
Consistency Analysis of Decision-Making Programs ∗

Swarat Chaudhuri
Rice University
swarat@rice.edu

Azadeh Farzan
University of Toronto

azadeh@cs.toronto.edu

Zachary Kincaid
University of Toronto

zkincaid@cs.toronto.edu

Abstract
Applications in many areas of computing make discrete decisions
under uncertainty, for reasons such as limited numerical precision
in calculations and errors in sensor-derived inputs. As a result, indi-
vidual decisions made by such programs may be nondeterministic,
and lead to contradictory decisions at different points of an execu-
tion. This means that an otherwise correct program may execute
along paths, that it would not follow under its ideal semantics, vi-
olating essential program invariants on the way. A program is said
to be consistent if it does not suffer from this problem despite un-
certainty in decisions.

In this paper, we present a sound, automatic program analysis
for verifying that a program is consistent in this sense. Our analysis
proves that each decision made along a program execution is con-
sistent with the decisions made earlier in the execution. The proof
is done by generating an invariant that abstracts the set of all deci-
sions made along executions that end at a program location l, then
verifying, using a fixpoint constraint-solver, that no contradiction
can be derived when these decisions are combined with new deci-
sions made at l.

We evaluate our analysis on a collection of programs imple-
menting algorithms in computational geometry. Consistency is
known to be a critical, frequently-violated, and thoroughly stud-
ied correctness property in geometry, but ours is the first attempt
at automated verification of consistency of geometric algorithms.
Our benchmark suite consists of implementations of convex hull
computation, triangulation, and point location algorithms. On al-
most all examples that are not consistent (with two exceptions), our
analysis is able to verify consistency within a few minutes.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Correctness proofs; F.3.2 [Semantics of Program-
ming Languages]: Program analysis; F.2.2 [Computational Ge-
ometry and Object Modelling]: Geometric algorithms, languages,
and systems; G.4 [Mathematical Software]: Reliability and ro-
bustness

Keywords Program Analysis; Uncertainty; Consistency; Geome-
try; Robustness

∗ This research was partially supported by NSF Award #1156059 and an
NSERC Discover Grant.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535858

if (Left(p, q)) then L1 else L4;
if (Left(q, r)) then L2 else L5;
if (Left(p, r)) then L3 else L6

Figure 1. A possibly-inconsistent code snippet

1. Introduction
The problem of making decisions under uncertainty has fascinated
computer scientists for a long time [13]. Abstractly, a decision-
making process is a program that gathers information about an ex-
ternal world using a set of queries, and based on this information,
makes changes to its discrete internal state. An issue with such pro-
grams is that the information that they gather from the world may
be uncertain, and this uncertainty may affect program’s decisions.
Even a single “wrong” decision may lead the program down code
paths that were never meant to be followed, leading to unforeseen
errors.

For example, consider a program that queries the world for
the relative positions of three points p, q, and r on a line. Let
Left(u, v) denote the decision by the program that u lies to the
left of v, and Left(u, v) the fact that u is actually to the left
of v. Now suppose the program makes the decisions Left(p, q)
and Left(q, r). In this case, the program should also decide that
Left(p, r), as the laws of geometry demand that

(Left(p, q) ∧ Left(q, r)) =⇒ Left(p, r). (1)

However, uncertainty creates a difference between what ought
to be and what is. Different queries to the world can be indepen-
dently uncertain, and if p, q and r are close enough to be within the
margin of error, the program may very well decide from the final
query that “not Left(p, r)” holds. Suppose now that the program
in question looks like the one in Fig. 1. Then, in the above scenario,
it will execute the code L1; L2; L6, a sequence that would not be ex-
ecuted under any input in the program’s ideal semantics, where the
laws of geometry hold. Since algorithm design often does not con-
sider this scenario, the consequence could be a serious error.

A decision-making program is consistent if it is immune from
errors like the one described above. Abstractly, let R be an ax-
iomatic specification of the “laws” that we know to hold in a world
Θ (e.g. Eqn. 1). A program is consistent if it does not contradict
any axioms inR no matter what answers it receives as the result of
its queries to the world Θ.

Consistency is an essential concern in applications where pro-
grams make boolean decisions under uncertainty. It is, for example,
a thoroughly studied problem in computational geometry [7, 15, 16,
21, 26], where programs make decisions about relative positions of
objects in continuous geometric spaces1. Often, these positions can

1 In the geometry literature, consistency is known as robustness. We avoid
the latter term given its recent use [4, 5, 19] in the program verification
literature to denote an entirely different concept.

1 if Left(p, q)
2 then L1;
3 if Left(q, r)
4 then L2; L3

5 else L5; if Left(p, r) then L3 else L6

6 else
7 L4;
8 if Left(q, r)
9 then L2; if Left(p, r) then L3 else L6

10 else L5; L6

Figure 2. Consistent variant of code in Fig. 1.

only be known with limited degree of certainty and up to a limited
level of accuracy. For instance, a robot doing geometric reasoning
to detect collisions with other objects must base its discrete deci-
sions on uncertain sensor data. Even on a standalone computer, the
outcomes of discrete queries about geometric datasets are typically
uncertain due to numerical inaccuracies [22]. It is well-known that
inconsistency between such decisions can cause everyday geomet-
ric algorithms to crash, go into infinite loops, and violate essential
postconditions [21].

At the same time, consistency in our sense is not easily enforced
through usual software engineering practices. It is difficult to test
a program for consistency since, by definition, errors due to uncer-
tainty may not be reproducible. Furthermore, as software is typi-
cally designed without uncertainty in mind, consistency is usually
outside the scope of manual reasoning about algorithms. For ex-
ample, most algorithm designers assume the axioms of geometry
to hold to reason about correctness of their designs, and would
not imagine situations where they might break down when these
axioms are contradicted. Finally, reasoning about consistency re-
quires one to relate decisions made at different points in a program
execution to each other. Most programmers find this type of global
reasoning about programs to be inherently difficult.

Given all this, the problem of automatic formal verification of
the consistency of a decision-making program seems to be impor-
tant. Intriguingly, there is very little prior work on this problem.
Researchers in application areas like computational geometry have
traditionally steered clear of static reasoning about consistency,
instead focusing on dynamic approaches [21]. While there is an
emerging literature on quantitative reasoning about uncertain pro-
grams [4, 5, 19] in the formal methods community, to our knowl-
edge there has been no prior work on verifying that a program
makes sequences of discrete decisions consistently. In this paper,
we present a sound, automatic program analysis to address this ver-
ification problem.

Our analysis applies to infinite-state programs that query a
world consisting of an arbitrary number of abstractly defined data
objects. A decision is the outcome of a query. We model uncertainty
using nondeterminism, assuming that each query by the program
can return either true or false. To see how a program can be con-
sistent under such a model, consider the code in Fig. 2, which is
equivalent to the program in Fig. 1 in the absence of uncertainty
(i.e., when Left(x, y) if and only if Left(x, y)). However, even if
the Left queries resolve nondeterministically due to uncertainty,
this code is still guaranteed to satisfy the axiom in Eqn. (1). The
subtle difference between the two codes is that the one in Fig. 1
does not query a fact when, from the context and the set of axioms,
the only non-contradictory answer to the query is known.

To automatically prove the consistency of programs like the one
in Fig. 1, we must track the path-sensitive dependencies between
different decisions made by the program. This is especially chal-
lenging when the program manipulates an unbounded number of

objects. For example, suppose that a program decides, by repeat-
edly querying the world, that

Left(p1, p2), Left(p2, p3), . . . , Left(pn−1, pn)

for objects p1, . . . , pn. If the program now also queries for the rel-
ative positions of p1 and pn, we may have a consistency violation.
This is because we have Left(p1, pn) as a logical consequence of
the program’s decisions by Eqn. 1 while due to uncertainty the re-
sult of this query may very well be “not Left(p1, pn).” To prove
consistency, we must be able to reason that this type of violations,
namely those that are derived through unbounded trees of reason-
ing, cannot occur.

Our approach to the automation of such proofs is based on an
inductive argument. First, for each program location l, we compute
an invariantHl — called the history invariant — that abstracts the
set of all decisions made along all possible executions leading to l.
Inductively, we assume the decisions in Hl to be mutually consis-
tent. Next we compute a current-decision invariant dl that abstracts
the set of new decisions that may be made at l. Consistency verifi-
cation now amounts to establishing that no decision in the set rep-
resented by dl, taken together with a subset of decisions inHl, can
violate an axiom. We show that this check can be accomplished us-
ing a standard fixpoint constraint solver [14]. Decisions taken dur-
ing the execution of a program, over a collection of input objects,
are abstracted by tuples of integers (where integers stand for object
identifiers); e.g. 〈1, 2〉 may stand for the decision Left(p1, p2).
This then accommodates the abstraction of decision invariants (as
defined above) by integer linear arithmetic formulae.

We evaluate our analysis by applying it to a suite of programs
from the domain of computational geometry [7, 21], including im-
plementations of standard algorithms for convex hull computations,
triangulation, and point location algorithms. While small in size,
programs like these are at the heart of geometric libraries used by
large real-world systems such as CAD, Geographical Information
Systems, Computer Graphics, and various Scientific Computing
applications. These examples are also complex: the reasons why
they satisfy consistency or fail to do so are often subtle, and small,
innocent-looking changes to the code can turn a consistent algo-
rithm into an inconsistent one, or vice versa. However, in almost all
of the programs that are actually consistent, our analysis is able to
prove consistency automatically and efficiently.

We summarize the contributions of this paper as follows:

• We formulate the problem of verifying the consistency of
infinite-state decision-making programs (Sec. 2), and give a
sound, automatic program analysis to solve it. (Sec. 4).
• We identify an application domain for our analysis where con-

sistency is a critical correctness property, and where program
analysis has not been tried before (Sec. 3).
• We provide a prototype implementation of our system, and eval-

uate the practical utility of the system using a comprehensive
suite of convex hull and triangulation algorithms. (Sec. 5).

2. Formalizing consistency
In this section, we formalize the property of consistency for
decision-making programs. We start by defining the “worlds” that
are queried by our programs. These queries are answered with un-
certainty, and it is this uncertainty that may cause a violation of
consistency.

2.1 Modelling the world
A world consists of a set of typed objects together with a set of
predicates that are used to query various relationships between
these objects. Formally, a world is a tuple Θ = 〈Base,O ,Q,R〉,

where Base is a set of base types, O is universe of objects with
types ranging over Base , Q is a set of predicate symbols whose
arguments have types in Base , and R is a finite set of axioms,
where an axiom is a universally quantified first-order formula over
the predicates inQ.

Intuitively, the predicates in Q form the “interface” between
programs and the world Θ. We assume for easier exposition that
each A ∈ Q has the same arity m. The axioms R codify the laws
of the world — e.g., the laws of geometry. Since the understanding
of nontrivial worlds is often partial, we do not expect our axioms to
be complete in a mathematical sense.
Example 1. Let Θtc = 〈{1DPoint},O ,Qtc ,Rtc〉 be a world in
which 1DPoint is the type of points arranged on a line, O is a set
of such points, and Qtc consists of a single predicate Left . The
predicate Left(u, v) holds for 1DPoints u and v iff u lies to the
left of v—i.e., if u.x < v.x, where u.x and v.x are respectively
the coordinates of u and v with respect to a fixed origin. A sensible
set of axiomsRtc for Θtc is as follows:

1. The transitivity axiom used in the introduction:

∀y1, y2, y3 :
y1 6= y2 ∧ y2 6= y3 ∧ y3 6= y1 =⇒
(Left(y1, y2) ∧ Left(y2, y3) =⇒ Left(y1, y3)).

2. An axiom that asserts that Left is “complete” — i.e., any two
distinct points on the line are related by Left :

∀y1, y2 : y1 6= y2 =⇒ (Left(y1, y2) ∨ Left(y2, y1)).

To reduce notation, we adopt two simple syntactic conventions
while writing down axioms. First, we drop the explicit universal
quantifiers over the axiom variables. Second, without loss of gen-
erality, we use distinct variable names in the axioms to represent
distinct objects in models of the theory. For example, the first ax-
iom in the above example is written simply as

Left(y1, y2) ∧ Left(y2, y3) =⇒ Left(y1, y3),

the assumptions (y1 6= y2), (y2 6= y3), and (y1 6= y3) following
from the fact that y1 and y2 are different symbols. It is acceptable,
however, to write the axiom R(x, x) to state that a predicate R is
reflexive.

2.2 Programs
Next we define a core language DMP of decision-making programs.
Programs in this language are a symbolic transition systems that
can manipulate both individual objects and lists of objects.

There is a key modelling question in the definition of DMP:
how do we model the uncertainty in a program’s queries about the
world? Our definition does this via nondeterminism: we assume
that every call of a program to a world predicate may return an
incorrect answer.

This model may appear too conservative at first sight, given that
we do not model uncertainty quantitatively. However, it has several
advantages. The first and foremost is its generality: the model is
equally applicable to settings where uncertainty is the result of
sensing errors as it is to the settings where floating-point error is
the source of uncertainty. Any reasonable quantitative model of
uncertainty, on the other hand, would have to be domain-specific,
and perhaps consider low-level details of the hardware used for
sensing or computation.

Second, our model is simpler and therefore more amenable to
automated reasoning than quantitative models. Indeed, given the
highly challenging nature of the consistency analysis problem, this
model offers a “sweet spot” for static analysis.

Finally, our empirical experience with the model is satisfactory.
We ran some experiments with our benchmark examples from
Sec. 5 for the case when uncertainty is only due to numerical

error. For the examples that are inconsistent under our model, it
was always possible to produce a concrete input that forces the
program to violate basic invariants under floating-point semantics.
In other words, these examples would be inconsistent under any
other reasonable definition of consistency.

Program syntax. Let us fix a world Θ = 〈Base,O ,Q,R〉 and a
universe of variables. Each variable represents either an object in
O or a list of such objects. Variables of base types are denoted by
x, x1, x2, . . . , and variables of list types (representing collections
of objects) are denoted by X,X1, X2,

We assume an alphabet2 Q of symbols whose members have a
one-to-one correspondence with the predicates in Q. For A ∈ Q,
we denote the corresponding symbol in Q by A. Also, we define
a symbol A for each A ∈ Q and let Q be the set of such symbols.
It is assumed that Q and Q do not have any overlap with each
other or with Q. Intuitively, for objects p1, . . . , pm, the notation
A(p1, . . . , pm) represents the decision made by the program that
the fact A(p1, . . . , pm) holds, and A(p1, . . . , pm) represents the
decision that the fact ¬A(p1, . . . , pm) holds.

We allow a program to test and manipulate its local variables
using the following primitives:

• We allow boolean expressions that test whether a list is empty:
X = ∅ and X 6= ∅.
• We allow the following kinds of assignments to variables:

1. x1 := x2. An assignment where an object-valued variable
x1 is set to the value of another object-valued variable x2.

2. x := first(X) and x := last(X). Respectively set x to the
value of the first and last element of the list X . The list X
is not updated.

3. x := next(X) and x := pop(X). Respectively remove the
first and last elements of the list X , and set x to the value of
this element.

4. X := ∅. Sets X to the empty list.

5. X1 := X2. Sets the list X1 to the value of the list X2.

6. prepend(x,X). Adds the object x to the front of the listX .

7. append(x,X). Adds the object x to the end of the list X .

The syntax of DMP programs is now given as follows:

Definition 1 (Programs). A program over a world Θ is a tuple
P = 〈Loc, l0, T 〉, where Loc is a finite set of locations, l0 ∈ Loc
is the initial location, and T is a set of transitions. A transition
〈l |T | l′〉 from a location l to a location l′ is of one of the following
forms:

1. 〈l |A(x1, . . . , xm) | l′〉
2. 〈l |A(x1, . . . , xm) | l′〉
3. 〈l |assume(b) | l′〉
4. 〈l |U | l′〉

where A ∈ Q; A ∈ Q; xi ∈ Var ; b is a boolean expression; and
each U is an assignment of one the forms above.

Each transition 〈l | T | l′〉 takes the program from location l to
location l′. Transitions of forms (1) and (2) represent queries to the
world and decisions made on basis of those queries. A transition
of form (1) is taken when a call to A ∈ Q returns true , and one of
form (2) is taken when it returns false . Transitions of form (3) are
local tests on program variables while those of form (4) are updates
to variables. For instance, the transition 〈l | x := first(X) | l′〉
is executed when control is at l, sets x to the first element of X
(without updating X), and moves the control to l′.

2 Note the typewriter font used for Q, which distinguishes this set fromQ.

The sets of locations and variables of P are respectively denoted
by Loc(P) and Var(P). Note that a location may have multiple
outgoing or incoming transitions. However, we assume, without
loss of generality, that whenever P has a query transition 〈l |
α(. . .) | l′〉, then it has no other outgoing transition at l. We denote
by LocαP the set of locations in P that have an outgoing transition
of the above form. Collectively, locations like this are known as
query locations.

We assume all predicates in P to be well-typed: if a transition
is guarded by A(x1, . . . , xm) and xi is of type τi, then the type of
A is (τ1 × · · · × τm).

Uncertain Semantics. Now we sketch the semantics of programs
under uncertainty. Let a state of P be a pair s = (l, σ), where l
is a location and σ is a function that maps variables xi and Xi to
appropriately typed values. The set of states of P is denoted by
Σ(P).

The semantics of P is defined using a labelled transition system
〈Σ,−⇀,Σin〉, where −⇀ is a set of semantic transitions and Σin is
a set of initial states. An initial state of P is a state of the form
(l0, σ) for some σ, and where each object o appears at most once
in at most one list in the domain of σ (i.e., initially the contents of
the lists are repetition-free and pairwise disjoint).

The set −⇀ is the least relation such that for all transitions
t = 〈l |T | l′〉 in P ,

• If T is a query α(x1, . . . , xm) (for α ∈ Q ∪ Q), then we have
(l, σ)

t−⇀ (l′, σ) for all σ.
• If T is an assignment x := e or X := E, then for each

state (l, σ), we have (l, σ)
t−⇀ (l′, σ′), where σ′ is obtained

by updating the variables of P according to the semantics of
assignments sketched earlier.
• If T is a test assume(b) and (l, σ) is a state that satisfies b, then

we have (l, σ)
t−⇀ (l′, σ).

We define an (uncertain) execution of P as a finite sequence
ρ = (l0, σ0)

t0−⇀ (l1, σ1)· · · (ln, σn) such that (l0, σ0) ∈ Σin

and for all i, (li, σi)
ti−⇀ (li+1, σi+1). For each location l, the set

of executions ending at a state (l, σ) (for some σ) is denoted by
Exec(l). The set of all executions of P is denoted by Exec(P).

It seems intuitive to define a semantics of programs in ab-
sence of uncertainty where queries obtain true information about
the world — e.g., a query transition 〈l | A(x1, . . . , xm) | l′〉 is en-
abled at a state where xi has value pi if and only if the relation
A(p1, . . . , pm) holds in the world. However, such an ideal seman-
tics is of no use to our analysis where the core concern is the effect
of uncertainty, and therefore, we do not develop this semantics.

2.3 Consistency
An uncertain execution of a DMP program P , may issue a sequence
of queries whose answers, taken together, violateR. We say that P
is consistent if this cannot happen in any uncertain execution.

To formalize this notion of consistency we need a formal
definition for decisions: a decision in the world Θ is a literal
δ = α(p1, . . . , pm), where α ∈ (Q ∪ Q), p1, . . . , pm ∈ O ,
and the type of pi matches the expected type of the i-th input
to Q. We denote the set of decisions over Θ by Dec(Θ) or sim-
ply Dec. For a decision δ, [[δ]] denotes the literal A(p1, . . . , pm)
when δ equals A(p1, . . . , pm), and ¬A(p1, . . . , pm) when δ equals
A(p1, . . . , pm).

Now let ρ = (l0, σ0)
t0−⇀ (l1, σ1)· · · tn−⇀ (ln+1, σn+1) be

an execution of P . We define a decision of ρ to be any decision
δ = α(p1, . . . , pm) ∈ Dec such that for some i, we have:

1. ti = 〈li |α(x1, . . . , xm) | li+1〉

2. for all j ∈ {1, ...,m}, pj = σi(xj).

The set of decisions of ρ is denoted by Dec(ρ).
One can collectively represent the decisions made during an

execution ρ ofP using a logical formula, which we call the decision
formula of that execution, which is defined as:

Ψ(ρ) =
∧

δ∈Dec(ρ)

[[δ]].

Consistency of P is now defined as follows:

Definition 2 (Consistency). The program P is consistent (with
respect to the world Θ) if for all executions ρ ∈ Exec(P), the
formula Ψ(ρ) ∧

(∧
R∈RR

)
is satisfiable.

Thus our goal is to verify that a given program P is consistent
under the above definition.
Example 2. Let us consider the code in Fig. 2 once again. It
is easy to translate this code to a DMP program over the world
Θtc from Example 1 (we assume L1-L6 are simple assignments).
This program manipulates a bounded number of objects and has a
bounded number of executions; by enumerating these executions,
we find that it is consistent.

Now let us consider a more involved program, also over Θtc,
that issues queries over an unbounded number of objects. As with
the previous example, we write the program in a more readable
structured syntax which can be easily translated into DMP:

1 x1 := next(X); x2 := next(X)
2 while X 6= ∅
3 do if Left(x1, x2) then skip else skip
4 x1 := x2; x2 := next(X)

In our model, the test in Line 3 can always evaluate incorrectly.
However, we can argue that this program is consistent nonetheless.

Let the objects in the input list X have identifiers 1 to n.
Consider the execution ρ that takes the true-branch of the code
in all iterations. The decision formula for ρ is

Ψ(ρ) = Left(1, 2) ∧ Left(2, 3) ∧ Left(3, 4) . . .Left(n− 1, n).

Now note that (Ψ(ρ) ∧ R), where R is the conjunction of the
axioms in Example 1, is satisfiable. It is not hard to see that for
every execution ρ′ of Ptc , (Ψ(ρ′) ∧ R) is satisfiable. Therefore,
the program is consistent. On the other hand, if the program made
an extra decision Left(n, 1) somewhere in the execution, then
the conjunct Left(n, 1) would be added to Ψ(ρ), and the above
property would no longer hold.

3. Consistency in geometric programs
In this section, we show how the notion of consistency plays out
in the context of computational geometry. We do so using two
examples. Both are algorithms for computing a convex hull for a
set of points in two dimensions (2D); one of the algorithms is not
consistent, while the other is. As before, we describe the algorithms
using a more readable, structured syntax rather than that of DMP.

3.1 The world
Any convex hull algorithm queries a geometric space about posi-
tions of points in it — this space Θch is our world. Formally, we
let Θch = 〈{2DPoint},O ,Qch ,Rch〉, where 2DPoint is the type
of points on the 2D plane, O is the set of all 2D points, and Qch

consists of a single orientation predicate Lturn(u, v, w). The se-
mantics of this predicate is that Lturn(u, v, w) is true when w is
to the left of the infinite directed line −→uv. For example, in Fig. 6(a),
we have Lturn(p1, p2, p3). Under the ideal semantics of reals, this

1. Cyclic symmetry: Lturn(x, y, z) =⇒ Lturn(y, z, x).

2. Antisymmetry: Lturn(x, y, z) =⇒ ¬Lturn(x, z, y).

3. Nondegeneracy: Lturn(x, y, z) ∨ Lturn(x, z, y).

4. Interiority: Lturn(x, y, t) ∧ Lturn(y, z, t) ∧ Lturn(z, x, t) =⇒
Lturn(x, y, z).

5. Transitivity: Lturn(x, y, z) ∧ Lturn(x, y, t) ∧ Lturn(y, z, t) ∧
Lturn(y, z, w) ∧ Lturn(t, y, w) =⇒ Lturn(x, y, w).

Figure 3. Knuth’s axioms for convex hull algorithms

predicate can be defined as

(v.x− u.x)(w.y − u.y)− (v.y − u.y)(w.x− u.x) > 0

where u.x and u.y are respectively the x- and y-coordinates of u.
We define Rch using an axiomatization of convex hull predi-

cates (Fig. 3) by Knuth [17]. Consider Fig. 6(a) again, and note
that Lturn(p1, p2, p3). Axiom 1 says that this implies the facts
Lturn(p3, p1, p2) and Lturn(p2, p3, p1); Axiom 2 says that we
cannot have Lturn(p1, p3, p2) in this case. Axiom 3 is an assump-
tion that no three input points are collinear (collinear points form a
degenerate case for convex hull algorithms).

Axiom 4 says that (Fig. 4 (a)) if p2 is to the left of −−→p1p2,−−→p2p3 and −−→p3p1, then p4 is inside the triangle 4p1p2p3, and more
over the triangle is oriented counter clockwise, or p3 is to the
left of −−→p1p2. Axiom 5 defines a transitivity property of Lturn: to
understand its geometric intuition, consider Fig. 4(b) with x =
p1, y = p2, z = p3, t = p4, and w = p5. In this case,
we have Lturn(p1, p2, p3), Lturn(p1, p2, p4), Lturn(p2, p3, p4),
Lturn(p2, p3, p5), Lturn(p4, p2, p5). The axiom demands that we
also have Lturn(p1, p2, p5), which is indeed true here.

p1

p2 p3

p4

p1 p2

p3

p4

p5

(a) (b)

Figure 4. Interiority and transitivity axioms

Axioms 1–5 are easily seen to be consistent with Euclidean
geometry. In [17], Knuth argues that if the results of all Lturn
predicate checks for a set of points satisfy these axioms, then a
convex hull always exists. While the above axioms are specific to
convex hulls, similar axiomatizations are known for other classes
of geometric computations.

3.2 Inconsistent convex hull
Consider the algorithm SIMPLECONVEXHULL [7] in Fig. 5,

which is a naive (and slow) algorithm for computing the convex
hull of a set of points S. Note that it is standard for convex hulls to
have a counterclockwise orientation. Following the convention de-
veloped earlier, we use Lturn(u, v, w) to denote the decision made
by the algorithm that ¬Lturn(u, v, w). The algorithm iterates over
all pairs of points (u, v) (as potential convex hull edges); if there
exists a point w such that the decision Lturn(u, v, w) is made,
then (u, v) is removed from the set of edges forming the convex
hull (since if (u, v) is an edge of the convex hull (in the counter-
clockwise direction), then every other point must lie to the left of
(u, v)). It is easy to see that if the algorithm is implemented using

Input: A set S of points in the 2D plane.
Output: A list E containing the edges of the convex hull
SIMPLECONVEXHULL(S)

1 E := ∅
2 for all ordered pairs (u, v) ∈ S × S with u 6= v
3 do valid := true
4 for all w ∈ S with u 6= w and v 6= w
5 do if ¬Lturn(u, v, w)
6 then valid := false
7 if valid
8 then add the directed edge (u, v) to E

Figure 5. Inconsistent convex hull

ideal reals, without any uncertainty, then SIMPLECONVEXHULL in
fact computes a convex hull.

On the other hand, under uncertainty (for example, due to
floating-point error), the decision Lturn(u, v, w) can evaluate non-
deterministically. Consider the input set in Fig. 6 where the correct
hull is illustrated in (a). Lturn(p1, p2, p3) is true, but the points
p1, p2, p3 are nearly collinear. First, note that the algorithm may
evaluate Lturn for all permutations of the three points p1, p2,
and p3. If, due to numerical uncertainty, the program decides that
Lturn(p1, p2, p3), Lturn(p2, p3, p1), and Lturn(p1, p3, p2), then
none of the three edges (p1, p2), (p2, p3), and (p1, p3) will belong
to the convex hull, and the resulting hull will be as illustrated in
(b), which is not even a closed curve. Similarly, we could have a
scenario where all three edges end up in the convex hull, where all
the three queries return true, and the result will be as in (c); again,
completely wrong, since it has two cycles.

p1

p2

p3 p4

p5

p6 p1

p2

p3 p4

p5

p6

p1

p2

p3 p4

p5

p6

(a) (b)

(c)

p1

p2

p3 p4

p5

p6

(d)

Figure 6. Inconsistency in convex hull

The main problem is that, for both cases (b) and (c), where de-
cisions Lturn(p1, p2, p3) and Lturn(p1, p3, p2) are both taken,
there is an inconsistency with the antisymmetry axiom of Fig.
3. The consistent executions of this program result in either
(a) or (d). The convex hull in (d) is obtained from deciding
that Lturn(p1, p2, p3), Lturn(p2, p3, p1), and Lturn(p1, p3, p2);
these decisions are not all correct, but they are consistent. Conse-
quently, while Figure (d) is slightly different from the ideal answer,
it is structurally a convex hull: an output that would be produced by
the ideal real-number algorithm on some input (this is an input in
which p2 is perturbed to move to the left of line−−→p1p3). In contrast,
(b) and (c) are outputs that the ideal algorithm could never produce.

To see why this difference is substantial, consider a procedure
that iterates over the “hull” computed by the convex hull routine,
starting with p2 and terminating when it comes back to p2 again. In
case (d), it will terminate as usual. In case (b), it will not be able to
proceed past p2. In (c), it could get stuck in an infinite loop.

The inconsistency of the above algorithm is by no means a rare
anomaly. Many everyday implementations of convex hulls (and
other geometric computations) are inconsistent. The crashes, infi-
nite loops, and other errors that inconsistency can lead to are well-
documented. We refer the reader to [21] for an in depth discussion
of the consequences of inconsistent geometric computations.

3.3 Consistent convex hull: Graham Scan [12]
Graham scan [12] (Fig. 8) is an example of a consistent convex hull
algorithm.

p1

p2

p3

p4

p5

p6

p0

Figure 7. Graham Scan

The point p0, which we
know belongs to H , is our “sen-
tinel”. In the main loop, we
check if the last two points u
and v of H together with a new
point w from S make a left turn
(this test is encoded using the
Lturn predicate). If so, then we
speculatively assume that these
points belong to the hull and add
w to H . If not, then v cannot
belong to the convex hull of S
(since both edges adjacent to v
have a point to the right of them, and therefore, they cannot be
convex hull edges), and we delete it from H . For example, upon
considering 〈p1, p2, p3〉 in the figure, p2 is deleted fromH . In gen-
eral, we keep deleting until the last two points in H together with
w make a left turn. Note that there is no bound on the number of
points that may be deleted during this step.

The Graham Scan algorithm, unlike the naive algorithm, is con-
sistent (we discuss why in Sec. 5). It is very difficult to reason about
consistency of this algorithm manually. One needs to reason about
all program paths containing unboundedly many facts (dependent
on the size of input) and argue that none contains an inconsistency
with respect to the axioms. An expert user may be able to argue
why none of the first 3 axioms (in Fig. 3) can ever be falsified by
this algorithm. The algorithm progresses in a way that, for every
three points p, q, and r, it evaluates the Lturn(p, q, r) predicate
exactly once (the last point r is always a fresh new point). There-
fore, it is not possible to find two predicate evaluations that are not
consistent with any of the first three axioms (which all need two
different evaluations of the predicate on two different permutations
of the same 3 points). But, extending this reasoning to axioms 4 and
5 manually is difficult. In the next section, we present an analysis
that is able to easily verify the consistency of the above algorithm.

We note that the assumption that the input points are sorted on
basis of their polar angle from p0 is needed for the algorithm’s
functional correctness. However, it is irrelevant to the program’s
consistency: even if the input points were ordered arbitrarily, the
decisions made in an execution of the algorithm would not violate
Knuth’s axioms, and structurally, the output would still be a simple
closed cycle. Our analysis chooses to ignore the assumption that
the input list is sorted in this way (this information is lost in ab-
straction), and still discovers an automated proof that the algorithm
is consistent.

4. Verifying consistency
In this section, we describe our method for algorithmic verification
of consistency. Let us fix a world Θ = (Base,O ,Q,R) and
a program P . The broad idea of our algorithm is to prove P

Input: A point p0 (right-most bottom-most point in the set) and (non-
empty) list of S of points. The points in S are assumed to be sorted on
basis of increasing polar angle from p0.
Output: List H containing the points forming the convex hull, also
sorted on basis of their polar angle from p0

GRAHAMSCAN(p0, S)

1 if |S| < 3 then return [p0;S]
2 H := [next(S);next(S)]
3 for w := next(S)
4 do
5 v := last(H); u := secondLast(H)
6 while ¬ Lturn(u, v, w)
7 do pop(H)
8 if |H| ≥ 2
9 then v := last(H) ; u := secondLast(H)

10 else break
11 Append w to H
12 w := p0; v := last(H); u := secondLast(H)
13 while ¬ Lturn(u, v, w)
14 do pop(H)
15 if |H| ≥ 2
16 then v := last(H) ; u := secondLast(H)
17 else break
18 Append p0 to H
19 return H

Figure 8. Consistent Convex Hull Algorithm: Graham Scan. The
operation secondLast returns the second last element of the list,
without modifying the list.

consistent by an inductive argument: each time a new decision
is made, we assume that the set of decisions that have already
been made are consistent and prove that the new decision does
not violate consistency (in combination with past decisions). We
automate this reasoning in two phases as follows.

In the first phase, we approximate the sets of decisions that can
be made by executions of P by constructing an integer abstraction
Π of P and then computing numerical invariants for Π. Example 2
illustrates the idea behind the integer abstraction, which models
objects as integer identifiers, and sets of decisions with sets of
integer tuples. We analyze Π with an abstract interpreter to compute
for each query location l of P :

1. A current-decision invariant dl that symbolically represents the
set of decisions that can be made at l.

2. A history invariant Hl that symbolically represents the set of
all decisions made along executions that end at location l.

Our representation of a set of decisions by a numerical invariant
makes use of a set of integer auxiliary variables which represent
the arguments of queries (recalling that our encoding represents
objects as integer identifiers). A set of decisions (i.e., a set of
tuples of objects) is represented by an arithmetic formula over the
program variables as well as the auxiliary variables. The set of
models of such a formula can be interpreted as a set of decisions
(or more accurately, as a function mapping program states to a set
of decisions).

For example, let us revisit the program of Example 2 (repro-
duced here for convenience).

1 x1 := next(X); x2 := next(X)
2 while X 6= ∅
3 do if Left(x1, x2) then skip else skip
4 x1 := x2; x2 := next(X)

Let us assume that the objects in the list have strictly increasing IDs
(e.g. the first point on the list has ID 1, the second ID 2, and so on),

and let us use auxiliary variables #1
Left and #2

Left to respectively
represent the IDs of the first and second arguments of the call to
Left. At line 3, we have the invariant x1 < x2, and we have
outgoing query transitions A(x1, x2) and A(x1, x2). The current-
decision invariant at this location is:

dl : #1
Left = x1 < x2 = #2

Left.

On the other hand, in a history invariant, #1
Left and #2

Left refer
to the IDs of the arguments of an arbitrarily selected past call to
Left, while x1 and x2 refer to the current program variables. Since
the program processes list elements in order of increasing IDs, the
following history invariant holds at Line 3:

Hl : #1
Left < #2

Left ≤ x1 < x2

In the second phase of the algorithm, we verify that for each
query location l in the program P , there is a model of the world
that is consistent with the decisions dl andHl (i.e., dl,Hl, and the
world axioms R together cannot derive false). The challenge here
is that there may be no obvious inconsistency between dl and Hl,
but false may be derived using the axioms in R (and there is no a
priori bound on the size of such a proof).

To overcome this challenge, we generate a logic program from
the world axiomsR that, given a current-decision invariant dl and a
history invariantHl, generates every decision that can follow from
the decisions in dl and Hl. The problem now reduces to verify-
ing that this system cannot possibly derive a contradiction. This
task can be solved automatically using existing fixpoint constraint
solvers, such as µZ [14]. Next, we describe the two phases of the
algorithm in detail.

4.1 Generating history and current-decision invariants
To generate the history and current-decision invariants used by our
consistency verification procedure, we first abstractP by a program
Π over the integers. In Π, each object accessed by P is modelled
as a integer ID.3 In addition to simulating the execution of P , Π
records the decisions it makes using a set of auxiliary variables
(denoted by #).

Constructing Π

We abstract lists λ by pairs consisting of the IDs of the first and last
element of λ. The challenge in this list abstraction is to maintain
information about a list λ as objects are added to it or removed
from it. Our approach to doing so is to maintain the invariant that
the objects in λ appear in an order sorted by their IDs (note that
there is no relation between these IDs and any values associated
with the objects themselves; we just assign the IDs to the elements
of the list in order in which they appear on the list). For instance,
let X0 and X1 respectively denote the IDs of the first and last
items in a list X . Assuming that our sortedness invariant holds, the
integer abstraction of next(X) returns the value ofX0 and setsX0

to a nondeterministically chosen value between the current values
of X0 and X1. Note that since the abstraction assigns the integer
IDs (they are not part of original object information), all the input
lists to the program are initially assumed to satisfy this invariant
(based on the precondition about the disjointness of the lists and the
elements on each list that we already mentioned in Section 2.2).

Of course, the sortedness invariant can be violated when the
program tries to insert an item x into a list X . We detect such vio-
lations by comparing the ID of x with the value X1; if sortedness
is violated, we conservatively flag the program as inconsistent.

3 Our analysis can be generalized to one where object IDs are not integers
but tuples of integers, or even more generally, elements of a partially
ordered set. For simplicity, we stick to integer IDs in this paper.

We now present the construction of Π formally. To avoid in-
troducing more notation, we describe the program Π in a DMP-like
syntax. An integer program is a tuple 〈Loc,Var , l0, T 〉, where Loc
is a set of locations, Var is a set of variables ranging over the in-
tegers and booleans, l0 ∈ Loc is an initial location, and T is a
set of transitions. Transitions between locations l and l′ have the
following forms:

• Test transitions 〈l | assume(b) | l′〉, where b is a linear
arithmetic formula,
• 〈l |havoc(x) | l′〉, which changes the value of the variable, x to

an arbitrary integer value,
• 〈l |x := e | l′〉, an assignment to variable x, and
• 〈l |assert(b) | l′〉, which asserts that a property b (expressed as

a linear arithmetic formula) holds.

We do not give a detailed semantics for these transitions as they
are standard. For simplicity, we sometimes write sequential com-
positions of transitions as a single transition—e.g., the syntax 〈l |
x := e; havoc(x) | l′〉 is abbreviation for a pair of transitions
〈l | x := e | l′′〉 and 〈l′′ | havoc(x) | l′〉, where l′′ is a location
that is not used anywhere else in the program.

Now, let P = 〈LocP ,VarP , l0,P , TP 〉. We construct the pro-
gram Π = 〈LocΠ,VarΠ, l0,Π, TΠ〉 as follows:

• The initial location l0,Π of Π is a fresh location, not in LocP .
LocΠ contains LocP and l0,Π, and also a number of auxiliary
locations introduced in the translation of transitions (Fig. 9). Π
inherits a notion of query locations from P : for all α ∈ Q ∪ Q,
we define LocαΠ = LocαP .
• VarΠ is the least set such that:

1. For each object-valued variable x in P , VarΠ contains an
integer-valued variable that tracks the ID of x. Abusing
notation, we call this variable x as well.

2. For every list-valued variable X in P , VarΠ contains two
integer-valued variables X0 and X1 that track the IDs of
the first and last elements of X .

3. For each A ∈ Q and each 1 ≤ i ≤ m, VarΠ has an
integer-valued variable #i

A ranging over the integers. These
variables are used to record A-decisions.

4. VarΠ contains a special boolean-valued variable flagA for
each A ∈ Q. This variable is set to true when the #i

A

variables are initialized — i.e., the arguments of some query
is assigned to them. Initially, each flagA variable is false .

• The set of transitions TΠ of Π is defined by the rules in Fig. 9.
Here, the rule INIT captures the fact that the #i

As are unini-
tialized at the beginning of program executions. The two rules
QUERY-1 and QUERY-2 abstract query transitions. One of them
sets the #A variables while the other does nothing — together,
they model a nondeterministic choice to save the arguments of
a decision in the #A variables. The remaining rules are inte-
ger abstractions of updates to and tests of object and list-valued
variables.

Current-decision and History Invariants
Having constructed an integer program abstraction Π of P , we may
use standard techniques to generate for each location l ∈ LocΠ a
(numerical) history invariant Hl. Our implementation employs an
abstract interpreter over a domain of partitioned octagons, which
we describe further in Sec. 5.1. Each Hl is a linear arithmetic
formula over the variables VarΠ, which includes the variables
which correspond to object-valued variables of P as well as the
auxiliary # and flagvariables.

(Init)
Q = {A1, ..., A|Q|}

〈l0,Π |flagA1
:= false; . . . ;flagA|Q|

:= false | l0〉 ∈ TΠ
(Asgn)

〈l | x1 := x2 | l′〉 ∈ TP
〈l | x1 := x2 | l′〉 ∈ TΠ

(Test-empty)
〈l | assume(X = ∅) | l′〉 ∈ TP
〈l | assume(X0 > X1) | l′〉 ∈ TΠ

(Test-not-empty)
〈l | assume(X 6= ∅) | l′〉 ∈ TP
〈l | assume(X0 ≤ X1) | l′〉 ∈ TΠ

(Query-1)
〈l |α(x1, . . . , xm) | l′〉 ∈ TP α ∈ {A} ∪ {A}

〈l | #1
A := x1; . . . ;#mA := xm;flagA := true | l′〉 ∈ TΠ

(Query-2)
〈l |α(x1, . . . , xm) | l′〉 ∈ TP α ∈ {A} ∪ {A}

〈l | assume(true) | l′〉 ∈ TΠ

(First)
〈l | x := first(X) | l′〉 ∈ TP

〈l | assert(X0 ≤ X1);x := X0 | l′〉 ∈ TΠ
(Next)

〈l | x := next(X) | l′〉 ∈ TP
〈l |x := X0; havoc(X0); assume(x < X0 ≤ max(X1, X0 + 1) | l′〉 ∈ TΠ

(Last)
〈l | x := last(X) | l′〉 ∈ TP

〈l | assert(X0 ≤ X1);x := X1 | l′〉 ∈ TΠ
(TL)

〈l | x := pop(X) | l′〉 ∈ TP
〈l |x := X1; havoc(X1); assume(min(X0, X1 − 1) ≤ X1 < x) | l′〉 ∈ TΠ

(LA)
〈l | X1 := X2 | l′〉 ∈ TP

〈l | X0
1 := X0

2 ;X
1
1 := X1

2 | l′〉 ∈ TΠ
(Empty)

〈l |X := ∅| l′〉 ∈ TP
〈l |havoc(X0); havoc(X1); assume(X0 > X1) | l′〉 ∈ TΠ

(App)
〈l | append(x,X) | l′〉 ∈ TP

〈l |assume(X0 > X1);X0 := x;X1 := x | l′〉 ∈ TΠ
〈l |assume(X0 ≤ X1); assert(x > X1);X1 := x | l′〉 ∈ TΠ.

(AF)
〈l | prepend(x,X) | l′〉 ∈ TP

〈l |assume(X0 > X1);X0 := x;X1 := x | l′〉
〈l |assume(X0 ≤ X1); assert(x < X0);X0 := x | l′〉

Figure 9. Construction of the transitions TΠ of Π from P = 〈LocP ,VarP , l0,P , TP 〉

Our construction of Π ensures that any such formula Hl can
be interpreted as a mapping from traces to sets of decisions made
along those traces. The intuition behind this interpretation is as
follows. Let ρ be a program trace, which ends in a state (l, σ).
For any A, consider the set of models of Hl which send each
variable to its value in σ and in which the #A variables have been
initialized (flagA is true). Each such model M corresponds to an
A-decision, namely, the decision A(M(#1

A), ...,M(#m
A)) (where

M(#i
A) denotes M ’s interpretation of the variable #i

A). The set of
decisions obtained from models of Hl in this way is a superset of
the set of decisions made along ρ. The precise statement of this
interpretation ofHl is the following lemma.

Lemma 1. Suppose that ρ is an execution of P , ending in a state
(l, σ). Let id be any mapping from the objects accessed in ρ to
integer IDs such that IDs increase along every list in the initial
state of ρ. Let A ∈ Q, and let V be the set of all variables in VarΠ

except the #A variables. Define

Hl,A = ∃V.
(
Hl ∧ flagA = true ∧

∧
x∈VarP

x = id(σ(x))
)
.

Then for any A(p1, ..., pm) ∈ Dec(ρ), the model M that sends
each #i

A to pi is a model ofHl,A (and similarly for any A(p1, ..., pm) ∈
Dec(ρ)).

Proof. Let ρ = (l0, σ0)
t0−⇀ (l1, σ1)· · · (ln, σn), with ln = l. Let

α(p1, ..., pm) ∈ Dec(ρ). Then there is some i such that

• ti = 〈li |α(x1, . . . , xm) | li+1〉
• for all j ∈ {1, ...,m}, pj = σi(xj).

With the exception of query, append, and prepend transitions,
for any transition of P , there is a unique sequence of correspond-
ing transitions in Π, given in Fig. 9. For append and prepend tran-
sitions, there are two corresponding transitions, but their guards are
disjoint so there is a unique choice for the translation of these tran-
sitions when the pre-state is fixed. For query transitions there are
two corresponding transition sequences given by the (Query-1) and
(Query-2) rules. Consider the execution ρΠ of Π which executes the
sequence of transitions corresponding to ρ, using the (Query-1) rule

for the query transition ti and (Query-2) for all other query transi-
tions along ρ, (and which chooses the “correct” non-deterministic
updates to the list variables to make the executions ρ and ρΠ agree).

Let (l, σΠ) be the final state of ρΠ. Then σΠ sends each object-
valued variable x to id(σ(x)), sends each #i

A to id(pi), and sends
flagA to true . Since Hl is an invariant at location l, we must have
σΠ |= Hl. It follows that M , the restriction of σΠ to the #i

A

variables, is a model of Hl,A.

Now we describe how to compute current-decision invariants.
Consider a query location l with an outgoing query transition 〈l |
α(x1, . . . , xm) | l′〉, where α ∈ {A, A} for some A ∈ Q. By the
syntactic assumptions laid out in Sec. 2, l has no other outgoing
transition. The current-decision invariant at l can be computed from
Hl as:

dl = (∃#.Hl) ∧

(
m∧
i=1

(xi = #i
A)

)
where ∃# denotes the existential quantification of each #-variable.
Intuitively, dl constrains the relationships between the program
variables and the objects involved in the “new” decision made at
l.

4.2 Proving Consistency of Decisions
Once the history (Hl) and current-decision (dl) invariants have
been generated for each query location l, consistency verification
can be reduced to the problem of proving false cannot be derived
from the combination of Hl, dl, and the world axioms R. Our
reduction makes use of our inductive assumption that there is no
derivation of false using only decisions fromHl.

Now we show how to automate this proof obligation.

Decision proof systems
For expository purposes, we will begin by defining decision proof
systems, a Datalog-like normal form for the world axiomsR. After,
we proceed to the construction of a logic program that can be used
to verify consistency of the program P .

Normalized axioms can be of two forms:

• Generators: These rules derive new decisions that are logical
consequences of decisions taken by the program. Formally, a

generator is a rule of the form

α(y1, . . . , ym) ← α1(y11, . . . , y1m)∧· · ·∧αk(yk1, . . . , ykm)

where α, αi are in (Q ∪ Q), and the yij’s range over objects.
• Violators: These rules identify direct contradictions between

decisions that have either been made by the program or derived
by the generators. Such a rule has the form

⊥← Ai(y1, . . . , ym) ∧ Ai(y1, . . . , ym).

where⊥ is a special symbol (intuitively indicating false), A ∈ Q
and the yi’s range over objects.

We interpret the relations in the above rules as sets of decisions, and
the rule as a way to derive new decisions or derive contradictions.

Now we describe how to construct a decision proof systemMR
from a set of axioms R. First, we construct the formula

∧
R∈RR

and convert it into the conjunctive normal form (per our current
notation, we assume that the initial quantifiers are omitted from
formulas inR). Let the resultant formula have clausesC1, . . . , Cn.

Now consider any clause Cj = t1 ∨ · · · ∨ tk of the formula
constructed in the previous step. Here, each ti is either of the form
Ai(yi1, . . . , yim1) or of the form ¬Ai(yi1, . . . , yim). We define
two literals ti and ti for each ti. If ti = Ai(yi1, . . . , yim), then
we have

ti = Ai(yi1, . . . , yim) ti = Ai(yi1, . . . , yim).

If ti = ¬Ai(yi1, . . . , yim), then we have

ti = Ai(yi1, . . . , yim) ti = Ai(yi1, . . . , yim).

MR is defined to be the least set of rules such that:

1. For each clause Cj = t1 ∨ · · · ∨ tk and each r ∈ {1, ..., k},
MR has the generator

tr ← t1 ∧ · · · ∧ tr−1 ∧ tr+1 ∧ · · · ∧ tk.

2. For each predicate A ∈ Q,MR has the violator

⊥← A(y1, ..., ym) ∧ A(y1, ..., ym).

Example 3. Consider once again the world Θtc of Example 1,
which supports the predicate Left over 1-D points. The following
decision proof systemMRtc is obtained from the axioms of Θtc :

Left(y1, y2) ← Left(y2, y1)

Left(y1, y2) ← Left(y2, y1)

Left(y1, y3) ← Left(y1, y2) ∧ Left(y2, y3)

Left(y2, y3) ← Left(y1, y2) ∧ Left(y1, y3)

Left(y1, y2) ← Left(y2, y3) ∧ Left(y1, y3)
⊥ ← Left(y1, y2) ∧ Left(y1, y2)

Proving consistency
We now show how to construct (from the current-decision invari-
ants, and history invariants, and the decision proof system) a logic
program which derives the symbol ⊥ if P is inconsistent. If this
logic program cannot derive ⊥, this proves that P is consistent.

First, we provide some intuition. Let l be a query location. We
compute for each predicate A ∈ Q a relation Hist l,A which relates
the final states of program executions that end at l to the decisions
of the form A(...) or A(...) which are logical consequences of the
decisions made along those executions.4 We also compute for each
α ∈ Q∪Q a relation New l,α, which is similar to Hist l,A except that

4 Note that since the outcome of decisions are uncertain, we need not
compute a corresponding Hist l,A relations, because it would be they would
be identical to the Hist l,A relations.

it includes the decision made at l, but not necessarily the decisions
which are consequences of decisions in Hist l,A.

The sets Hist l,A and New l,α can be described using a set
of Datalog-style rules, given in the following. We use ~x =
〈x1, . . . , xn〉 to denote the list of the variables corresponding to
object-valued variables of P . These variables will be “threaded
through” each of the inference rules, so they may be thought of as
symbolic constants that help to mediate relationships between the
current decision and previous decisions. Alternately, they may be
thought of as a way of adding a degree of path-sensitivity to our
analysis: we may think of each valuation of the variables ~x as a
“universe”, and threading ~x through each inference rule as a way
of keeping universes separate.

We begin with rules that “initialize” Hist l,A and New l,α using
the history and current-decision invariants:

Hist l,A(y1, . . . , ym, ~x) ← Hl[#1
A 7→ y1; . . . ; #m

A 7→ ym]

∧flagA

New l,α(y1, . . . , ym, ~x) ← dl[#
1
A 7→ y1; . . . ; #m

A 7→ ym]

if l ∈ LocαΠ and α ∈ {A, A}
New l,α(y1, . . . , ym, ~x) ← ∅ otherwise

Now we give rules to derive the consequences of decisions in dl
taken together with decisions inHl. For each generatorRg ∈MR
of the form

α(y1, . . . , ym) ← α1(y11, . . . , y1m) ∧ · · · ∧ αk(yk1, . . . , ykm),

where α ∈ {A, A} and for all i, αi ∈ {Ai, Ai}, we add:

Hist l,A(y1, . . . , ym, ~x) ← Hist l,A1(y11, . . . , y1m, ~x) ∧ . . .
∧Hist l,Ak (yk1, . . . , ykm, ~x)

New l,α(y1, . . . , ym, ~x) ← Ωl,α1(y11, . . . , y1m, ~x) ∧ . . .
∧Ωl,αk (yk1, . . . , ykm, ~x)

where Ωl,αi ∈ {New l,αi ,Hist l,Ai} and such that at least one of
the Ωl,αi ’s is New l,αi . The requirement that at least one of the
Ωl,αi ’s is New l,αi ensures that New l,α does not include decisions
that are solely derived from decisions inHl. This is used to encode
our inductive assumption that there are no inconsistencies inHl.

Finally, for each predicate A ∈ Q, we generate three violator
rules that detect direct contradictions:

⊥← New l,A(y1, ..., ym, ~x) ∧Hist l,A(y1, ..., ym, ~x)

⊥← New l,A(y1, ..., ym, ~x) ∧Hist l,A(y1, ..., ym, ~x)

⊥← New l,A(y1, ..., ym, ~x) ∧New l,A(y1, ..., ym, ~x)

LetMΠ,R be the system of all rules constructed as above. We
have the following lemma:

Lemma 2. Suppose that program P is inconsistent. Then ⊥ be-
longs to the least fixpoint ofMΠ,R.

Proof. Let ρ = (l0, σ0)
t0−⇀ (l1, σ1)· · · (ln, σn) be an execution

of the program P such that MR can derive ⊥ from Dec(ρ).
Without loss of generality, we may assume no proper prefix of ρ
satisfies this property. It follows that tn−1, the last transition of ρ,
must be a decision transition 〈ln−1 | α(z1, ..., zm) | ln〉 for some
α, z1, . . . , zm. For notational convenience, we use l to denote ln−1,
and use ρ′ to denote the trace ρ with its last action omitted. Let id
be any mapping form the object accessed in ρ to integer IDs such
that IDs increase along every list in the initial state σ0. Let ~x be the
vector of the object-valued variables of P , and define

~p = 〈id(σn−1(x1)), ..., id(σn−1(xn))〉
Let T be a derivation tree for ⊥ using the inference rules in

MR, with the elements of Dec(ρ) taken as axioms.

Initialization:

New Left(y1, y2, x1, x2)← x1 = y1 < y2 = x2

New Left(y1, y2, x1, x2)← x1 = y1 < y2 = x2

HistLeft(y1, y2, x1, x2)← y1 < y2 ≤ x1 < x2

Totality:

HistLeft(y1, y2, x1, x2)← HistLeft(y2, y1, x1, x2)

HistLeft(y1, y2, x1, x2)← HistLeft(y2, y1, x1, x2)

New Left(y1, y2, x1, x2)← New Left(y2, y1, x1, x2)

New Left(y1, y2, x1, x2)← New Left(y2, y1, x1, x2)

Violators:

⊥ ← HistLeft(y1, y2, x1, x2) ∧New Left(y1, y2, x1, x2)

⊥ ← New Left(y1, y2, x1, x2) ∧HistLeft(y1, y2, x1, x2)

⊥ ← New Left(y1, y2, x1, x2) ∧New Left(y1, y2, x1, x2)

Transitivity:

HistLeft(y1, y3, x1, x2)← HistLeft(y1, y2, x1, x2) ∧HistLeft(y2, y3, x1, x2)

HistLeft(y2, y3, x1, x2)← HistLeft(y1, y2, x1, x2) ∧HistLeft(y1, y3, x1, x2)

HistLeft(y1, y2, x1, x2)← HistLeft(y1, y2, x1, x2) ∧HistLeft(y1, y3, x1, x2)

New Left(y1, y3, x1, x2)← New Left(y1, y2, x1, x2) ∧New Left(y2, y3, x1, x2)

New Left(y1, y3, x1, x2)← HistLeft(y1, y2, x1, x2) ∧New Left(y2, y3, x1, x2)

New Left(y1, y3, x1, x2)← New Left(y1, y2, x1, x2) ∧HistLeft(y2, y3, x1, x2)

New Left(y2, y3, x1, x2)← New Left(y1, y2, x1, x2) ∧New Left(y1, y3, x1, x2)

New Left(y2, y3, x1, x2)← HistLeft(y1, y2, x1, x2) ∧New Left(y1, y3, x1, x2)

New Left(y2, y3, x1, x2)← New Left(y1, y2, x1, x2) ∧HistLeft(y1, y3, x1, x2)

New Left(y1, y2, x1, x2)← New Left(y1, y2, x1, x2) ∧New Left(y1, y3, x1, x2)

New Left(y1, y2, x1, x2)← HistLeft(y1, y2, x1, x2) ∧New Left(y1, y3, x1, x2)

New Left(y1, y2, x1, x2)← New Left(y1, y2, x1, x2) ∧HistLeft(y1, y3, x1, x2)

Figure 10. MΠ,Rtc for the program in Example 2.

For any subtree T ′ of T , we say that T ′ is new if one of its
axioms is α(σn−1(z1), ..., σn−1(zm)); otherwise, we say T ′ is
old. We first prove that for any old subtree T ′ of T with root
α′(q1, ..., qm), we have

〈id(σn−1(z1)), ..., id(σn−1(zm)), ~p〉 ∈ Hist l,A

(where α′ ∈ {A, A}).

• Base case: T ′ is an axiom, so we must have

α′(p1, ..., pm) ∈ Dec(ρ′)

It follows from Lemma 1 and the fact that Hist l,A is closed
under the following inference rule:

Hist l,A(y1, . . . , ym, ~x) ← Hl[#A
1 7→ y1; . . . ; #A

m 7→ ym]

∧flagA

that 〈p1, . . . , pm, ~p〉 ∈ Hist l,A.
• Inductive step: T ′ ends with the application of a generator rule
Rg ∈MR, say

α(q1, . . . , qm) ← α1(q11, . . . , q1m)

∧ · · ·
∧ αk(qk1, . . . , qkm)

(where α ∈ {A, A} and αi ∈ {Ai, Ai}). Let T1, . . . , Tk
be the subtrees of T corresponding to the premises of Rg .
Since each of T1, . . . , Tk is a proper subtree of T , we have
〈qi1, ..., qim, ~p〉 ∈ Hist l,Ai for each i by our inductive hypoth-
esis. Since Hist l,A is closed under the following inference rule:
Hist l,A(y1, . . . , ym, ~x) ← Hist l,A1(y11, . . . , y1m, ~x) ∧ · · ·

∧Hist l,Ak (yk1, . . . , ykm, ~x)
we have that 〈q1, . . . , qm, ~p〉 ∈ Hist l,A.

We can use a similar argument to show that for any new sub-
tree T ′ of T with root α′(q1, ..., qm), we have 〈q1, ..., qm, ~p〉 ∈
New l,α′ .

The final inference rule used in T must be the application of
a violator rule. At least one of the immediate subtrees of T must
be new, since if they are all old, the axioms of T are contained in
Dec(ρ′) which violates our minimality assumption. It follows that
we may use one of the violator rules to derive ⊥, and therefore ⊥
belongs to the least fixpoint ofMΠ,R.

Example 4. The logic program MΠ,Rtc constructed for the pro-
gram program Ptc in Example 2 (with respect to the specification
of the world Θtc) is given in Figure 10. Since the only query loca-
tion is Line 3 of the program, we omit location subscripts in this
figure. µZ is able to determine that this program cannot derive ⊥,
so the program Ptc is certified consistent.

Summarizing, our algorithm CHECK-CONSISTENCY for veri-
fying the consistency of P is as follows. First we construct an
integer abstraction Π and generate numerical invariants using an
abstract interpreter. We check that each assertion in the program is
safe according to the invariants produced by the abstract interpreter;
if a assertion violation is found (indicating a violation of our sorted
list abstraction), we report P to be possibly inconsistent. Second,
we construct the logic programMΠ,R and check ifMΠ,R can de-
rive ⊥. If it can, we report P to be possibly inconsistent, otherwise
we report P to be consistent.

By Lemma 2, we immediately have:

Theorem 1. If the algorithm CHECK-CONSISTENCY certifies a
program P to be consistent, then P is consistent.

4.3 Limitations
Our algorithm is sound but incomplete. There are several possible
sources of loss of precision here: (1) the abstraction of lists by pairs
of integers, which require to maintain the invariant that the lists
are sorted by IDs; (2) the limitations of the abstract interpretation
used to compute the history and current-decision invariants; and
(3) the incompleteness of µZ. In our empirical experience so far,
these inaccuracies have not mattered much. The only substantial
source of imprecision has been the abstraction of lists by pairs, but
as elaborated in the next section, only in two of our benchmark
examples does this pose a problem. Also, one could presumably
eliminate this issue with a more sophisticated list abstraction.

5. Implementation and evaluation
We have implemented our approach and experimented with a col-
lection of standard geometric algorithms. In this section, we report
on the results. It is important to bear in mind that (1) it is very
difficult to declare an algorithm consistent/inconsistent by a light
inspection (even by an expert user), and (2) it is even more difficult
to manually prove it is consistent.

5.1 Implementation
Our tool is implemented in OCaml on top of a CIL [23] frontend.
In addition to taking a C file as input, the tool requires the user to
supply a proof systemM (in the form of a set of rules; see Fig. 3).
The tool operates in three phases. First, an integer C program is
generated from the original program. Then, numerical invariants
are generated for the integer program using an abstract domain we
will describe below. Then, for each control point in the program
at which a decision is made, two Datalog programs are generated
(using the invariants from the first phase and the decision proof
systemM): one Datalog program for the case that the new decision
is positive, and one for the case that its negative. Lastly, we use µZ
[14] to check whether a query in any of these Datalog programs
succeeds; if all queries fail, then the input program is consistent.

The abstract domain we use to generate numerical invariants is
a partitioned octagon domain. Partitioning is a technique used to
reduce the precision lost in an abstract domain due to an imprecise
join operator [3]. An element of this domain is a partial function f
from a finite set of cells to octagons. The cells form a covering of
the state space, and we require that for every cell c, the concretiza-
tion of the octagon f(c) lies inside c; such a function represents a
finite disjunction of octagons, where each octagon belongs to a dif-
ferent cell. In our partitioning scheme, the cells corresponds to sets
of program variable equalities. We built our partitioned octagon do-
main on top of the octagon domain implemented in APRON [2].

5.2 Benchmarks
We collected a set of geometric algorithms from computational ge-
ometry textbooks [8, 9]. These include several convex hull algo-
rithms, a few point location algorithms, and a few triangulation al-
gorithms. Algorithms like this are the core building blocks of geo-
metric libraries such as CGAL [1].

The algorithms are presented in the books as pseudocode, and
therefore, there is occasionally more than one way of implementing
them. Note that we are not referring to implementation details such
as choice of data structures; we included more than one version of
the same algorithm whenever there was an algorithmic choice about
list traversal strategies and other similar notions that can make a
difference in the outcome of our verification algorithm. Below, we
provide a high level summary of the benchmarks.

Convex Hulls. We have already discussed two convex hull algo-
rithms: SIMPLECONVEXHULL and GRAHAMSCAN in Sec. 3. The
former is not consistent. We discuss the details of the consistency
check for the latter in the following. The set of benchmarks consists
of three other convex hull algorithms: the Gift Wrapping algorithm,
the Incremental Hull algorithm, and Fortune’s algorithm. For the
Gift Wrapping algorithm, we present two different variations on
how the point set is traversed. The incremental hull is a recursive
algorithm which has three variations on how the recursive step is
performed. Fortune’s algorithm uses a major subroutine that com-
putes a half of a convex hull (which is effectively called twice);
we include this subroutine as a separate benchmark. Note that For-
tune’s consistency is not trivially implied by the consistency of this
subroutine. In [8], a slight variation of Fortune’s original algorithm
[10] was presented which is inconsistent (in contrast to the origi-
nal algorithm being designed specifically to be consistent). Since
all other examples were collected from textbooks, we included this
version in the set of benchmarks as well.

Triangulation. A triangulation of a planar point set P is a sub-
division of the plane determined by a maximal set of non-crossing
edges whose vertex set is P . The word maximal in the definition in-
dicates that any edge not in triangulation must intersect the interior
of at least one of the edges in the triangulation.

(Rule G1) Lturn(y, z, x)← Lturn(x, y, z)

(Rule G2) Lturn(y, x, z)← Lturn(x, y, z)

(Rule G4) Lturn(x, y, z)← Lturn(x, y, s)∧ Lturn(y, z, s)
∧ Lturn(z, x, s)

(Rule G5) Lturn(x, y, t)← Lturn(x, y, z) ∧ Lturn(x, y, s)
∧ Lturn(y, z, s) ∧ Lturn(y, z, t) ∧ Lturn(s, y, t)

(Rule V1) ⊥ ← Lturn(x, y, z) ∧ Lturn(x, y, z)

Figure 11. Decision proof system for the Lturn predicate.
In our benchmarks we have Triangle Splitting, Incremental tri-

angulation, and Delaunay triangulation. Triangle Splitting makes
use of a point location algorithm (see below), and therefore, its
consistency depends on the consistency of the underlying point lo-
cation algorithm (i.e., if the latter is inconsistent, then the former
is also inconsistent). Since we have two different point location al-
gorithms in our benchmarks, we have two versions of the Triangle
Splitting algorithm respectively. Incremental triangulation is algo-
rithmically similar to the incremental convex hull and we similarly
included three versions of it depending on the recursing strategy.
Both Triangle Splitting and Incremental triangulation algorithms
use the same Lturn predicate that is used by the convex hull algo-
rithms.

Delaunay triangulation is a specific type of triangulation that
has special uses in many areas, e.g. in terrain reconstruction. These
algorithms use an operation called flipping to turn an arbitrary tri-
angulation into a Delaunay one or to construct a Delaunay trian-
gulation incrementally. Flipping relies on a new predicate called
InCircle that tests if a given point lies within a given circle. The
predicate comes with its own complete set of axioms [17] — for
brevity, we omit the definition of this new predicate and its corre-
sponding axioms here and refer the interested reader to [17]. Unfor-
tunately, all textbook Delaunay triangulation algorithms are incon-
sistent, and this inconsistency leads to nontermination under some
inputs.

Point Location. In a point location algorithm, the input is usually
a triangulation (of a point set) and a point p, and the goal is to find
the particular triangle that contains p. Point location queries arise in
various settings, such as finding one’s location on a map and com-
puter graphics (it is an essential part of ray-tracing algorithms). In
the example that we now consider, the location is a target trian-
gle. There are various inconsistent point location algorithms; For-
tune [10] proposed a consistent algorithm for point location. We
included Fortune’s algorithm and a standard inconsistent algorithm
that is routinely used in ray tracer implementations.

Axioms and decision proof system. All our benchmarks use the
Lturn predicate introduced earlier; we assume an axiomatization
as in Fig. 3 for this predicate. Fig. 11 offers a sketch of the decision
proof system derived from these axioms. Here, Rules G1 and G2
represent the nondegeneracy case of axiom 3 in Fig. 3. Rules G1
corresponds to the cyclic symmetry and antisymmetry axioms,
while rules G4 and G5 represent the interiority and transitivity
axioms. Rule V1 is the violator rule for the Lturn predicate.

5.3 Experimental Results
Table 1 presents the result of the experiments carried out using our
tool. The upper, middle, and the lower part of the table respectively
show the results for a variety of convex hull, point location, and
triangulation algorithms.

The first two columns (after the benchmark names) indicate
whether the benchmark is consistent and whether our tool man-
aged to prove it consistent. A “NO” answer by the tool means that
a counterexample was found for the consistency of the integer C

Benchmark Consistent? Proved Consistent? Invariant Generation Time Consistency Analysis Time Invariant Size
SlowHull NO NO 14s 2s 780 (2)
Graham Scan YES YES 22s 38s 4188 (4)
Gift Wrapping v1 NO NO 24s 2s 1494 (2)
Gift Wrapping v2 NO NO — — —
Incremental Hull v1 YES YES 1m5s 44s 4454 (2)
Incremental Hull v2 YES YES 1m1s 2m23s 5904 (2)
Incremental Hull v3 YES NO 1m35s 22s 22658 (4)
Fortune (half) Hull YES YES 10s 13s 774 (2)
Fortune Hull YES YES 2m43s 5m17s 30088 (8)
Fortune Hull (t) NO NO 48s 10s 10440 (6)
Point Location v1 YES YES 25s 2m28s 2608 (4)
Point Location v2 NO NO 1m26s 2s 566 (6)
Hull Triangle Location NO NO 1m38s 4s 2202 (6)
Incremental Triangulation v1 YES YES 1m12s 44s 4454 (2)
Incremental Triangulation v2 YES YES 1m8s 2m23s 5904 (2)
Incremental Triangulation v3 YES NO 1m38s 31s 22658 (2)
Triangle Splitting v1.1 YES YES 40s 2m28s 2608 (4)
Triangle Splitting v1.2 NO NO 1m45s 2s 566 (6)
Triangle Splitting v2 NO NO — — —
Delaunay Triangulation v1 NO NO 6s 0s 152 (2)
Delaunay Triangulation v2 NO NO — — —

Table 1. Automated Consistency Verification Results. Invariant Generation Time refers to the time that it takes for the invariants to be
generated for the integer program. Consistency Analysis time refers to the time that it takes µZ to prove the consistency claims. Invariant
Size refers to the size of the invariants (in number of conjuncts); where there is more than one decision location in the program, we add the
invariants up into a total number, but indicate the number of claims within parentheses.

program. However, since this integer program is an overapproxi-
mation of the behaviour of the original C program, the counterex-
ample may not be a real one. Note that since our tool is sound, a
NO/YES combination is not a possibility for these two columns.
And, since it is not complete, a YES/NO option is a possibility.

For some of the benchmarks, no times are reported. This is be-
cause the benchmark was declared inconsistent in the integer pro-
gram generation phase, since the proper ordering constraints were
not followed while manipulating lists in the program. Interestingly,
in all such cases, the program is indeed inconsistent.

Summary of Results. Out of the 21 benchmarks, 9 are consistent.
There are 3 inconsistent benchmarks that are declared inconsistent
when the integer program generation fails to generate a meaningful
program. Note that the µZ terminates much faster in the case where
an inconsistency is found since it finds a satisfiable assignment
relatively quickly in these cases, whereas for the consistent cases,
it has to effectively prove the lack of a satisfiable assignment.

For almost all (except two) benchmarks, if the program is con-
sistent, our tool succeeds to prove it. For a variation of Incremental
convex hull (v3) and the corresponding incremental triangulation
algorithm (v3), the list abstraction is too coarse to prove the exam-
ple consistent. The reason for inconsistency is that in the integer
program, the program is practically making repeat queries. In our
uncertain semantics, we assume that repeat queries may get differ-
ent result from the original ones. If we drop this assumption, then
the tool can be easily tuned to prove these two benchmarks consis-
tent as well. The fact that we can prove almost all consistent exam-
ples correct using our tool suggests that our proposed abstraction
technique is powerful despite its simplicity.

5.4 Detailed Discussion of Graham Scan
We discussed the Graham Scan algorithm as an example in Sec. 3.
Here we provide a more detailed consistency argument, to provide
some intuition why our tool succeeds in proving it consistent.

First, an integer program is generated from this program. Here,
we assume that the points in S are assigned integer IDs in the order
that they are fetched from the input list (from 1 to |S|). The point
p0 has an ID 0. As stated earlier, we ignore the assumption that

the input points are sorted according to their polar angle. From this
point on, we just refer to the points by their numeric identifiers.

Now consider line 6 of the Graham Scan code (Fig. 8), where
the query Lturn(u, v, w) is made. We note that u < v < w is
an invariant here, and from this observation, we can deduce the
following history invariant for this location:

H(#1,#2,#3, u, v, w, p0) ≡ p0 < #1 < #2 < #3.

Now consider the new decision that is about to be made at
line 6: Lturn(u, v, w). Invariant generation provides us with the
following facts about values of u,v, and w:

dLturn(#1,#2,#3, u, v, w, p0) ≡ u < v < w ∧ w > #3

∧ p0 < #1 < #2 < #3

Note that the actual invariant generated by our tool contains many
more conjuncts and variables. Here, we are stripping it to the
essential core to demonstrate the reasoning. Also, this is a specific
case where the outcome of the query was false. There will be a
similar case where the outcome of the query is true,

dLturn(#1,#2,#3, u, v, w, p0) ≡ u < v < w ∧ w > #3

∧ p0 < #1 < #2 < #3

but the reasoning below will be the same (though done separately
for each of) the two cases.

Combining the information for the history and the current deci-
sion, it is easy to argue that if the history is already consistent, then
the new decision added will not create any new inconsistencies with
respect to any of the rules in Fig. 11. Since the third argument w
is (provably) strictly greater than the arguments #1,#2,#3 which
characterize all past decisions, it is easy to see why this is the case.
Each argument of the Lturn predicate appears at least twice among
the premises of every single rule in Fig. 11; therefore, any decision
with fresh new point w cannot be involved in generating any new
facts or causing a violation. The actual reasoning for this is done
by µZ in our implementation.

Now consider the decision at line 14. Here, w never changes
and always points to p0 (i.e. idw = 0). Naturally, the history for
line 6 is also part of the history for line 14. But the history for line
14 also includes the decisions made previously in the same loop.

Our analysis produces the following history invariant:

H(#1,#2,#3, u, v, w, p0) ≡ (p0 < #1 < #2 < #3) ∨
(p0 < #1 < #2 ∧#3 = p0)

where the first disjunct refers to the history based on the decisions
made at line 6 and the second disjunct refers to the history based
on the decisions made at line 14. The current decision invariant is:
dLturn(#1,#2,#3, u, v, w, p0) ≡

((u < v) ∧ w = p0 ∧ (p0 < #1 < #2 < #3))
∨ ((u < v) ∧ (w = p0) ∧ (v > #2) ∧
(p0 < #1 < #2) ∧ #3 = p0))

and, similar to above, there is a positive version of this decision. It
is a bit harder to manually reason about this case. Intuitively, it is
easy to reason that the decision, where the last argument is always a
fresh new value 0, cannot generate any new facts or violations when
considered together with the history decisions that are generated at
line 6 (in which 0 never appears).

The argument about why no new violations are created as a
result of combining the new decision with the part of history that
comes from line 14 is similar to the case of line 6.

6. Related work
The problem of consistency has been studied in depth in the com-
putational geometry literature [15, 16, 21, 26]. This literature has
developed several subtly different notions of consistency for geo-
metric programs; our definition coincides with a definition used by,
among others, Fortune [10]. However, so far as we know, there is
no prior work on static verification of consistency in this area: to
the extent that verification is mentioned at all, it is stated to be “too
difficult to be realistic” [20]. Instead, existing approaches focus on
dynamic techniques that are often based on high-precision library
operations. The inherent limitation of such approaches is that they
do not reason globally about uncertain decisions made at differ-
ent program points, and hence do not give end-to-end guarantees
of consistency. The only work on formal verification of geometric
programs that we know of comes from the theorem proving com-
munity [24], and this work does not study consistency.

There is an emerging body of work on reasoning about program
behaviour in the presence of uncertainty [4, 5, 18, 19, 25]. How-
ever, none of these analyses can reason about the notion of consis-
tency considered in this paper; instead, they focus on quantitative
differences in a program’s behaviour due to uncertainty. Also not
applicable are abstract-interpretation-based techniques for quanti-
fying numerical errors in programs [6, 11], as none of these meth-
ods reason about divergence in control flow caused by uncertainty.
In contrast, uncertain control flow is perhaps the most central aspect
of the geometric programs studied here.

7. Conclusion
We have introduced the problem of automatically verifying the
consistency of programs that make decisions under uncertainty,
and taken the first steps towards solving the problem. Our solution
can automatically verify the consistency of a comprehensive set of
algorithms for computing convex hulls and triangulations.

While this paper focused on finding proofs of robustness, the
dual problem of finding inputs that cause a geometric program
to violate robustness is also of interest. Also, we restricted our-
selves in this paper to a model of uncertainty where every predicate
can evaluate nondeterministically. As we showed, even under this
highly adversarial execution model, many everyday computations
are consistent. However, future work should also study less hostile
models of numerical uncertainty. There are several ways to account
for this fact. For instance, a possibility is to consider quantitative

models of uncertainty properties where a query “flips” with a cer-
tain probability, or under certain conditions on the inputs.

References
[1] CGAL, Computational Geometry Algorithms Library.

http://www.cgal.org.
[2] J. Bertrand and A. Miné. Apron: A library of numerical abstract

domains for static analysis. In CAV, pages 661–667, 2009.
[3] François Bourdoncle. Abstract interpretation by dynamic partitioning.

Journal of Functional Programming, 2(04):407–435, 1992.
[4] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis

of programs. In POPL, pages 57–70, 2010.
[5] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity and ro-

bustness s of programs. Commun. ACM, 55(8):107–115, 2012.
[6] L. Chen, A. Miné, J. Wang, and P. Cousot. Interval polyhedra: An

abstract domain to infer interval linear relationships. In SAS, 2009.
[7] M. De Berg, O. Cheong, and M. Van Kreveld. Computational geome-

try: algorithms and applications. Springer-Verlag, 2008.
[8] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried

Schwarzkopf. Computational Geometry: Algorithms and Applica-
tions. Springer-Verlag, 2000.

[9] S. Devadoss and J. O’Rourke. Discrete and Computational Geometry.
Princeton University Press, 2011.

[10] S. Fortune. Stable maintenance of point set triangulations in two
dimensions. In FOCS, pages 494–499, 1989.

[11] E. Goubault. Static analyses of the precision of floating-point opera-
tions. In SAS, pages 234–259, 2001.

[12] Ronald L. Graham. An efficient algorithm for determining the convex
hull of a finite planar set. Inf. Process. Lett., 1(4):132–133, 1972.

[13] J. Halpern. Reasoning about uncertainty. The MIT Press, 2003.
[14] K. Hoder, N. Bjørner, and L. de Moura. µZ - an efficient engine for

fixed points with constraints. In CAV, 2011.
[15] C. Hoffmann, J. Hopcroft, and M. Karasick. Towards implementing

robust geometric computations. In SoCG, pages 106–117, 1988.
[16] C.M. Hoffmann. The problems of accuracy and robustness in geomet-

ric computation. Computer, 22(3):31–39, 1989.
[17] D.E. Knuth. Axioms and Hulls (LNCS #606). Springer-Verlag, 1992.
[18] R. Majumdar, E. Render, and P. Tabuada. A theory of robust software

synthesis. CoRR, abs/1108.3540, 2011.
[19] R. Majumdar and I. Saha. Symbolic robustness analysis. Real-Time

Systems Symposium, IEEE International, 0:355–363, 2009.
[20] K. Mehlhorn. The reliable algorithmic software challenge RASC,

pages 255–263. 2003.
[21] K. Mehlhorn and C. Yap. Robust geometric computation.

http://cs.nyu.edu/∼yap/book/egc, 2011.
[22] D. Monniaux. The pitfalls of verifying floating-point computations.

ACM Trans. Program. Lang. Syst., 30(3), 2008.
[23] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley

Weimer. CIL: Intermediate language and tools for analysis and trans-
formation of C programs. In CC, pages 213–228, 2002.

[24] D. Pichardie and Y. Bertot. Formalizing convex hull algorithms. In
TPHOLs, volume 2152 of LNCS, pages 346–361. Springer, 2001.

[25] J. Reed and B. Pierce. Distance makes the types grow stronger: A
calculus for differential privacy. In ICFP, 2010.

[26] R. Shewchuk. Adaptive precision floating-point arithmetic and fast
robust geometric predicates. Discrete & Computational Geometry,
18(3):305–363, 1997.

