language inclusion problem which is known
to be decidable.

2. Motivating Example
We will formalize the verification problem for an industrially mo-
tivated example [46] through a control flow net and then present a
counting proof.

Figure 3(a) presents a simplified version of the bluetooth device
driver code (similar to the one that appears in [46]). The program
consists of an arbitrary number of work threads, which all exe-
cute Add, and one stop thread, which executes Stop. The global
variables are the integer variable pendingIo (initially 1), and the
Boolean flags stopped, stoppingEvent, and stoppingFlag,
(initially false).

We want to show that the statement assert(!stopped) never
fails, which means that no configuration is reachable where one
of the work threads is still working after the stop thread has ex-



assume(stopped)

Add:

atomic { // Enter

assume(!stoppingFlag)

pendingIo++

}

// do work here

assert (!stopped)

atomic { // Exit

pendingIo = pendingIo--

if (pendingIo == 0)

stoppingEvent = true

}
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atomic { // Close
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Figure 3. (a) Bluetooth device driver code. (b) Control flow net for Bluetooth. The initial marking is as shown (no token other than on a0

and on s0). The final markings are those where at least a3 has at least one token. (c) Bluetooth counting proof.

ecuted the statement stopped = true. The correctness relies on
the atomicity of the three statements Enter, Exit, and Close. The
bug detected in the version from [46] has been fixed by making
Enter atomic.

Control Flow Net. The control flow net in Figure 3(b) models
that an arbitrary number of work threads and one stop threads run
in parallel. To model the fact that unboundedly many work threads
can be active simultaneously, the initial Add transition Enter puts
a token back on a0, so that Enter remains enabled (just as if yet
another work thread was spawned). The number of tokens on ai
models the number of work threads in the corresponding control
location (there is always one token in Stop half of the net, since
there is only one stop thread). A final marking is any marking where
there is at least one token on the error location a3. Each sequence
of transitions (a firing sequence) of the net that reaches such a
final marking corresponds to a thread interleaving that violates the
assertion. The goal is to prove that the corresponding sequence of
statements is infeasible (has the postcondition false).

Counting Proof. The counting automaton in Figure 3(c) is a
finite state automaton augmented with a counter k. Transitions
are labelled by letters of the alphabet of program statements and
corresponding counter actions (the same letters are used to label
the transitions in the control flow net). The counting proof consists
of this automaton and the inductive annotation which maps the
automaton states to assertions (blue terms in the figure).

Intuitively, at any moment while reading a trace τ (i.e., a se-
quence of statements), the value of the counter k records by how
much the Enter transitions outnumber the Exit transitions (ini-
tially by 0).

The automaton states q0, . . . , q3 records what statements of
the stop thread have appeared so far, in sequence: none (recorded
by q0), stoppingFlag = true (transition from q0 into q1),
Close (transition from q1 into q2), assume(stoppingEvent)
(transition from q2 into q3).

The automaton state q4 is reached if: (1) the statement
assume(stopped) of the work thread has appeared, or (2) the
statement Enter of the work thread has appeared after the state-
ment stoppingFlag = true of the stop thread has appeared.

It is easy to see that the annotation is inductive. Initially, the
flags stopped, stoppingEvent, and stoppingFlag have the
value false, pendingIo is 1, and k is 0, and thus, the assertion
for the initial state q0 is satisfied. One can check that for every tran-
sition, the corresponding Hoare triple holds.

The check of the trace inclusion between a control flow net and
a counter automaton is decidable (as we will show in Section 6).
To obtain an intuition why the inclusion here holds, consider the
(informal) invariants: s0 = q0, s1 = q1, s2 = q2, s3 + s4 = q3,
and a1 + a2 = k.

The annotation of the final state q4 with the assertion false
means that every trace accepted by the counter automaton has post-
condition false. Since every trace of the control flow net is accepted
by the counter automaton, this means that the execution of the
statement assume(stopped) is never feasible, i.e., the statement
assert(!stopped) never fails, which is what we wanted to show.

3. Proofs That Count
One of the key contributions of this paper is a new formalism for
proving program correctness, which we call counting proofs. A
counting proof consists of a counting automaton and an inductive
annotation. The automaton defines a set of traces and determines
what to count (by associating counter actions to transitions in the
automaton). The inductive annotation is a “correctness proof” for
the counting automaton, which shows that every trace accepted by
the automaton satisfies a given specification. Thus, we may prove
the correctness of a program P by exhibiting a counting proof such
that all traces of P belong to the counting automaton associated
with the proof. In this section, we give a formal definition of our
notion of counting proof.

Preliminaries
First, we define some terminology for our program model. We fix
a (possibly infinite) set S of memory states (usually defined as val-
uations assigning values to a finite set of global and local vari-
ables), a set Σ of program statements, and a semantic function
J·K : Σ → 2S×S which interprets each program statement as a re-
lation between memory states. A trace is a sequence of statements



(i.e., a word in Σ∗). Intuitively, we will think of a program as a set
of traces; this allows us to abstract away from the control structure
of the program, which may be complicated.

We fix a set of program assertions, which is denoted Φ, as well
as an entailment relation |= ⊆ S × Φ. For s ∈ S and ϕ ∈ Φ,
s |= ϕ indicates that the assertion ϕ holds in state s. A (pre/post)
specification for P consists of a pair ψpre/ψpost ∈ Φ indicating a
precondition and postcondition. In the following, it will frequently
be convenient to consider program assertions over an extended
vocabulary that includes a fresh set of N-sorted variable symbols
V (depending on the application at hand, such a variable symbol
may be interpreted as the values of some counter variables, or as
the number of tokens on a place of a Petri net (Section 7)). The set
of such extended program assertions will be denoted ΦV .

For a statement σ ∈ Σ and assertions ϕ,ϕ′, we use the typical
Hoare notation {ϕ} σ {ϕ′} to denote that for every s, s′ such that
s |= ϕ and 〈s, s′〉 ∈ JσK, we have s′ |= ϕ′. We extend this notation
to sequences of statements in the obvious way.

Counting proofs
We may now introduce the definition of counting proofs. We start
by defining counting automata, which are finite automata aug-
mented with zero or more counter variables which can be incre-
mented, decremented, and tested.

Definition 3.1 (Counting automaton) A (deterministic) counting
automaton is a 6-tuple A = 〈Q,n, q0,k0, δ,Ω〉 where Q is a
finite set of states, n ∈ N is the dimension of the automaton
(i.e., the number of counters used by the automaton), q0 ∈ Q is
an initial state, k0 ∈ Nn is an initial vector, Ω : Q → 2Nn

is a mapping that takes each state to an upwards closed1 set of
final (accepting) vectors, and δ : Q × Σ ⇀ Q × Actn is a
partial function which maps (state, program statement) pairs to
pairs consisting of a successor state and an action for each counter,
where Act = {inc, dec, nop, tst}. Note that since δ is partial,
not every state is associated with a transition for each program
statement. ⌟

Remark 3.2 A special case of particular interest is when
the acceptance condition of a counting automaton A =
〈Q,n, q0,k0, δ,Ω〉 is specified by a set of final states F ⊆ Q
(rather than a mapping Ω from states to upwards-closed sets of
final vectors). This case is accommodated by setting Ω(q) = Nn
for every final state q ∈ F and Ω(q′) = ∅ for every non-final state
q′ /∈ F . This special case is used frequently in this paper, and in
diagrams of counting automata we will use double circles to denote
final states.

We also remark that nondeterministic finite automata are a spe-
cial case of counting automata, where the dimension of the count-
ing automaton is 0. Note that N0 is a singleton set, and so for any
state q, the only choices for Ω(q) are N0 and ∅ (i.e., 0-dimensional
counting automata always fall into the case described above, where
the acceptance condition is determined by a set of final states). ⌟

We now introduce some additional terminology for counting au-
tomata. Let A = 〈Q,n, q0,k0, δ,Ω〉 be a counting automaton. A
configuration of A consists of a pair 〈q,k〉, where q ∈ Q is a state
and k ∈ Nn is a valuation for each counter. The initial configu-
ration is 〈q0,k0〉, and any configuration 〈q,k〉 where k ∈ Ω(q)
is a final configuration. We lift δ to a partial transition function on
configurations as follows:

δ(〈q, (k1, k2, ..., kn)〉, c) , 〈q′, (k′1, k′2, ..., k′n)〉

1 Recall that a set of vectors V is upwards closed if for all v ∈ V and all
v′ such that v ≤ v′, we have v′ ∈ V .

if δ(q, (k1, k2, ..., kn)) = 〈q′, (α1, α2, ..., αn)〉
and each k′i is defined as

k′i ,



ki + 1 if αi = inc

ki − 1 if αi = dec ∧ ki > 0

ki if αi = nop

ki if αi = tst ∧ ki > 0

undefined otherwise

We lift δ to a partial transition function δ∗ on statement se-
quences in the obvious way. A trace w ∈ Σ∗ is accepted by A
if δ∗(〈q0,k0〉, w) is a final configuration. The set of all traces ac-
cepted by A is denoted L(A).

We may now move on to our definition of an inductive annota-
tion. In essence, an inductive annotation is a Floyd/Hoare proof.

Definition 3.3 (Annotation) Let A = 〈Q,n, q0,k0, δ,Ω〉 be a
counting automaton. Let K = {k1, ..., kn} be a set of distinguished
N-sorted variable symbols. An annotation is a map ϕ : Q → ΦK.
We say ϕ is inductive if for all q, q′ ∈ Q, σ ∈ Σ, and k,k′ ∈ Nn
such that δ(〈q,k〉, σ) = 〈q′,k′〉 the Hoare triple

{ϕ(q)[k]} σ {ϕ(q′)[k′]}
holds (where for an assertion ψ and vector k = (k1, ..., kn) ∈ Nn,
ψ[k] denotes the formula obtained by replacing each ki with the
corresponding element ki of the vector k). ⌟

Finally, we may define a counting proof as a pair consisting of
a counting automaton and an inductive annotation for it.

Definition 3.4 (Counting proof) A counting proof is a pair 〈A,ϕ〉
consisting of a counting automatonA = 〈Q,n, q0,k0, δ,Ω〉 and an
inductive annotation ϕ for A.

We say that 〈A,ϕ〉 satisfies a given specification ψpre/ψpost if
the following two conditions hold:

(i) ψpre |= ϕ(q0)[k0]
(ii) For all q ∈ Q and all kf ∈ Ω(q), we have ϕ(q)[kf ] |= ψpost.

⌟

We now justify using counting proofs as proof objects. Recall
that our use of counting proofs is the following (informal) proof
rule: Suppose thatP is a program, 〈A,ϕ〉 is a counting proof which
satisfies the specification ψpre/ψpost, and that every trace of P is
accepted by A. Then P satisfies the specification ψpre/ψpost. For
this proof rule to be sound, we must show that every trace in L(A)
satisfies the specification ψpre/ψpost. With this goal in mind, we
first prove a lemma.

Lemma 3.5 Let A = 〈Q,n, q0,k0, δ,Ω〉 be a counting automa-
ton, and let ϕ be an inductive annotation for A. Let τ ∈ Σ∗. If
q, q′,k,k′ are such that δ∗(〈q,k〉, τ) = 〈q′,k′〉, then the follow-
ing Hoare triple holds:

{ϕ(q)[k]} τ {ϕ(q′)[k′]}
⌟

Proof. By induction on τ . The base case (τ is empty) is trivial.
The induction step follows from Definition 3.3 and the sequential
composition rule for Hoare logic.

We may now state the main result of this section: a soundness
theorem which justifies our proof rule.

Theorem 3.6 Let 〈A,ϕ〉 be a counting proof with A =
〈Q,n, q0,k0, δ,Ω〉, and let ψpre and ψpost be assertions such that



〈A,ϕ〉 satisfies ψpre/ψpost. Then for any τ ∈ L(A), τ satisfies the
Hoare triple {ψpre} τ {ψpost}. ⌟

Proof. Follows from Lemma 3.5, Definition 3.4, the definition of
L(A), and the consequence rule of Hoare logic.

4. Constructing Counting Proofs
We now consider the problem of automatically synthesizing a
counting proof which certifies that a given (finite) set of traces
Tr ⊆ Σ∗ is correct with respect to a given specification ψpre/ψpost.
Our algorithm for constructing counting proofs is divided into
two parts. The first part is a decision procedure which determines
whether a counting proof of a given “size” exists for a given set
of traces and specification (here “size” should be understood infor-
mally). The second part is a search procedure, which repeatedly
calls the decision procedure on different candidate sizes until a
proof is found, and attempts to find the smallest proof possible.
We start by describing the decision procedure, and then discuss the
search procedure.

The idea behind our proof construction procedure is to encode
the proof construction problem as a formula Ψ and use an off-the-
shelf SMT solver to find a model for Ψ. From any such model, we
may extract a counting proof 〈A,ϕ〉 which satisfies ψpre/ψpost and
such that Tr ⊆ L(A).

Since the goal is to develop a decision procedure for proof
construction, we must limit the program statement language and
the language of program assertions to a decidable logic. A convex
linear real formula is a conjunction of a finite number of linear
inequalities over a set of real variables with real coefficients. The
number of inequalities appearing in a convex linear real formula ψ
will be called the size of ψ, and denoted |ψ|.

In this section we fix a set of traces Tr and a pre/post specifi-
cation ψpre/ψpost. We will assume that ψpre and ψpost are convex
linear real formulae, and that every program statement can be ex-
pressed as a convex linear real formula. For simplicity, we will also
assume that Tr consists of a single trace τ = σ1· · ·σ|τ | (the gener-
alization to multiple traces is straightforward).

Let 〈A,ϕ〉 be a counting proof, with A = 〈Q,n, q0,k0, δ,Ω〉.
The “size” of 〈A,ϕ〉 is determined by four numbers:

1. The number of states, #States(A,ϕ) , |Q|
2. The dimension of A, dim(A,ϕ) , n

3. The size of the assertions used in the annotation ϕ,

#Atoms(A,ϕ) ,
∑
q∈Q

|ϕ(q)|

4. The number of minimal final vectors:

#Min(A,ϕ) ,
∑
q∈Q

|{v : @v′ ∈ Ω(q).v′ < v}|

Our decision procedure will take four additional parameters as
input Q,N,K,M ∈ N, corresponding (in order) to the four com-
ponents of counting proof size described above. The idea behind
this algorithm is to construct a QF UFNRA2 formula which is sat-
isfiable iff there exists a counting proof 〈A,ϕ〉 such that A accepts
τ , A satisfies ψpre/ψpost, #States(A,ϕ) = Q, dim(A,ϕ) = N ,
#Assert(A,ϕ) = K, and #Min(A,ϕ) = M .

For presentation purposes, we assume that N = M = 1
and that we are searching for a proof with K = Q with one
atom per state (but that Q is arbitrary). The generalization of the

2 Quantifier-free non-linear real arithmetic formulae with uninterpreted
function symbols

construction to arbitrary values of the parameters N , M , and K
is straightforward. The construction of the QF UFNRA formula
follows.

Automaton constraints Without loss of generality, we may con-
struct a counting proof with state spaceQ = {1, ..., Q}. Recall that
the transition function of a 1-dimensional counting automaton over
the state space Q is a partial function

δ : Q× Σ ⇀ Q× Act,

where Act = {inc, dec, nop, tst} is a set of counter actions. For
our encoding, we introduce for each σ ∈ Σ(τ) , {σ1, ..., σ|τ |} a
pair of uninterpreted function symbols

δσ : Q→ Q

ασ : Q→ Act

We now encode the constraint that the counting automaton
accepts the trace τ . We introduce a set of integer variables
q0, ..., q|τ |, k0, ..., k|τ |; the interpretation of these variables is that,
after reading the prefix σ1σ2· · ·σi of the trace τ , the state of the
counter automaton is qi, and the value of the counter is ki (q0 and
k0 represent the initial state and initial value of the counter). This
interpretation is encoded by the following constraints:

Ψδ-state ,
|τ |∧
i=1

δσi(qi−1) = qi

Ψδ-counter , k0 ≥ 0 ∧
|τ |∧
i=1

ki = ki−1 + incr(ασi(qi−1))

where

incr(α) ,


1 if α = inc

−1 if α = dec

0 otherwise
The preceding constraints ensure that τ labels a path through

the counting automaton and that at each step along this path ki
is updated appropriately. Another constraint is required for τ to
be accepted by the counting automaton, which is that none of the
transitions that label the accepting path may block (recall that the
dec and tst counter actions block when the counter is 0). This non-
blocking condition is enforced by the following constraint:

Ψδ-block ,
|τ |∧
i=1

(
ασi(qi−1) ∈ {dec, tst} ⇒ ki−1 ≥ 1

)
The last requirement to ensure that τ is accepted by the counting

automaton is that we must synthesize an upwards closed set of final
vectors for the state q|τ |. For the case of 1-dimensional counting
automata, an upwards closed set is completely determined by a
single natural number, which is the lower bound on the set. Thus,
we introduce an integer variable kfinal and create a constraint that
the value of the counter after reading τ is greater than or equal to
kfinal:

Ψaccept , kfinal ≤ k|τ |
Collecting these constraints, we have

ΨA , Ψδ-state ∧Ψδ-counter ∧Ψδ-block ∧Ψaccept

Models of ΨA correspond to Q-state, 1-dimensional counting
automata which accepts the trace τ .

Annotation constraints We now consider the constraints used to
construct the inductive annotation of the counting automaton. We
use a constraint-based technique to synthesize linear invariants, as
described in [15].



Fix a set of program variables X = {x1, ..., x|X|}. For each
program variable xi, we introduce an uninterpreted function sym-
bol Cxi of sort Q → R. We also introduce two additional uninter-
preted function symbols Ck, C1 of sort Q → R. For a given state
q ∈ Q, Cxi(q) will be the coefficient of xi, Ck(q) will be the co-
efficient of k, C1(q) will be the constant coefficient in the linear
inequality assigned to q. That is, for q ∈ Q, the annotation at q will
be:

inv(q) ,
( |X|∑
i=1

Cxi(q) · xi
)

+ Ck(q) · k + C1(q) ≤ 0

For any statement σ ∈ Σ, we use tf(σ) to denote the transition
formula of σ, which is a formula over the variables x1, ..., x|X|
and their “primed” copies x′1, ..., x′|X| that represents the meaning
of the statement σ. For a counter machine action α ∈ Act, we use
tf(α) to denote the transition formula corresponding to α, defined
below as:

tf(α) ,


k′ = k + 1 if α = inc

k ≥ 1 ∧ k′ = k− 1 if α = dec

k ≥ 1 ∧ k′ = k if α = tst

k′ = k if α = nop

We may now define the consecution constraints, which ensure
that the annotation is inductive. We define a consecution constraint
for each i ∈ {1, ..., |τ |} as follows:

Ψi , (∀k, k′, X,X ′)(inv(qi−1)∧tf(σi)∧tf(ασi(qi−1))⇒ inv(qi)
′)

where inv(qi)
′ denotes the formula obtained from inv(qi) by re-

placing each variable xi with its primed copy x′i and k with k′.
The last annotation constraints ensure that the counting proof

satisfies the specification ψpre/ψpost:

Ψinit , (∀k, X)(ψpre ⇒ inv(q0))

Ψfinal , (∀k, X)(inv(q|τ |) ∧ k ≥ kfinal ⇒ ψpost)

The annotation constraints defined in this section all feature uni-
versal quantification. However, all the formulae defined in this sec-
tion belong to a class of formulae for which the universal quanti-
fiers can be replaced by existential quantifiers by applying Farkas’
lemma (see [15] for details). We will use Ψ∃i , Ψ∃init and Ψ∃final to
denote the corresponding transformed formulae.

Finally, we collect the annotation constraints into a single for-
mula Ψϕ:

Ψϕ , Ψ∃init ∧Ψ∃final ∧
( |τ |∧
i=1

Ψ∃i

)
Counting proof extraction We conjoin the automaton and anno-
tation constraints to arrive at a formula Ψ whose models correspond
to counting proofs:

Ψ , ΨA ∧Ψϕ

Suppose that M is a model of Ψ. For a term term, we use
termM to denote the interpretation of term in the model M. A
counting proof can be constructed as follows:

Q , {1, ..., Q}
q0 , qM0

k0 , kM0

Ω , λq.

{
{k : k ≥ kfinal} if q = qMn+1

∅ otherwise

δ , λ〈q, σ〉.

{
〈δσ(q)M, ασ(q)M〉 if ∃i.q = qi ∧ σ = σi−1

undefined otherwise

ϕ , λq.
( |X|∑
i=1

Cxi(q)
M · xi

)
+ Ck(q)

M · k + C1(q)M ≤ 0

The following proposition states that our encoding is, in a sense,
complete.

Proposition 4.1 Let Tr be a finite set of traces (such that
each command is expressible as a convex linear real formula)
and let ψpre/ψpost be a (convex linear real) specification. Let
N,Q,K,M ∈ N. The problem of determining whether there
exists a counting proof 〈A,ϕ〉 that satisfies the specification
ψpre/ψpost, such that Tr ⊆ L(A), and such that #States(A,ϕ) =
Q, dim(A,ϕ) = N , #Assert(A,ϕ) = K, and #Min(A,ϕ) =
M , is decidable. ⌟

4.1 Searching for Small Counting Proofs
The decision procedure presented in the preceding section suggests
a simple algorithm for constructing a counting proof. Suppose we
are given a set of traces Tr and a specification ψpre/ψpost. First, we
check whether some τ ∈ Tr violates the specification ψpre/ψpost

(this can be accomplished with an SMT query). If such a τ exists,
we are done: no proof exists. Otherwise, enumerate the space of
parameters 〈N,Q,K,M〉 ∈ N4, applying the decision procedure
described in the previous section until a counting proof is found.

The termination of this simple algorithm relies on the following
observation:

Observation 4.2 Let Tr be a set of traces and let ψpre/ψpost

be a specification such that for each τ ∈ Tr , {ψpre} τ {ψpost}.
Then there is a counting proof 〈A,ϕ〉 which satisfies ψpre/ψpost

and which accepts every trace in Tr. ⌟

The intuition behind this observation is that we can always find
a counting proof where the counting automaton is 0-dimensional
(i.e., a counting automaton that does not use counters) and shaped
like a prefix tree. The existence of an inductive annotation for such
an automaton is a consequence of Farkas’ lemma.

While this observation is enough to prove termination of our
proof synthesis procedure, it is not very satisfying: it says that
in the worst case, we can always construct a counting proof that
does not, in fact, count. The key insight behind our counting proof
synthesis procedure is that we can constrain the parameters given
to the decision problem to force an SMT solver to discover a non-
trivial counting argument. For example, consider the sample trace
τ from Section 1. Setting Q = 2,K = 2, N = M = 1, we can
force the SMT to synthesize a non-trivial counter, simply because
there is no 0-dimensional counting proof for these traces that only
uses 2 states (so, by virtue of the fact that our decision procedure
will find a 2-state proof if one exists, it must find a proof that uses
a non-trivial counting argument).

In the remainder of this section, we present a refinement on the
simple algorithm discussed above, which fixes a particular way of
enumerating the parameter space. The intuition behind this refine-
ment is that we want to synthesize a counting proof that minimizes
the sum of the number of states (Q) and the number of assertions
(K).3 Our aim in presenting this algorithm is not to present a practi-
cal proof construction procedure, but rather a theoretical algorithm
capable of synthesizing proofs that are (in a sense) optimal. In prac-
tice, one would expect a heuristic-based method for exploring the

3 This algorithm can be adapted to minimize any objective function which
is strictly increasing in Q and K.



parameter space (which cannot necessarily guarantee optimality)
would be more effective.

Observation 4.2 yields a coarse upper bound on the sum of the
number of states and atoms used in a counting proof for a given
set of traces Tr of 2 ·

∑
τ∈Tr |τ |. Since we have an upper bound

on Q + K, the parameter space Q,K ∈ N × N can be searched
efficiently using binary search. The termination of this algorithm
relies on the following proposition:

Proposition 4.3 Let Tr be a finite set of traces, ψpre/ψpost be a
specification, and Z ∈ N. The problem of determining whether
there exists a counting proof 〈A,ϕ〉 that satisfies ψpre/ψpost such
that Tr ⊆ L(A), and such that #Atoms(A,ϕ)+#States(A,ϕ) =
Z is decidable. ⌟

This proposition is not trivial, because even though fixing the
size of #Atoms(A,ϕ) + #States(A,ϕ) implies finitely many
choices forQ andK, the space for the remaining parametersN and
M is infinite and cannot be searched exhaustively. The following
two lemmas imply that we may place a finite upper bound on N
and M once Tr and Q are fixed.

Lemma 4.4 Let A = 〈Q,n, q0,k0, δ,Ω〉 be a counting automa-
ton, and let Tr be a finite set of traces which are accepted by A.
There exists a mapping Ω′ : Q→ 2Nn

such that the counting proof
〈A′, ϕ〉 with A′ = 〈Q,n, q0,k0, δ,Ω

′〉 satisfies

#Min(A′, ϕ) ≤ |Tr |
and Tr ⊆ L(A′). ⌟

Proof. Intuitively, we define Ω′ to be the upwards closure of the
set of configurations that result from reading the traces in Tr .
Formally, for any q ∈ Q, define

Ω′(q) , {k′ ∈ Nn : (∃τ ∈ Tr, ∃k ∈ Nn)(k ≤ k′∧
δ∗(〈q0,k0〉, τ) = 〈q,k〉)}

Lemma 4.5 Let 〈ϕ,A〉 be a counting proof, with A =
〈Q,n, q0,k0, δ,Ω〉. There exists a counting proof 〈ϕ′, A′〉 such
that A′ recognizes the same language as A, and A′ has dimension
at most 3|dom(δ)| (where |dom(δ)| indicates the cardinality of the
domain of the partial transition function δ). ⌟

Proof. Suppose that n > 3|dom(δ)|. By the pigeonhole principle,
there exists distinct counters s, t ∈ {1, ..., n} which agree on
all their actions. That is, for any q ∈ Q, σ ∈ Σ, if δ(q, σ) =
(α1, ..., αn), then αs = αt. Without loss of generality, we can
assume that s = 1 and t = 2.

Letting (k1, ..., kn) = k0, we define ∆ , k1−k2. Without loss
of generality, we may assume that ∆ ≥ 0. We construct an (n−1)-
dimensional counting automaton A′ = 〈Q,n − 1, q0,k

′
0, δ
′,Ω′〉

and an inductive annotation ϕ′ as follows:

• k′0 , (k2, ..., kn), where (k1, ..., kn) = k0

• For any q, σ such that δ(q, σ) = 〈q′, (α1, ..., αn)〉, we define

δ′(q, σ) , 〈q′, (α2, ..., αn)〉
• For any q ∈ Q, we define

Ω′(q) , {(min{k1−∆, k2}, k3, ..., kn) : (k1, ..., kn) ∈ Ω(q)}
• For any q ∈ Q, we define

ϕ′(q) , (∃k1)(k2 −∆ = k1 ∧ ϕ(q))

(the quantifier (∃k1) can be eliminated to yield a convex linear
real formula).

The proof of Proposition 4.3 follows easily from the preceding
two lemmata.

We conclude this section with an algorithm summarizing the
search procedure described above. In this algorithm, we use con-
straints(...) to denote the formula constructed in the previous sec-
tion, and extract-proof)(Ψ) to denote the counting proof extracted
from a model of a formula Ψ.

Input: Tr , ψpre, ψpost such that for all τ ∈ Tr ,
{ψpre} τ {ψpost}

Output: A counting proof 〈A,ϕ〉 which satisfies ψpre/ψpost

and with Tr ⊆ L(A)
min← 2;
max← 2 ·

∑
τ∈|Tr |τ |;

M = |Tr |;
/* Binary search for minimal proof */

while max 6= min do
mid← (max+min)/2;
Q← mid− 1;
K ← 1;
N ← 3|Σ(Tr)|·Q; // Σ(Tr) =

⋃
{Σ(τ) : τ ∈ Tr}

Ψ← constraints(Tr, ψpre, ψpost, N,Q,K,M);
/* Search for proof of size Q+K */

while Ψ is unsatisfiable and Q ≥ 1 do
(K,Q)← (K + 1, Q− 1);
N ← 3|Σ(Tr)|·Q;
Ψ← constraints(Tr, ψpre, ψpost, N,Q,K,M);

end
if Ψ is satisfiable then
〈A,ϕ〉 ← extract-proof(Ψ);
max← mid;

end
min← mid+ 1;

end
return 〈A,ϕ〉

Algorithm 1: Counting proof construction

5. Control Flow Nets
In the preceding, we have considered the control structure of a
program to be a black box. In order to implement the algorithm
outlined in Figure 1, we need an effective procedure for checking
whether a given counting automaton accepts all the traces of a
given program. In this section, we introduce control flow nets, an
expressive program model that features infinite control, but for
which the inclusion check is decidable (Section 6).

We begin by introducing some notions from Petri net theory,
which form the basis of control flow nets.

Definition 5.1 (Petri net structure) A Petri net structure is a tuple
N = 〈P, T, E〉, where P is a finite set of places, T is a finite set of
transitions, and E ⊆ (P × T ) ∪ (T × P ) is an incidence relation
connecting places to transitions and vice-versa. ⌟

We now recall some standard definitions for Petri nets. Let
N = 〈P, T, E〉 be a Petri net structure. Given a transition t ∈ T ,
we define its pre-set, •t, and post-set, t•, as the set of places with
incoming/outgoing arcs to t:

•t , {p : 〈p, t〉 ∈ E} t• , {p : 〈t, p〉 ∈ E}
A marking of N is a map m : P → N. Given a marking m and

a transition t ∈ T , we say that t is enabled in m if for all p ∈ •t,



m(p) ≥ 1. We write m t→ m′ to denote that t is enabled in m and
that for all p,

m′(p) = m(p)− |{p} ∩ •t|+ |{p} ∩ t•|
For markings m,m′ we write m � m′ if for all p, m(p) ≤

m′(p). A set of markings M is upwards closed if for all m ∈ M
and all m′ such that m � m′, we have m′ ∈ M . Any upwards
closed set of markings can be represented by its set of minimal
elements, which is always finite.

We may now introduce our program model, control flow nets.
Control flow nets are programs which have Petri nets as control
structures. We may think of them as an infinite analogue of control
flow graphs: just as a control flow graph is a finite automaton la-
belled by program statements, a control flow net is a Petri net struc-
ture with transitions labelled by program statements. A slightly un-
usual feature (although not without precedent [25]) is that we also
include acceptance conditions for control flow nets – this enables
us to view control flow nets as language recognition devices. For-
mally,

Definition 5.2 (Control flow net) A control flow net is a tuple
P = 〈P, T, E , `,m0, F 〉, where 〈P, T, E〉 is a Petri net structure,
` : T → Σ is an injective map which labels transitions with
program statements, m0 is an initial marking and F is an upwards
closed set of final markings. ⌟

Control flow nets are a very expressive program model. For
example, Figure 3(b) depicts a control flow net for a concurrent
program with arbitrarily many threads. With their foundations on
Petri nets, modelling concurrency is a particularly strong suit for
control flow nets, but they can also be useful for representing other
control features. For example, Figure 4 depicts a control flow net
where tokens are used to count the number of stack frames in a
recursive program.

In view of our black-box strategy for counting proof synthesis,
we conclude this section with a definition of the traces and correct-
ness of a control flow net.

Definition 5.3 (Correctness) A trace of a control flow net P =
〈P, T, E , `,m0, F 〉 is a sequence of statements τ = σ1...σn ∈ Σ∗

such that there exists transitions t1, ..., tn where `(t1) = σ1, . . . ,
`(tn) = σn, and markings m1, ...,mn where mn ∈ F such that

m0
t1→ m1

t1→· · · tn→ mn .

The set of all traces of P is denoted L(P). Given a pre/postcon-
dition pair ψpre/ψpost, the control flow net P is correct if all of its
traces are correct, i.e., if the Hoare triple {ψpre} τ {ψpost} holds
for all τ ∈ L(P). ⌟

6. Proof Checking
A counting proof 〈A,ϕ〉 which satisfies a specification ψpre/ψpost

represents a set of correct behaviours which are correct with respect
to that specification. If every trace of a given program P is repre-
sented by A, this implies that P is correct. Thus, in order to check
a counting proof, we must check the inclusion of the language of
traces of a control flow net P inside the language of a counting au-
tomaton. In this section, we prove that this check is decidable and
give a characterization of the computational complexity of proof
checking.

First, we state our decidability result. The essence of the proof
of this theorem is that counting proof checking can be reduced to
Petri net reachability, which is known to be decidable [35].

Theorem 6.1 Let P = 〈P, T, E , `,m0, F 〉 be a control flow net
and let A = 〈Q,n, q0,k0, δ,Ω〉 be a counting automaton. The
problem of checking the inclusion L(P) ⊆ L(A) is decidable.

This result still holds even if we relax the accepting sets for
control flow nets and/or counting automata to be semi-linear rather
than upwards closed. ⌟

Proof. The proof proceeds by reduction to an inclusion problem
for Petri net languages, a problem known to be reducible to Petri
net reachability. It is sufficient to show that for any counting au-
tomaton we may construct a control flow net which recognizes the
same language, which is a deterministic Petri net (by construction).
From the point of view of language recognition, control flow nets
are equivalent to L-type labelled Petri nets.4 In [42] it is show that
deterministic L-type Petri net languages are closed under compli-
ment, and in [26], it is shown that the problem of checking the
inclusion of an L-type Petri net language in a deterministic L-type
Petri net language is decidable.

An example illustrating the construction of a control flow net
from a counting automaton in the figure below, which depicts
the control flow net associated with the counting automaton for
the example in Section 1. Note that in this picture, the transition
labelled Σ represents three (parallel) transitions, one for each letter
in Σ = {t++, s++, assume(s >= t)}. In the rest of this proof, we
make the construction formal.

t++ s++assume(s >= t)

q0

k
q1

⌃

Let A = 〈Q,n, q0,k0, δ,Ω〉 be a counting automaton. We
define a control flow net PA = 〈P, T, E , `,m0, F 〉 as follows. The
places of PA are defined to be the disjoint union of the set of states
of A and a set of n distinguished “counter” places p1, ..., pn:

P = Q+ {p1, ..., pn}
The transitions correspond to points in the domain of δ:

T = {〈q, σ〉 ∈ Q× Σ : δ(q, σ) is defined}
We define the incidence relation E indirectly, by defining the

pre-set and post-set of every transition. Let 〈q, σ〉 ∈ T and suppose
that δ(q, σ) = 〈q′, (α1, ..., αn)〉. Then we may define:

•〈q, σ〉 = {q} ∪ {pi : αi = dec ∨ αi = tst}

〈q, σ〉• = {q′} ∪ {pi : αi = inc ∨ αi = tst}
We define a map ζ from configurations ofA to markings of PA.

For a given configuration 〈q, (k1, ..., kn)〉, we define

ζ(q, (k1, ..., kn)) = λp.


1 if p = q

ki if p = pi
0 otherwise

We define the initial marking m0 to be ζ(q0,k0) and we define
the (upwards closed) set of final markings F by taking the image of
the accepting configurations of A under ζ. The labelling function `
is defined by `(q, σ) = σ.

It is easy to prove that this mapping ζ from configurations of
A to markings of PA is an isomorphism when restricted to the
reachable configurations of A and the reachable markings of PA.
Lastly, it is clear to see that δ(q,k) = 〈q′,k′〉 iff ζ(q,k) →
ζ(q′,k′), which completes the proof of equivalence.

4 There is a slight technical difference: the labelling function for labelled
Petri nets is not required to be injective. We will, in fact, ignore the injec-
tivity restriction in our construction.



6.1 Complexity of Proof Checking
The decidability of this language inclusion problem is of fun-
damental importance, because it justifies calling counting proofs
“proofs.” A desirable result would be that checking proofs is not
only decidable but efficiently so. Theorem 6.1 relies on a reduction
to Petri net reachability. This problem is at least EXPSPACE-hard,
but the best known upper bound for its complexity is NONELE-
MENTARY. So, a natural question is: can we do better than reduc-
ing to Petri net reachability? The following theorem states that we
can not in general: Petri net reachability and counting proof check-
ing are equivalent from the perspective of computational complex-
ity.

Theorem 6.2 The Petri net reachability problem is polytime inter-
reducible with the counting proof checking problem. ⌟

Proof. One direction of the proof is given in the proof of Theo-
rem 6.1 (it is easy to prove that the reduction to reachability is
polytime). For the other direction, we give a polytime reduction
from the single-place zero-reachability problem to proof checking.
This implies the result due to Lemma 4.1 in [24]. In fact, [24] states
a slightly weaker result: that reachability is recursively reducible to
single-place zero-reachability. However, it is easy to see that the
reduction from the proof of [24] is polytime.

Consider a Petri net G = 〈P, T, E〉, a marking m of G, and a
place p ∈ P . Given an initial marking m0, we say that a place p is
zero-reachable if there exists a markingm′ which is reachable from
m0 and such that m′(p) = 0. We reduce the problem of checking
zero-reachability of p to counting proof checking by constructing a
control flow net P and a counting automatonA such thatA accepts
all the traces of P iff p is zero-reachable.

We suppose that zr is a new transition which does not belong to
T . We take P = 〈P, T ′, E ,m0, `, F 〉, where T ′ = T ∪ {zr}, ` is
an arbitrary injective labelling, and F is the set of all markings (P ,
E , andm are as above). Intuitively, P is justG extended with a “do
nothing” transition zr, which can always fire.

We define a counting automatonA = 〈{q}, n, q,k0, δ,Ω〉 from
G as follows. Define n , |P |, and let place : {1, ..., n} → P be
a bijection. The initial vector is defined to be k0 , (k1, ..., kn),
where for each i,

ki = m0(place(i))
The transition function is defined, for any c ∈ Σ such that there is
some t ∈ T with `(t) = c, by

δ(q, c) , 〈q, (α1, ..., αi)〉
where for each i

αi =


tst if place(i) ∈ •t ∩ t•

dec if place(i) ∈ •t
inc if place(i) ∈ t•

nop otherwise

We also add another transition to δ for the distinguished “do noth-
ing” transition zr, except that instead of doing nothing, we check
that p is non-zero: with one exception: we define

δ(q, `(zr)) , 〈q, (α1, ..., αn)〉

αi =

{
tst if place(i) = p

nop otherwise

Last, we define Ω by

Ω(q) , {(k1, ..., kn) ∈ Nn : ∃m ∈ F.∀i.ki = m(place(i))}.
We define an annotation ϕ for A that is trivially inductive by

taking ϕ(q) , true. We have that 〈ϕ,A〉 is a counting proof.

It is easy to see that the control flow net P and the counting
automatonA act exactly the same, except at markings where P can
fire zr, butA cannot. Such a marking is reachable fromm (inP and
A) iff p is zero reachable m (in G), thus completing the proof.

While the decision problem for proof checking has high com-
putational complexity, from the standpoint of certifying the correct-
ness of a program we may be satisfied with a faster semi-decision
procedure. For example, acceleration has proved to be an effective
technique in practice for Petri net reachability [7]. We also note a
recent result by Leroux [35]: if a given marking of a Petri net is
not reachable, there exists a Presburger-definable inductive invari-
ant for the Petri net. This allows for the possibility of using well-
known reachability algorithms for (sequential) integer programs
(e.g., [12, 39]) to be used for counting proof checking.

7. Completeness
We now show the (relative) completeness of our counting proof
method, when programs are modelled as control flow nets. First,
we observe that proving that a control flow net P satisfies a given
specification ψpre/ψpost is equivalent to proving that a particular
flattened program P[ satisfies ψpre/ψpost. The flattened program
is a sequential program with extra natural-typed variables which
are used to represent a marking. We then show that any inductive
assertion for P[ can be (trivially) transformed into a counting
proof. The relative completeness of counting proofs thus follows
from the relative completeness of the inductive assertion method.
We now formalize this argument.

Let P = 〈P, T, E , `,m0, F 〉 be a control flow net. A config-
uration of P is a pair 〈m, s〉, where m is a marking and s ∈ S
is a memory state. The flattened program P[ is a transition sys-
tem where the state space is the set of configurations of P and the
transition relation is

〈m, s〉 → 〈m′, s′〉 ⇐⇒ ∃t ∈ T.m t→ m′ and 〈s, s′〉 ∈ J`(t)K

A flattened assertion is a formula in ΦP (assertions over an
extended vocabulary that includes an additional variable symbol
p of sort N for each place p ∈ P ). A configuration 〈m, s〉 of P can
be viewed as a structure for this vocabulary (in the model-theoretic
sense) by interpreting each new variable symbol p as m(p).

For flattened assertions ψ,ψ′ and a transition t ∈ T , we write

{ψ} t {ψ′}
if for all configurations 〈m, s〉 and 〈m′, s′〉 such that 〈m, s〉 |= ψ

and 〈m, s〉 t→ 〈m′, s′〉, we have 〈m′, s′〉 |= ψ′.

Definition 7.1 Let P = 〈P, T, E , `,m0, F 〉 be a control flow net
and let ψpre/ψpost be a specification. A global inductive assertion
is a flattened assertion ψ for which the following hold:

• ψpre ∧ ϕm0 |= ψ
• ψ ∧ ϕF |= ψpost

• For all t ∈ T , {ψ} t {ψ}
where ϕm0 is a formula defining the initial marking m0 and ϕF is
a formula defining the set of final markings F . ⌟

Theorem 7.2 Let P = 〈P, T, E , `,m0, F 〉 be a control flow
net and let ψpre/ψpost be a specification. If there exists a global
inductive proof that P satisfies the specification ψpre/ψpost, then
there exists a counting proof. ⌟

Proof. Let P = 〈P, T, E , `,m0, F 〉 be a control flow net and let
ψpre/ψpost be a specification. Suppose that ψ is a global induc-
tive assertion for P[ that proves that P satisfies the specification
ψpre/ψpost.



We construct a counting automaton A that is equivalent to P as
in the proof of Theorem 6.2. Consider the formula ψ′ obtained by
replacing each place variable p with its associated counter variable
ki. It is easy to check that 〈A, λq.ψ′〉 is a counting proof that proves
that P satisfies the specification ψpre/ψpost.

8. Discussion Through Examples
In this section, we use examples to have a more in-depth discussion
about a few points about the counting proofs framework. These
points include:

• Control flow nets are a very general mechanism for representing
programs with infinite control, no matter what the source of
infinity of the control may be (Section 8.1).

• The structure of counting proof is in some sense independent of
the control flow structure of the original program (Section 8.1).

• Control flow nets encode a verification problem. That is, they
represent an integration of the control flow of the program
and the correctness property. An adequate representation of
program and property by a control flow net may not exist, and
if it does, it may be difficult to build (Section 8.2).

8.1 Tree Traversal Example

Traverse(node) {

if (node == null)

return;

visit(node);

Traverse(node.left);

Traverse(node.right);

}

On the right is a recursive (pre-
order) tree traversal routine. We will
give two implementations of this
program, one a sequential recursive
program and the other a parallel re-
cursive program, to illustrate two
important features of the counting
proofs framework: first, control flow nets are a very general mech-
anism for representing programs with infinite control; and second,
counting proofs are in some sense independent of the control flow
structure of the original program.

We will use two different implementations of the generic traver-
sal template from above: (i) a sequential recursive implementation,
and (ii) a parallel and recursive implementation, to demonstrate the
generality of the control flow nets, and the independence of count-
ing proofs’ structure from that of the program. We diverge slightly
from the presentation of counting proofs and control flow nets from
the preceding sections by using an acceptance condition based on
linear arithmetic formulae rather than upwards closed sets (i.e., the
set of accepting vectors of a counting proof and the set of accept-
ing markings of a control flow net can be described by a QF LRA
formula rather than just an upwards closed set). As noted in Sec-
tion 6, proof checking is decidable for this class (and in fact, the
more general class of semi-linear sets). It is easy to see that the
proof synthesis procedure from Section 4 can be adapted to this
more general setting as well.

Recursive Traverse
We first look at a variation of the code above which is a sequential
recursive program to demonstrate how recursive programs (which
have non-regular trace languages) can be modelled using control
flow nets. It is known that Petri net languages are incomparable
with context free languages. However, they do properly include
(and the inclusion is proper) the set of bounded context free lan-
guages, which is the most general class for which decidability re-
sults have been proved [21].

Figure 4 includes a simplified implementation of Traverse
which abstracts away the heap manipulation operations, but keeps
the relevant control information. We introduce two global counters
to count the number of leaves and internal nodes that are visited
by the Traverse() routine. If nodes and leaves are initially

call Traverse() leaves++ nodes++

return call Traverse()

p0

p1

p2

p3

p4 p5

p6 p7

p8

assume(leaves 6= nodes + 1)

return call Traverse()

return from Traverse()

return from Traverse()

p9

p10

Traverse() {

if (*) {

leaves++;

return;

} else {

nodes++;

Traverse();

Traverse();

}

}

Main() {

Traverse();

assert(leaves == nodes + 1);

}

Figure 4. Sequential Traverse code and control flow net. The
control flow net accepts when a token is at p2 and there are no
other tokens.

set to 0, then after Traverse is finished, for any binary tree the
property leaves = nodes + 1 is true.

Figure 4 also illustrates the control flow net for this program. A
call statement is modelled by two transitions: a call transition and
a return from call transition. The call adds a token at the place
p3 (the entry location of Traverse), to trigger another execution of
the method body. However, the current execution is blocked from
progressing (note the incoming edge from place p6 to the return
from call statement) until a return token is provided through
p6. The erroneous traces (and therefore those in the language of
the control flow net) are those that put a token at place p2 (i.e.
when the assertion is violated), and all other places contain zero
tokens. The latter ensures that the all executions of all pending
frames of Traverse are completed before the property is checked
to hold. The control flow model allows several partial executions
of different frames to co-exist, and the property does not hold until
they all finish.

Proof of Correctness for Traverse

nodes++/inc

assume(leaves 6= nodes + 1)/nop

call, return, return from/nop

�
k = nodes - leaves + 1

 
q0

q1

⇢
k = nodes - leaves + 1

leaves 6= nodes + 1

�

leaves++/dec

The proof of
the correctness
of the recursive
Traverse ap-
pears on the right.
It is a counting
automaton with an
additional counter
variable k, which
counts the differ-
ence between nodes+1 and leaves. Note that the initial value
of this counter is 1 (rather than 0, as we have seen in previous
examples). When Traverse returns to the Main procedure and we
check the assertion condition count and proceed to error location
(i.e., we execute assume(leaves != nodes + 1)), we move to
the state q1 and stop reading additional statements. The automaton



accepts when the final value of the counter k is 0, which implies
that 0 = k = nodes − leaves + 1, contradicting the assumption
leaves 6= nodes + 1.

p9

call Traverse() leaves++ nodes++

return

call Traverse()

p0

p1

p2

p3

p4 p5

p6 p7

p8

assume(leaves 6= nodes + 1)

return

fork Traverse()

join

return from Traverse()

p10

Traverse() {

if (*) {

leaves++;

return;

} else {

nodes++;

fork Traverse();

Traverse();

join;

}

}

Main() {

Traverse();

assert(leaves == nodes + 1);

}

Figure 5. Parallel Traverse code and control flow net. The con-
trol flow net accepts when a token is at p2 and there are no other
tokens.

Recursive and Parallel Traverse
Figure 5 presents a variation of the traverse implementation from
Figure 4 in which the two recursive calls to Traverse are executed
in parallel by forking a new thread for one of them. This program
is both concurrent and recursive with both unbounded recursion
and unbounded parallelism, which puts it in a class of very difficult
programs to verify.

The control flow net for the parallel version is also depicted in
Figure 5. Note that the join statement expects a token provided after
the completion of the execution of the forked thread to continue, as
with return from call in the recursive case.

A remarkable fact is that the proof of correctness of this version
of Traverse is still the same proof that was presented in the
previous section for the recursive version (with the minor addition
of the join action to the set of actions call, return, return
from that are labelling the self loop on q0). Despite the fact that the
two programs have substantially different control flow structure,
the counting arguments for the correctness of their set of traces are
the same. This is due to the fact that the proof is constructed based
on a set of program traces, and independent of the control structure.
Basically, in both cases the same counting argument applies for the
correctness of program traces. It is a rather interesting feature to be
able to reuse a proof of correctness when a program is changed,
for example, for performance reasons (as is the case when we
parallelize Traverse).

8.2 Ticket Algorithm
Our approach assumes that the alphabet of program statements is
finite. If an unbounded number of threads execute a program over
local variables, we need an infinite alphabet of statements (each

program statement that manipulates a local variable, must be copies
for each thread). However, our approach may still be applicable by
using a symmetry argument. This section gives an example of such
an argument.

We consider a well-known mutual exclusion protocol for an
unbounded number of processes, namely the ticket algorithm. At
each instant, a ticket counter t contains the value for the next
available ticket, and a service counter s contains the number of
already serviced clients. A client can acquire a ticket by setting its
own local ticket numberm to the current value of the ticket counter
t, after which t is incremented by 1 to reflect the available ticket for
the next client (t++). When a local ticket number m is equal to or
smaller than the service number s, the client can enter the critical
section (assume(m <= s)). When this customer exits the critical
section, the service number s is incremented by 1 (s++).

idle: m = t++

wait: assume(m <= s)

crit: s++

The Ticket program con-
sists of an arbitrary number of
threads which each execute the
same code, pictured to the right.
The variables s and t are global (initially, s = t = 0). The variable
m is local to each thread. The mutual exclusion property is that at
most one thread can be at crit, or equivalently, while some thread
T1 is still at crit, another thread T2 cannot enter crit.

Interestingly, it does not seem possible to encode the verifica-
tion problem for mutual exclusion by a control flow net (even after
using a symmetry argument). Instead of mutual exclusion, we will
consider a stronger correctness property (i.e., a property that im-
plies mutual exclusion): if a thread T2 has requested a ticket after
another thread T1, then T2 cannot enter crit while T1 is still at
wait or crit. For brevity we refer to this property as FCFS, First
Come First Serve.

Our encoding of the FCFS property relies on the notion of
minimal error traces. Consider an error trace τ which violates
FCFS. We call τ minimal if no proper prefix of τ already violates
FCFS. To prove correctness, it is sufficient to show that every
minimal error trace is infeasible.

We can decompose every minimal error trace as follows (we
mark a statement by the thread that executes it):

τ ; [T1: m2=t++]; τ ′; [T2: m1=t++]; τ ′′; [T2: assume(m1<=s)]

where [T1: s++] does not occur in τ , in τ ′, or in τ ′′. That is, every
minimal error trace contains, in order, the request of T1, the request
of T2, and, at the last position, the enter of T2, and thread T1 may
or may not enter after its request, but if it does, it cannot not exit.

In the setting above, the thread T2 is the bad thread. We now use
a symmetry argument: without loss of generality, we may assume
that the bad thread is thread 0. The reason that this is no loss of
generality, is due to the symmetry of Ticket. For any minimal
error trace where the bad thread is some thread other than thread 0,
we may simply swap that thread and thread 0 and arrive at another
minimal error trace, one where the bad thread is thread 0. Thanks to
this symmetry, it is sufficient to show that all such 0-distinguished
minimal error traces are infeasible.

We finitize the alphabet of program statements by “forgetting”
the local variables of every environment thread (i.e., a thread other
than thread 0). The statement m = t++ of an environment thread
becomes = t++ (which is semantically the same as t++), and
likewise assume(m <= s) becomes assume( <= s) (which is
semantically the same as assume(true)). It is sufficient to show
that every 0-distinguished minimal error trace over the finite al-
phabet of program statements is infeasible (since forgetting local
variables can only make more traces feasible).

The set of traces of the control flow net in Figure 6(a) con-
tains all 0-distinguished minimal error traces over the finite al-
phabet of program statements (incidentally, it contains also some



non-minimal ones). The transitions and places are arranged in
three columns. The left most column corresponds to environment
threads that acquire their ticket before thread 0, the second col-
umn corresponds to the distinguished thread 0, and the last column
corresponds to environment threads that acquire their ticket after
thread 0.

= t++

s++

assume( <= s)

m0 = t++

assume(m0 <= s)

= t++

p0

p1

p2

p3

p4

p5

p6

p7

s++/dec

m0=t++/nop

assume(m0<=s)/tst

s++/dec

�
k = m0 � s

 

q0

q1

q2

(a) (b)

�
k = t� s

 

�
false

 
⌃

assume( <= s)/nop

= t++/nop

assume( <= s)/nop
= t++/inc

Figure 6. Ticket: (a) Control flow net. The set of final markings
is defined by p1 + p2 ≥ 1 ∧ p5 ≥ 1. (b) Counting proof.

Counting Proof of Ticket The counting automaton shown in Fig-
ure 6 has three states. The initial state is q0, its only final state is
q2. The initial value of the counter k is 0. While in state q0, the
automaton counts the request statements (positively) and the exit
statements of environment threads (negatively); it does not count
enter statements. While in state q1, it counts the exit statements
of environment threads (negatively); it counts neither request state-
ments nor enter statements. The request statement of the distin-
guished thread leads from q0 to q1. The enter statement of the dis-
tinguished thread leads from q1 to q2 if the tst operation succeeds,
i.e., if k ≥ 1.

p1 + p2 ≤ k
p0 ≤ q0
p4 ≤ q1
p5 ≤ q2 ∨ k ≤ 0

Proof Checking We use this exam-
ple to convey our intuition that prov-
ing the inclusion of the language of
a control flow net in the language of
a counting automaton often involves a
set of very simple invariants. The formula pictured to the right is a
linear arithmetic formula which relates configurations of the con-
trol flow net with configurations of the counting proof (two con-
figurations are related if they satisfy the formula to the right; the
control flow net configuration is used to interpret p variables and
the counting automaton configuration is used to interpret k and the
q variables; the value of q is 1 or 0). One may check that this re-
lation is a kind of simulation: whenever the control flow net may
take a step, the counting automaton may take a corresponding step
or the control flow net is in a “dead” configuration that cannot reach
a final marking. Moreover, the initial and final configurations of the
control flow net and counting automaton are related. Thus, this for-
mula shows that the traces of the control flow net are accepted by
the counting automaton.

9. Related Work
Extensive research has been done about verification of parameter-
ized systems. Apt and Kozen [4] argued that with little capabili-
ties granted to individual processes, the verification problem be-
comes undecidable. There has since been a great deal of study of

decidability/undecidability of subclasses of parameterized systems
[32, 38]. There is a good survey [49] that covers a lot of the exist-
ing techniques for verification of parameterized systems. We em-
phasize here that our goal is not to verify parameterized distributed
protocols, but programs; and therefore, we do not mention a lot of
related work that is focused on the intricacies of verifying these
protocols.

Deductive techniques We are aware of two proof systems that are
applicable to parameterized systems: (1) a parameterized Owicki-
Gries type proof system [40], in which if the assertions (and the
auxiliary variables) are provided by the user as annotations, then
the proof checking is done mostly automatically, and (2) The QED
[17] system that is based on the Lipton’s reduction by inferring
atomic blocks, which works independently of how many threads
are running in parallel. Both of these systems need (partial or total)
user-provided annotations to prove programs correct.

Induction-based techniques There are techniques based on in-
duction (on the number of processes) [33, 36], that rely on finding
an abstraction and approximation of network invariants [13, 14,
31].

The method of invisible invariants [5, 44] automatically gener-
ates inductive assertions for the verification of safety properties of
parameterized systems. First, the symmetry of parameterized sys-
tems is exploited to guess a universally quantified assertion that
over-approximate the set of reachable states. then, a small model
theorem establishes when the assertions over parameterized sys-
tems can be model checked on small instantiations (whose size de-
pend on the system and the assertions) to derive the validity over
any instantiation. This method is limited, however, to systems with
finite data, and the application of it in some contexts is far from
trivial.

Regular model checking The idea, which was introduced in [48],
is to represent the set of reachable states of a parameterized system
using a regular language. Processes are assumed to be finite-state
to give rise to a finite alphabet (alphabet letters correspond to pro-
cesses’ states). Transducers are used to approximate (through ac-
celeration) the transitive closure of transition relation, and hence
compute all reachable configurations of the systems. A lot of re-
search has been done in improving the laborious problem of com-
puting the meta transitions [1, 11, 36, 43] (including techniques
based on acceleration, transitive closure, and widening), and even
going beyond regular languages in [20]. The restriction that pro-
cesses need to be finite state persists in all these extensions. The fo-
cus of this line of research has been on the verification of protocols,
and hence, they often have much richer input languages (than the
one we use in this paper) that are beyond our scope of parameter-
ized programs; e.g. the use of existentially or universally quantified
guards, which is not normally found in software systems.

Abstraction-based techniques In [27], a system of N processes
communicating through finite-domain shared variables is ab-
stracted by mapping the state systems into tuples where each
dimension (having the values, 0, 1, or many) corresponds to the
number of processes at a given local state, and additional dimen-
sions are used to capture the value of global variables (finitely
many possibilities). The resulting finite-state system was then
verified by model checking (finite-state verification). In this and
other counter abstraction techniques, a concrete state is counter
abstracted by counting the number of processes in each local state
[37, 45] limiting the counter to at most 2. Counter abstraction is
simple to apply and when applicable works well. Its shortcoming is
that it is only applicable to systems where each process has a small
number of individual local states. More recently, in [28] symbolic
techniques are used to overcome this problem and allow verifica-
tion processes with larger number of local states. A new form of



counter abstraction is discussed in [28] using parametric interval
abstraction that facilitates verification of fault-tolerant distributed
algorithms.

There is a class of techniques that are not strictly counter
abstraction in the above sense (since the resulting abstract sys-
tem is not finite), but have a similar flavour since they use the
same counters, but untruncated. In [22], German and Sistla con-
sider a parameterized system of processes that communicate syn-
chronously, and show how to verify single-index properties. They
achieve this by encoding the problem as a Petri net safety property
and using Karp-Miller’s coverability tree construction [30]. Simi-
lar abstraction-based techniques have been applied to verification
of multi-threaded C [6], and Java [16] programs. In all these in-
stances, processes are abstracted into finite-state processes, and the
only source of infinity remains the existence of unboundedly many
of these finite-state processes.

In [2], a CEGAR algorithm for parameterized systems is pre-
sented. The program model in this paper is very similar to ours
(although the technique proposed in [2] is focused on proving
safety for Petri net programs where the data variables are inte-
gers). The reachability algorithm employed by [2] is a fairly stan-
dard backward coverability algorithm - the insight of this paper is
that the well quasi-order used for this algorithm can be refined us-
ing counter examples. The authors do not approach the problem of
automatically synthesizing auxiliary variables.

In [8], it is shown how to represent a parameterized system of
finite-state processes in the decidable logic WS1S, i.e. the current
state of the system is modelled as a fixed number of finite subsets
of natural numbers and the transitions of processes are described in
WS1S formulae. Later, in [9], they extend the method, using a com-
bination of theorem proving and the algorithmic techniques from
[8], so that each process can have an unbounded state space. The
theorem proving side helps prove a simulation relation between the
original system and a so-called doubly-parametric system which is
restricted enough to be expressible and checkable within the origi-
nal framework from [8].

The problem of proving data structure invariants for programs
with unboundedly many threads is attacked in [10] and [47]. [10]
aims to exploit thread-modularity in their proofs, which restricts
the ways in which thread-local variables may be correlated (for the
practical gain of a faster analysis). Additional correlations can be
captured using the technique of [47], in which a universally quanti-
fied environment assertion is used to keep track of relationships be-
tween a distinguished thread and all other threads. [18] is another
technique that, like [10, 47], loses variable correlations in the in-
terests of speed. Unlike [10] and [47], [18] is designed to compute
numerical invariants rather than data structure invariants.

The conditions that need to be satisfied by the abstraction are
restrictive enough that, as an example, the ticket example discussed
here cannot be handled by the method.

The technique of trace abstraction has previously been dis-
cussed in [25] and in [19]. There, the sets of traces of sequential
programs respectively concurrent (non-parameterized) programs
were abstracted by regular languages. The issue of auxiliary vari-
able synthesis was not investigated in that work, although it is
potentially interesting also for sequential and concurrent (non-
parameterized) programs.

Cut-off detection There is a strong belief (backed by empirical
evidence) that parameterized systems often enjoy a small model
property. This belief has given rise to a collection of techniques for
verification of parameterized concurrent systems [3, 29, 34]. More
precisely, analyzing a small number of processes (the so-called cut-
off points) and their interactions is sufficient to determine the reach-
ability of any bad states. In [29, 34], parameterized Boolean pro-
grams (more specifically the result of predicate abstraction of de-

vice drivers) are analyzed. The technique in [29] is complete with
respect to Boolean programs (note that this does not carry over to
the original infinite-state C programs), while the one in [34] is even
incomplete for Boolean programs. More recently, in [3], commu-
nication protocols are the focus, and an abstraction scheme is used
that attempts to detect the cut-off points dynamically during the
verification procedure to stop the search. Here, also, the processes
are assumed to be finite state.

10. Conclusion
In this paper, we introduced counting proofs, a new system for
proving safety properties for programs with infinite control. We
believe that counting proofs have independent interest, outside of
the software verification algorithm presented here. For example, we
believe it may have applications to analysis of black-box systems,
where the proof checking problem cannot be done, but we may be
able to make other guarantees (e.g., testing coverage). Another po-
tential direction for future work is application is white-box verifi-
cation where the proof checking problem is undecidable in general,
but an incomplete semi-test can be used for proof checking.

This paper shows that a particular class of auxiliary variables
– counters – can be synthesized automatically. A natural question
is to ask what other classes of auxiliary variables admit synthesis
procedures. Another question is whether basic ideas introduced in
this paper can be applied to auxiliary variable synthesis in other
proof systems, such as Owicki-Gries [41]. The problem of auxiliary
variable synthesis is largely unexplored, and this paper takes a step
in the direction.
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