
Proof Spaces for Unbounded Parallelism

Azadeh Farzan Zachary Kincaid
University of Toronto

Andreas Podelski
University of Freiburg

Abstract
In this paper, we present a new approach to automatically ver-
ify multi-threaded programs which are executed by an unbounded
number of threads running in parallel.

The starting point for our work is the problem of how we can
leverage existing automated verification technology for sequential
programs (abstract interpretation, Craig interpolation, constraint
solving, etc.) for multi-threaded programs. Suppose that we are
given a correctness proof for a trace of a program (or for some
other program fragment). We observe that the proof can always
be decomposed into a finite set of Hoare triples, and we ask what
can be proved from the finite set of Hoare triples using only simple
combinatorial inference rules (without access to a theorem prover
and without the possibility to infer genuinely new Hoare triples)?

We introduce a proof system where one proves the correctness
of a multi-threaded program by showing that for each trace of the
program, there exists a correctness proof in the space of proofs that
are derivable from a finite set of axioms using simple combinatorial
inference rules. This proof system is complete with respect to the
classical proof method of establishing an inductive invariant (which
uses thread quantification and control predicates). Moreover, it is
possible to algorithmically check whether a given set of axioms
is sufficient to prove the correctness of a multi-threaded program,
using ideas from well-structured transition systems.

1. Introduction
In this paper, we present a new approach to verifying multi-
threaded programs which are executed by an unbounded number of
concurrent threads. Many important systems and application pro-
grams belong to this category, e.g. filesystems, device drivers, web
servers, and image processing applications.

We will start by demonstrating our approach on a simple exam-
ple. Consider a program in which an unknown number of threads
concurrently execute the code below. The goal is to verify that, if
g ≥ 1 holds initially, then it will always hold (regardless of how
many threads are executing).

global int g
local int x
1: x := g;
2: g := g+x;

Consider the set of the Hoare triples (A) - (D) given below.
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(A) {g ≥ 1} 〈x := g : 1〉 {x(1) ≥ 1}
(B) {g ≥ 1 ∧ x(1) ≥ 1} 〈g := g + x : 1〉 {g ≥ 1}
(C) {g ≥ 1} 〈x := g : 1〉 {g ≥ 1}
(D) {x(1) ≥ 1} 〈x := g : 2〉 {x(1) ≥ 1}

Here we use x(1) to refer to Thread 1’s copy of the local variable
x, and 〈x := g : 1〉 to indicate the instruction x := g executed by
Thread 1.

We will discuss how such Hoare triples can be generated au-
tomatically shortly. But for now, suppose that we have been given
the above set of Hoare triples, and consider a deductive system in
which these triples are taken as axioms, and the only rules of infer-
ence are sequencing, symmetry, and conjunction. These rules are
easily illustrated with concrete examples:

• Sequencing composes two Hoare triples sequentially. For ex-
ample, sequencing (A) and (D) yields

(A ◦ D) {g ≥ 1} 〈x := g : 1〉〈x := g : 2〉 {x(1) ≥ 1}

• Symmetry permutes thread identifiers. For example, renaming
(A) and (C) (mapping 1 7→ 2) yields

(A’) {g ≥ 1} 〈x := g : 2〉 {x(2) ≥ 1}
(C’) {g ≥ 1} 〈x := g : 2〉 {g ≥ 1}

and, renaming (D) (mapping 1 7→ 2 and 2 7→ 1) yields

(D’) {x(2) ≥ 1} 〈x := g : 1〉 {x(2) ≥ 1}

• Conjunction composes two Hoare triples by conjoining pre- and
postconditions. For example, conjoining (A’) and (C’) yields

(A’ ∧ C’) {g ≥ 1} 〈x := g : 2〉 {g ≥ 1 ∧ x(2) ≥ 1}

and conjoining (A) and (D’) yields (A ∧ D’)

{g ≥ 1 ∧ x(2) ≥ 1} 〈x := g : 1〉 {x(1) ≥ 1 ∧ x(2) ≥ 1}

Naturally, the deductive system may apply inference rules to
deduced Hoare triples as well: for example, by sequencing (A’∧C’)
and (A ∧ D’), we get the Hoare triple

{g ≥ 1} 〈x := g : 2〉〈x := g : 1〉 {x(1) ≥ 1 ∧ x(2) ≥ 1}

A proof space is a set of valid Hoare triples which is closed under
sequencing, symmetry, and conjunction (that is, it is a theory of this
deductive system). Any finite set of valid Hoare triples generates an
infinite proof space by considering those triples to be axioms and
taking their closure under deduction; we call such a finite set of
Hoare triples a basis for the generated proof space.

One key insight in this paper is that, although it may be chal-
lenging to formalize a correctness argument for a multi-threaded
program, any given trace (sequence of program instructions) of the
program is just a simple (straight-line) sequential program which



can be easily proved correct. In fact, just these three simple infer-
ence rules (sequencing, symmetry, and conjunction) are sufficient
to prove the correctness of any trace of the example program. That
is, for any trace τ of the program, {g ≥ 1} τ {g ≥ 1} belongs
to the proof space generated by (A) − (D), regardless of which or
how many threads execute in τ . Crucially (and due to the simplic-
ity of the inference rules), this fact can be checked completely au-
tomatically, by leveraging techniques developed in the context of
well-structured transition systems [2, 17, 18].

Now let us turn to the problem of how Hoare triples like (A) −
(D) can be generated automatically. An important feature of proof
spaces is that they are generated from a very simple set of Hoare
triples, of the sort one could expect to generate using standard tech-
nology for sequential verification. To appreciate the simplicity of
these triples, consider the following inductive invariant for the pro-
gram, the classical notion of correctness proof for multi-threaded
programs:

g ≥ 1 ∧ (∀i.loc(i) = 2⇒ x(i) ≥ 1)

(which indicates that g is at least 1, and all threads i at line 2 of
the program have x(i) at least 1). This is a simple invariant for
this program, but it is one which we cannot rely on a sequential
verifier to find because it makes use of features which are not
encountered on sequential programs: thread quantification (∀i), and
control predicates (loc(i) = 2). In contrast, the triples (A) − (D)
are of the form one might expect to generate using a sequential
verifier. Thus, proof spaces are a solution to the problem of how to
use automated proof technology for sequential programs to prove
the correctness of programs with unboundedly many threads.

One possible algorithm (discussed further in Section 7) for au-
tomating proof spaces is to build a basis for a proof space iteratively
in a manner analogous to a counter-example guided abstraction re-
finement (CEGAR) loop. While this algorithm is not the focus of
this paper, it is important to recognize the context of and motivation
behind proof spaces. The algorithm operates as follows: first choose
a trace for which there is no correctness theorem in the proof space.
For example, suppose that we start with the trace

〈x := g : 1〉〈x := g : 2〉〈g := g + x : 1〉

{g ≥ 1}
〈x := g : 1〉
{x(1) ≥ 1}
〈x := g : 2〉
{x(1) ≥ 1}
〈g := g + x : 1〉
{g ≥ 1}

This trace can be viewed as a sequential
program, and we can use standard technology
(e.g., abstract interpretation, constraint solv-
ing, Craig interpolation) to construct a proof
for it (for example, the one on the right). By
extracting the atomic Hoare triples along this
sequence, we can arrive at the triples (A), (B),
and (D), which we add to our basis. We may
then extract a new trace which cannot be proved using just (A), (B),
and (D), and restart the loop. The loop terminates when (and if) (1)
it finds a feasible counter-example or (2) all traces of the program
have correctness theorems in the proof space.

The key contribution of this paper is the notion of proof spaces,
a proof system which can be used to exploit sequential verification
technology for proving the correctness of multi-threaded programs
with unboundedly many threads. The merits of proof spaces are as
follows:

• Rather than enriching the language of assertions (introducing
thread quantification and control predicates) and employing
more powerful symbolic reasoning, proof spaces use simple as-
sertions which can be combined using combinatorial reasoning
(i.e., without a theorem prover).
• We show that the combinatorial reasoning involved in checking

whether all traces of a program have a correctness theorem in
a proof space can be automated, and give an algorithm which
leverages ideas from well-structured transition systems [18].

We show that this proof space checking problem is undecidable
in general, but our algorithm is a decision procedure for an
interesting subclass of proof spaces.
• Despite the apparent weakness of our three inference rules and

the restricted language of assertions, we show that proof spaces
are complete relative to a variant of Ashcroft’s classical proof
system for multi-threaded programs (which employs universal
thread quantification and control predicates).

2. Motivating example
Consider a simplified implementation of a thread pool, where there
are arbitrarily many threads each executing the code that appears in
Figure 1. The global variable tasks holds an array of tasks of size
len, the global variable next stores the index of the next available
task, and the global variable m is a lock which protects access to
next. We denote the threads of the program by T1, T2, . . . . Each
thread Ti has two local variables c(i) and end(i) which represent
the current and last task in the block of tasks acquired by Ti. Each
thread operates by simply acquiring a block of 10 consecutive tasks
(lines 1-8) and then performing the tasks in its acquired block in
sequence (lines 9-13). The else branch (line 6) ensures that once
the end of the array is reached, all remaining threads that attempt
to acquire a block of tasks acquire an empty block (c = end).

The details of the tasks are omitted for simplicity, and we
maintain only enough information to assert a desired property: that
no two threads are ever assigned the same task. This property is
encoded by using the tasks array to represent the status of each
task (0 = started, 1 = finished); a thread can fail the assertion
if, between finishing some task and executing the assertion, some
other thread starts that same task.

global int : len; // total number of tasks
global int array(len) : tasks; // array of tasks
global int : next; // position of next available task block
global lock : m; // lock protecting next

thread T:
local int : c; // position of current task
local int : end; // position of last task in acquired block
// acquire block of tasks

1 lock(m);
2 c := next;
3 next := next + 10;
4 if (next <= len):
5 end := next;
6 else:
7 end := len;
8 unlock(m);

// perform block of tasks
9 while (c < end):
10 tasks[c] := 0; // mark task c as started

... // work on the task c
11 tasks[c] := 1; // mark task c as finished
12 assert(tasks[c] == 1); // no other thread has started task c
13 c := c + 1;

Figure 1. Thread pooling example, adapted from [36].

The sketch below illustrates a snapshot of the tasks array (and
other instantiated local and global variables) in the thread pool
program, where threads 1 to 35 have all finished acquiring their
block of tasks (but have not yet started to complete them), and
thread 36 has not started the process yet.



Locking

{true}

Initialization

{true} {c(1) ≤ next} {true}
〈lock(m) : 1〉 〈c := next : 1〉 〈next := next + 10 : 1〉 〈end := next : 1〉
{m = 1} {c(1) ≤ next} {c(1) < next} {end(1) ≤ next}

{m = 1} {end(1) ≤ next} {true} {len ≤ next}
〈lock(m) : 1〉 〈c := next : 2〉 〈assume(next > len) : 1〉 〈end := len : 1〉
{false} {end(1) ≤ c(2)} {len ≤ next} {end(1) ≤ next}

Loop

{true} {true} {tasks[c(1)] = 1} {end(1) ≤ c(2)}
〈assume(c < end) : 1〉 〈tasks[c] := 1 : 1〉 〈assume(tasks[c] != 1) : 1〉 〈c := c + 1 : 2〉
{c(1) < end(1)} {tasks[c(1)] = 1} {false} {end(1) ≤ c(2)}

{tasks[c(1)] = 1 ∧ c(1) < end(1) ≤ c(2)} {tasks[c(1)] = 1 ∧ c(2) < end(2) ≤ c(1)}
〈tasks[c] := 0 : 2〉 〈tasks[c] := 0 : 2〉
{tasks[c(1)] = 1} {tasks[c(1)] = 1}

Figure 2. The basis of a proof space for the thread pooling example. The variable c(1) denotes the copy of the local variable c in Thread 1
and the command 〈c := next : 1〉 denotes the instance of the command c := next in Thread 1, etc. Trivial Hoare triples of the type
{ϕ} 〈σ : i〉 {ϕ} where the set of variables that 〈σ : i〉 modifies is disjoint from the set of variables in ϕ, have been omitted for brevity.

c(1)

end(1)

c(2)

end(2)

c(35)

end(35) len

next

. . . . . .

c(3)

end(34)

In order to show that two threads, say Threads 1 and 2, cannot be
assigned the same task, we may argue that the intervals assigned
to them [c(1), end(1)) and [c(2), end(2)) are disjoint by
proving that end(1) is less than or equal to c(2).

Proof space for thread pooling Figure 2 illustrates a finite set
of Hoare triples (a basis) that generates a proof space for the
thread pooling program. In the figure, the Hoare triples are cate-
gorized into three groups (Locking, Initialization, and Loop). We
omit Hoare triples that represent trivial invariance axioms of the
form {ϕ} 〈σ : i〉 {ϕ} where the command 〈σ : i〉 does not write
to a variable that appears in ϕ; for example,

{c(2) ≤ next} 〈c := next : 1〉 {c(2) ≤ next} .
Note that the set of triples in Figure 2 use mixed assertions (in

the terminology in [12]), which relate the values of local variables
to global variables (e.g., c(1) ≤ next), as well as inter-thread
assertions, which relate the local variables of different threads (e.g.,
end(1) ≤ c(2)). As discussed in [25], both mixed assertions and
inter-thread assertions raise an issue when one attempts to use
predicate abstraction techniques. Inter-thread assertions cannot be
used in classical compositional proof systems (e.g. thread-modular
proofs). In these proof systems, inter-thread relationships can only
be accommodated through auxiliary variables [29, 35].

To represent the program in a simple formal model, we en-
code each conditional branch as a nondeterministic branch between
assume commands (one for the condition and one for its negation),
and we encode assert(e) through a command assume(!e) (for
the negation of the expression e) which leads to a new error loca-
tion. We thus encode the correctness of the program (the validity
of the assert statement) through the non-reachability of the error
location by any thread. An error trace is an interleaved sequence

of commands of any number of threads which leads some thread to
the error location (e.g., in Figure 3, the sequence in (a) followed by
the sequence in (b)). Thus, we can express the correctness of the
program by the validity of the Hoare triple {true} τ {false} for
every error trace τ . Given this Hoare triple as the specification of
correctness of a trace, we have that a trace is correct if and only if
it is infeasible.

Let us now demonstrate how the proof space is used to argue
for the correctness of the program. We must show that for every
error trace τ there exists a derivation of {true} τ {false}
which can be constructed from the triples in Figure 2 using only
the combinatorial inference rules of symmetry, conjunction, and
sequencing.

Let us first consider the pair of Hoare triples in the Locking
group. We treat the lock(m) command as the atomic sequence
{assume(m = 0); m := 1}, and unlock(m) command as the
assignment m := 0. Intuitively, the locking Hoare triples encap-
sulate the reasoning required to prove that the lock m provides mu-
tually exclusive access to the variable next. Any trace that violates
the locking semantics can be proved infeasible using the Hoare
triples in the Locking group along with the sequencing and sym-
metry rules. To see why, consider that any such trace can be de-
composed as

τ1 · 〈lock(m) : i〉 · τ2 · 〈lock(m) : j〉 · τ3

such that the following Hoare triples are valid:

{true} τ1 {true}
{true} 〈lock(m) : i〉 {m = 1}
{m = 1} τ2 {m = 1}
{m = 1} 〈lock(m) : j〉 {false}
{false} τ3 {false}

This decomposition exploits the fact that any trace which violates
the semantics of locking has a shortest prefix which contains a
violation: that is, we may assume that τ2 contains no unlock(m)
commands because, if it did, there would be a shorter prefix in



which two threads simultaneously hold the lock m. Having justified
their semantic validity, we may now consider how to derive these
triples using symmetry and sequencing from the Locking axioms in
Figure 2. The two triples above concerning the lock(m) command
are inferred from the triples in the Locking group by renaming
thread 1 (i.e. using the symmetry rule) to i and j, respectively.
The rest of the triples come from the simple invariance Hoare
triples (not depicted in Figure 2, but mentioned in the caption),
that allow us to infer {m = 1} 〈σ : i〉 {m = 1} for any
command σ except unlock(m), and {true} 〈σ : i〉 {true} and
{false} 〈σ : i〉 {false} for every command σ.

We now turn our attention to the error traces which do respect
locking semantics, and show that they are infeasible. The six Hoare
triples in the Initialization section of Figure 2 are sufficient to prove
that after two threads (say 2 and 9) acquire their block of tasks,
those blocks do not overlap (i.e., we have either end(9) ≤ c(2)
or end(2) ≤ c(9), depending on the order in which the threads
acquire their tasks). An example of such a trace (which can be
proved using just sequencing and symmetry operations) appears in
Figure 3(a). We encourage the reader to show (using conjunction)
that if we extend the trace in Figure 3(a) by the initialization
sequence of a third thread (say, Thread 5) to obtain a trace τ , then

{true} τ {end(2) ≤ c(9) ∧ end(2) ≤ c(5) ∧ end(9) ≤ c(5)}
belongs to the proof space as well. Following similar proof combi-
nation steps, one can see that the argument can be adapted to traces
with any number of threads.

Finally, the triples in the Loop section can be used to show
two things. First, the “non-overlapping” property established in
the initialization section is preserved by the loop: for example, if
end(2) ≤ c(9) holds at the beginning of the loop, then if thread 2
or thread 9 (or any other thread) executes the loop, end(2) ≤ c(9)
continues to hold. Second, (assuming the non-overlapping condi-
tion holds), if some task has been completed then it remains com-
pleted: for example, if tasks[c(2)] = 1, then when thread 9
starts task c(9) (i.e. assigns 0 to tasks[c(9)]), it cannot over-
write the value of the array cell tasks[c(2)] (this is ensured by
the precondition c(2) < end(2) ≤ c(9), which implies c(2) 6=
c(9)). Figure 3(b) gives an example proof which can be derived us-
ing the Loop section. The sequential composition of traces in Fig-
ure 3(a) and Figure 3(b) forms an error trace (i.e. one that leads to
the error location), and sequencing their proofs yields a proof that
the error trace is infeasible.

We hope that it is now intuitively clear (or at least plausible)
that, given any particular error trace τ , it is possible to derive
{true} τ {false} using the symmetry, sequencing, and conjunc-
tion rules starting from the axioms given in Figure 2. The question
is: how can one be assured that all (infinitely many) error traces can
be proved infeasible in this way? In Section 6 we will show how to
formalize such an argument, and moreover, give a procedure for
checking that it holds.

3. Preliminaries
In this section, we will define our program model and introduce
some technical definitions.

We fix a set of global variables GV and a set of local variables
LV. Intuitively, these are the variables that can appear in the pro-
gram text. We will often make use of the set LV × N of indexed
local variables, and denote a pair 〈x, i〉 ∈ LV × N by x(i). Intu-
itively, such an indexed local variable x(i) refers to thread i’s copy
of the local variable x.

For simplicity, we will assume that program variables take in-
teger values, and the program is expressible in the theory of linear
integer arithmetic. This assumption is made only to simplify the
presentation by making it more concrete; our approach and results

{true}
lock(m) :2

{true}
c := next :2

{true}
next := next + 10 :2

{true}
assume(next <= len) :2

{true}
end := next :2

{end(2) � next}
unlock(m) :2

{end(2) � next}
lock(m) :9

{end(2) � next}
c := next :9

{end(2) � c(9)}
next := next + 10 :9

{end(2) � c(9)}
assume(next <= len) :9

{end(2) � next}
end := next :9

{end(2) � c(9)}
unlock(m) :9

{end(2) � c(9)}

{end(2) � c(9)}
assume(c < end) :2

{c(2) < end(2) � end(2) � c(9)}
tasks[c] := 0 :2

{c(2) < end(2) � end(2) � c(9)}
tasks[c] := 1 :2

{tasks[c(2)] = 1 � c(2) < end(2)
� end(2) � c(9)}
assume(c < end) :9

{tasks[c(2)] = 1 � c(2) < end(2)
� end(2) � c(9)}
tasks[c] := 0 :9

{tasks[c(2)] = 1}
assume(tasks[c] != 1) :2

{false}

(a) Initialization example (b) Loop example

Figure 3. Example traces

do not depend on linear arithmetic in any essential way.
Given a set of variable symbols V , we use Term(V ) to denote

the set of linear terms with variables drawn from V . Similarly,
Formula(V ) denotes the set of linear arithmetic formulas with
variables drawn from V . We here use V as a parameter which we
will instantiate according to the context. For example, Term(GV ∪
LV) denotes the set of terms which may appear in the text of a
program (which refers to the thread template), and Formula(GV ∪
(LV × N)) denotes the set of formulas which may appear in a pre-
or postcondition (which refers to concrete threads).

We use the notation [x 7→ t] to denote a substitution which
replaces the variable x with the term t and generalize the notation
to parallel substitutions in the standard way. The application of a
substitution ρ to a formula ϕ (or a term t) is denoted ϕ[ρ] (or t[ρ]).
Two classes of substitutions of particular interest for our technical
development are instantiations and permutations.

• Given an index i ∈ N, we use ιi to denote the instantiation
substitution which replaces each local variable x ∈ LV with an
indexed local variable x(i). For example, if we take i to be 3
and c is a local variable and next is a global, we have

(c ≤ next)[ι3] = c(3) ≤ next

• Each permutation π : N → N defines a substitution which re-
places each indexed local variable x(i) with x(π(i)). We abuse
notation by identifying each permutation with the substitution it
defines. For example if π is a permutation which maps 3 ↔ 1,
then

(c(3) ≤ next)[π] = c(1) ≤ next

We identify a program P with a control flow graph for a sin-
gle thread template which is executed by an unbounded number
of threads. (The extension to more than one thread template is
straightforward.) A control flow graph is a directed, labeled graph
P = 〈Loc,Σ, `init, `err, src, tgt〉, where Loc is a set of program lo-
cations, Σ is a set of program commands, `init is a designated initial
location, `err is a designated error location, and src, tgt : Σ→ Loc
are functions mapping each program command to its source and tar-
get location. Note that our definition of a control flow graph (using



src and tgt) implies that we distinguish between different occur-
rences of a program instruction.

A program command σ ∈ Σ is of one of two forms:

• an assignment of the form x := t
where x ∈ GV ∪ LV and t ∈ Term(GV ∪ LV), or
• an assumption of the form assume(ϕ)

where ϕ ∈ Formula(GV ∪ LV).

We will denote a pair consisting of a program command σ ∈ Σ
and an index i ∈ N as the indexed command 〈σ : i〉. Intuitively,
such an indexed command 〈σ : i〉 refers to thread i’s instance of
the program command σ, or: the index i indicates the identifier of
the thread which executes σ.

A trace

τ = 〈σ1 : i1〉〈σ2 : i2〉· · · 〈σn : in〉
is a sequence of indexed commands.

A Hoare triple is a triple

{ϕ} τ {ψ}
where τ is a trace and ϕ and ψ are formulas with global variables
and indexed local variables, i.e., ϕ,ψ ∈ Formula(GV∪ (LV×N)).

The validity of Hoare triples for traces is defined as one would
expect. Intuitively, if the command reads or writes the local vari-
able x, then the indexed command 〈σ : i〉 (i.e., the command σ
executed by thread i) reads or writes thread i’s copy of the local
variable x. To express this formally, we use the instantiation sub-
stitution ιi introduced above. In particular, if x is a local variable,
x[ιi] is the indexed local variable x(i) (and if x is a global variable,
x[ιi] is simply x).

For a trace of length 1 (i.e., for an indexed command), we have:

• {ϕ} 〈(x := t) : i〉 {ψ} is valid if

ϕ |= ψ[x[ιi] 7→ t[ιi]]

• {ϕ} 〈(assume(θ)) : i〉 {ψ} is valid if

ϕ ∧ θ[ιi] |= ψ

where |= denotes entailment modulo the theory of integer lin-
ear arithmetic. For a trace of the form τ.〈σ : i〉, the triple
{ϕ} τ.〈σ : i〉 {ψ} is valid if there exists some formula ψ′

such that {ϕ} τ {ψ′} and {ψ′} 〈σ : i〉 {ψ} are valid.
We call a trace τ infeasible if the Hoare triple {true} τ {false}

is valid. Intuitively, τ is infeasible if it does not correspond to any
execution.

Given a programP (identified by the control flow graph of a sin-
gle thread template, i.e., a graph with edges labeled by commands
σ ∈ Σ and with the initial location `init and the error location `err),
a trace τ is an error trace of P if

• for each index i ∈ N, the projection of τ onto the commands
of thread i corresponds to a path through P starting at `init (i.e.,
each thread i starts at the initial location), and
• there is (at least) one index j ∈ N such that the projection of τ

onto the commands of thread j corresponds to a path through
P ending at `err (i.e., some thread j ends at the error location).

We say that a program P is correct if every error trace of P is
infeasible (i.e., there is no execution of P wherein some thread
reaches the error location `err).

The notion of correctness be used to encode many correctness
properties including thread-state reachability (and thus the safety
of assert commands) and mutual exclusion. The encoding is
possibly done by introducing monitors (ghost instructions on ghost
variables), much in the same way that safety properties can be
reduced to non-reachability in sequential programs.

4. Proof spaces
We will now introduce proof spaces, the central technical idea of
this paper. We begin by formalizing the inference rules of SE-
QUENCING, SYMMETRY, and CONJUNCTION.

The sequencing rule is a modification of the familiar one from
Hoare logic. We omit the rule of consequence from Hoare logic,
and instead incorporate consequence in our sequencing rule: that
is, we allow triples {ϕ0} τ0 {ϕ1} and {ϕ′1} τ1 {ϕ2} to be
composed when ϕ1 and ϕ′1 do not exactly match, but ϕ1 entails ϕ′1.
However, a design goal of proof spaces is that the inference rules
should be purely combinatorial (and thus, should not require access
to a theorem prover to discharge the entailment). Towards this
end, we define a combinatorial entailment relation  on formulas:
identifying a conjunction with the set of its conjuncts, we have
ϕ  ψ if ϕ is a superset of ψ. Formally,

ϕ1 ∧ ... ∧ ϕn  ψ1 ∧ ... ∧ ψm if {ϕ1, ..., ϕn} ⊇ {ψ1, ..., ψm}
The sequencing rule is formalized as follows:

SEQUENCING

{ϕ0} τ0 {ϕ1} ϕ1  ϕ′1 {ϕ′1} τ1 {ϕ2}
{ϕ0} τ0 ; τ1 {ϕ2}

The symmetry rule exploits the fact that thread identifiers are
interchangeable in our program model, and therefore uniformly
permuting thread identifiers in a valid Hoare triple yields another
valid Hoare triple:

SYMMETRY
{ϕ} 〈σ1 : i1〉· · · 〈σn : in〉 {ψ}

{ϕ[π]} 〈σ1 : π(i1)〉· · · 〈σn : π(in)〉 {ψ[π]}
π : N→ N
is a permutation

Lastly, the rule of conjunction allows one to combine two the-
orems about the same trace by conjoining preconditions and post-
conditions:

CONJUNCTION
{ϕ1} τ {ψ1} {ϕ2} τ {ψ2}
{ϕ1 ∧ ϕ2} τ {ψ1 ∧ ψ2}

Next, we formalize our notion of a proof space:

Definition 4.1 (Proof space) A proof space H is a set of valid
Hoare triples which is closed under SEQUENCING, SYMMETRY,
and CONJUNCTION. ⌟

Our definition restricts proof spaces to contain only valid Hoare
triples for the sake of convenience. Clearly, the SEQUENCING,
SYMMETRY, and CONJUNCTION rules preserve validity.

The strategy behind using proof spaces as correctness proofs
can be summarized in the following proof rule: If we can find a
proof space H such that for every error trace τ of the program P ,
we have that the Hoare triple {true} τ {false} belongs to H ,
then P is correct.

Our main interest in proof spaces is using the above proof rule
as a foundation for algorithmic verification of concurrent programs.
Towards this end, we augment the definition of proof spaces with
additional conditions that make them easier to manipulate algorith-
mically. We call the proof spaces satisfying these conditions finitely
generated proof spaces. First, we define basic Hoare triples, which
are the “generators” of such proof spaces.

Definition 4.2 (Basic Hoare triple) A basic Hoare triple is a valid
Hoare triple of the form

{ϕ} 〈σ : i〉 {ψ}
where

1. the postcondition ψ cannot be constructed by conjoining two
other formulas, and



2. for each j ∈ N, if an indexed local variable of the form x(j)
appears in the precondition ϕ, then either j is equal to the index
i of the command, or x(j) or some other indexed local variable
y(j) with the same index j must appear in the postcondition ψ
(“the precondition mentions only relevant threads”). ⌟

The asymmetry between the precondition and the postcondition
in Condition 1 is justified by the rule of consequence. Given a (non-
basic) Hoare triple

{ϕ0 ∧ ϕ1} 〈σ : i〉 {ψ1 ∧ ψ2} ,
we may “split the postcondition” to arrive at two valid triples

{ϕ0 ∧ ϕ1} 〈σ : i〉 {ψ1}
{ϕ0 ∧ ϕ1} 〈σ : i〉 {ψ2}

from which the original triple may be derived via CONJUNCTION.
As a result, the postcondition restriction on basic Hoare triples does
not lose significant generality. Since preconditions cannot be split
in this way, Definition 4.2 is asymmetric.

Definition 4.3 (Finitely generated) We say that a proof space H
is finitely generated if there exists a finite set of basic Hoare triples
H such that H is the smallest proof space which contains H . In
this situation, we call H a basis for H . ⌟

Proof spaces give a new proof system for verifying safety prop-
erties for multi-threaded programs. The remainder of this paper
studies some of the questions which arise from introducing such
a proof system. In the next section, we consider the question of the
expressive power of proof spaces (that is, what can be proved using
proof spaces). In Sections 6 and 7, we discuss how proof spaces
may be used in the context of algorithmic verification.

5. Completeness
The method of using global inductive invariants to prove correct-
ness of concurrent programs dates back to the seminal work of
Ashcroft [4]. Ashcroft’s method originally applied to programs
with finitely many threads, but can be adapted to the infinite case
by admitting into the language of assertions universal quantifiers
over threads. In this section, we prove the completeness of proof
spaces relative to Ashcroft’s method. This establishes that the com-
binatorial operations of proof spaces are adequate for represent-
ing Ashcroft proofs, even though Ashcroft assertions make use of
features not available to proof space assertions (namely, universal
quantifiers over threads and control assertions).

We start by formalizing Ashcroft proofs. We can treat each local
variable as an uninterpreted function symbol of type N → Z (i.e,
the interpretation of x ∈ LV is a function which maps each thread
identifier i ∈ N to the value of thread i’s copy of x).

We let TV be a set of thread variables which are variables
whose values range over the set of thread identifiers N. We typi-
cally use i, j, i1, . . . to refer to thread variables (note that we use
i, j, i1, . . . to refer to thread identifiers, i.e., elements of N). We
use LV[TV] to denote the set of terms x(i) where x ∈ LV and
i ∈ TV. A data assertion is a linear arithmetic formula ψ built up
from global variables and terms of the form x(i) where x ∈ LV and
i ∈ TV, i.e., ψ ∈ Formula(GV ∪ LV[TV]).

A global assertion is defined to be a sentence of the form

Φinv = ∀i1, ..., in.ϕinv(i1, ..., in)

where ϕinv is a formula built up from Boolean combinations of

• data assertions,
• control assertions loc(i) = ` (with i ∈ TV and ` ∈ Loc), and
• thread equalities i = j and disequalities i 6= j (with i, j ∈ TV).

For any program command σ ∈ Σ, we use JσK to denote the
transition formula which represents some thread executing σ. This
is a formula over an extended vocabulary which includes a primed
copy of each of the global and local variable symbols (interpreted
as the post-state values of those variables). This formula is of the
form

∃i.ψ1(i) ∧ (∀j.ψ2(i, j))

where (intuitively) ψ1 describes the state change for the thread
which executes σ (thread i), and ψ2 describes the state change
for all other threads (thread j). For example, if σ is an assignment
x := x + g where x is local, g is global, and ` = src(σ) and
`′ = tgt(σ), then:
JσK ≡ ∃i.

(
loc(i) = ` ∧ loc′(i) = `′ ∧ x′(i) = x(i) + g ∧ g′ = g

∧∀j 6= i.
(
loc(j) = loc′(j) ∧ x(j) = x′(j)

))
.

We may now formally define Ashcroft invariants:

Definition 5.1 (Ashcroft invariant) Given a program P , an
Ashcroft invariant is a global assertion Φinv such that

1. ∀i.loc(i) = `init entails Φinv.
2. For any command σ ∈ Σ, we have that Φinv ∧ JσK entails

Φ′inv (where Φ′inv denotes the formula obtained by replacing the
symbols in Φinv with their primed copies)

3. Φinv entails ∀i.loc(i) 6= `err. ⌟

Clearly, the existence of an Ashcroft invariant for a program
implies its correctness (that is, that the error location of the program
is unreachable). The following theorem is the main result of this
section, which establishes the completeness of proof spaces relative
to Ashcroft invariants.

Theorem 5.2 (Relative completeness) Let P be a program. If
there is an Ashcroft invariant which proves the correctness of P ,
then there is a finitely generated proof space which proves the
correctness of P . ⌟

Proof. To simplify notation, we will prove the result only for the
case that the Ashcroft proof has two quantified thread variables.
The generalization to an arbitrary number of quantified thread
variables is straightforward.

Let P be a program, and let Φinv be an Ashcroft proof. Without
loss of generality, we may assume that Φinv is written as

Φinv ≡
(
∀i
∨
`∈Loc

loc(i) = ` ∧ ϕ`(i)
)

∧
(
∀i 6= j.

∨
`,`′∈Loc×Loc

loc(i) = ` ∧ loc(j) = `′ ∧ ϕ`,`′(i, j))
)

where each ϕ`(i) and ϕ`,`′(i, j) is a integer arithmetic formula
(i.e., does not contain loc). Furthermore, we can assume that Φinv

is symmetric in the sense that ϕ`,`′(i, j) is syntactically equal to
ϕ`′,`(j, i) and that ϕ`,`′(i, j) entails ϕ`(i) (for any i, j, `, `′). We
can prove that any Φinv can be written in this form by induction
on Φinv We also assume that ϕ`err(i) = false and ϕ`init(i) =
ϕ`init,`init(i, j) = true; the fact that this loses no generality is a
consequence of conditions 1 and 3 of Definition 5.1. Finally, we
assume that each formula ϕ`(i) and ϕ`,`′(i, j) is not (syntactically)
a conjunction (cf. Condition 1 of Definition 4.2): this assumption
is validated by observing any formula ϕ is equivalent to ϕ ∨ false,
which is not a (syntactic) conjunction.

We construct a set of basic Hoare triples H by collecting the set
of all Hoare triples of the following four types:

{ϕ`1(1)} 〈σ : 1〉 {ϕ`′1(1)}

{ϕ`1,`2(1, 2)} 〈σ : 1〉 {ϕ`2(2)}



{ϕ`1,`2(1, 2)} 〈σ : 1〉 {ϕ`′1,`2(1, 2)}

{ϕ`1,`2(1, 2) ∧ ϕ`1,`3(1, 3) ∧ ϕ`2,`3(2, 3)} 〈σ : 1〉 {ϕ`2,`3(2, 3)}
where src(σ) = `1 and tgt(σ) = `′1.

We now must show that (1) each Hoare triple in H is ba-
sic (i.e., satisfies Definition 4.2) and (2) for every trace τ of P ,
{true} τ {false} belongs to the proof space generated by H .
Condition (2) is delayed to Section 6, where we prove a stronger
result (Proposition 6.14). Here, we will just prove condition (1).

One can easily observe that conditions 1 and 2 of Definition 4.2
hold. It remains to show that each Hoare triple in H is valid. We
will prove only the validity of the Hoare triple

{ϕ`1,`2(1, 2)} 〈σ : 1〉 {ϕ`′1,`2(1, 2)}

where src(σ) = `1 and tgt(σ) = `′1. The other cases are similar.
Let us write JσK as ∃i.ψ1(i) ∧ (∀k.ψ2(i, k)). For a proof by

contradiction, let us suppose that the above Hoare triple is invalid.
This means:

ϕ`1,`2(1, 2) ∧ ψ1(1) ∧ (∀k.ψ2(1, k)) 6|= ϕ`′1,`2(1, 2)′

It follows that there exists a structure A such that

A |= ϕ`1,`2(1, 2) ∧ ψ1(1) ∧ (∀k.ψ2(1, k))

and A 6|= ϕ`′1,`2(1, 2)′. Without loss of generality, we may assume
that loc(2)A = loc′(2)A = `2. Our strategy will be to construct
from A a structure B such that

B |= Φinv ∧ ψ1(1) ∧ (∀k.ψ2(1, k))

but B 6|= Φ′inv, which contradicts condition 2 of Definition 5.1.
We obtain B simply by restricting the interpretation of the

Thread sort to the set {1, 2} (intuitively: we consider a configu-
ration of the program in which 1 and 2 are the only threads). Then
we have

B |= ϕ`1,`2(1, 2) ∧ ψ1(1) ∧ (∀k.ψ2(1, k))

by downward absoluteness of universal sentences and B 6|=
ϕ`′1,`2(1, 2)′ by upward absoluteness of quantifier-free sentences.

From B |= ψ1(1), we have B |= loc(1) = `1. By assumption,
we have B |= loc(2) = `2. It follows that

B |= ϕ`1,`2(1, 2) ∧ loc(1) = `1 ∧ loc(2) = `2

and thus, from the symmetry condition imposed on Φinv, that B |=
Φinv. It is then easy to see that

B |= Φinv ∧ ψ1(1) ∧ (∀k.ψ2(1, k))

holds. Finally, we note that since B |= loc′(1) = `′1∧ loc′(2) = `2
and B 6|= ϕ`′1,`2(1, 2), B is incompatible with every disjunct of∨

`,`′∈Loc×Loc

loc′(1) = ` ∧ loc′(2) = `′ ∧ ϕ′`,`′(1, 2)

and thus B 6|= Φ′inv.

As we mentioned previously, Ashcroft invariants are able to
make use of features which are not available to proof spaces,
namely control assertions (i.e., assertions of the form loc(i) = `)
and universal quantification over thread variables. These “exotic”
features are typical for program logics for concurrent programs
with unbounded parallelism. As a general rule, classical verifica-
tion techniques for sequential programs do not synthesize asser-
tions which make use of these features. The price we pay for the
relative ease of generating proof spaces is the relative difficulty of
checking them. We address this topic in the next section.

6. Proof checking
We now turn to the main algorithmic problem suggested by the
proof rule for proof spaces presented in Section 4: given a program
P and a finite basis H of a proof space H , how do we check
whether for every error trace τ we have that {true} τ {false}
belongs to H ? Our solution to this problem begins by intro-
ducing a new class of automata, predicate automata, which can
be used to represent both the set of error traces of a program
and the set of traces τ which have the infeasibility theorem
{true} τ {false} in a finitely generated proof space. We show
that the problem of checking whether for every error trace τ we
have that {true} τ {false} belongs to H can be reduced to
the emptiness problem for predicate automata. We show that the
general emptiness checking problem is undecidable, and we give
a semi-algorithm and show that it is a decision procedure for an
interesting sub-class of predicate automata which correspond to
thread-modular proofs.

6.1 Predicate automata
Predicate automata are a class of infinite-state automata which
recognize languages over an infinite alphabet of the form Σ × N.1

For readers familiar with alternating finite automata (AFA) [8, 9], a
helpful analogy might be that predicate automata are to first-order
logic what AFA are to propositional logic. A predicate automaton
(PA) is equipped with a relational vocabulary 〈Q, ar〉 (in the usual
sense of first-order logic) consisting of a finite set of predicate
symbols Q and a function ar : Q→ N which maps each predicate
symbol to its arity. A state of a PA is a proposition q(i1, ..., iar(q)),
where q ∈ Q and i1, ..., iar(q) ∈ N. The transition function
maps such states to formulas in the vocabulary of the PA (where
disjunction corresponds to nondeterministic (existential) choice,
and conjunction corresponds to universal choice). It is important
to note that the symbols q ∈ Q are “uninterpreted”: they have no
special semantics, and any subset of Nar(q) is a valid interpretation
of q.

Given a vocabulary 〈Q, ar〉 (and given the set TV of thread
variables, i.e., variables whose values range over the set of thread
identifiers N), we define the set of positive formulas F(Q, ar)
over 〈Q, ar〉 to be the set of negation-free formulas where each
atom is either (1) a proposition of the form q(i1, ..., in) (where
i1, ..., in ∈ TV), or (2) an equation i = j (where i, j ∈ TV), or
(3) a disequation i 6= j (where i, j ∈ TV). Predicate automata are
defined as follows:

Definition 6.1 (Predicate automata) A predicate automaton (PA)
is a 6-tuple A = 〈Q, ar,Σ, δ, ϕstart, F 〉 where

• 〈Q, ar〉 is a relational vocabulary
• Σ is a finite alphabet
• ϕstart ∈ F(Q, ar) is an initial formula with no free variables.
• F ⊆ Q is a set of accepting predicate symbols
• δ : Q × Σ → F(Q, ar) is a transition function which satisfies

the property that for any q ∈ Q and σ ∈ Σ, the free variables
of δ(q, σ) are members of the set {i0, ..., iar(q)}. ⌟

To understand the restriction on the variables in the formula
δ(q, σ), it may be intuitively helpful to think of q as q(i1, ..., iar(q))
and of σ as 〈σ : i0〉.

We will elucidate this definition by first describing the dynamics
of a PA. PA dynamics will be defined by a nondeterministic2 tran-
sition system where edges are labeled by elements of the indexed

1 Such languages are commonly called data languages [32].
2 Readers familiar with AFA should note that we are effectively describing
the “nondeterminization” of PA.



alphabet Σ × N, and where the nodes of the transition system are
configurations which we will introduce next:

Definition 6.2 (Configuration) LetA = 〈Q, ar,Σ, δ, ϕstart, F 〉 be
a PA. A configuration C of A is finite set of ground propositions of
the form q(i1, ..., iar(q)), where q ∈ Q and i1, ..., iar(q) ∈ N. ⌟

It is convenient to identify a configuration C with the formula∧
q(i1,...,iar(q))∈C

q(i1, ..., iar(q)). We define the initial configura-
tions of A to be the cubes of the disjunctive normal form (DNF) of
ϕstart (for example, if ϕstart is p ∧ (q ∨ r), then the initial configu-
rations are p ∧ q and p ∧ r). A configuration is accepting if for all
q(i1, ..., iar(q)) ∈ C, we have q ∈ F ; otherwise, it is rejecting.

A PA A = 〈Q, ar,Σ, δ, ϕstart, F 〉 induces a transition relation
on configurations as follows:

C σ:k−−→ C′

if C′ is a cube in the DNF of the formula∧
q(i1,...,iar(q))∈C

δ(q, σ)[i0 7→ k, i1 7→ i1, ..., iar(q) 7→ iar(q)]

The fact that the free variables of δ(q, σ) must belong to the set
{i0, ..., iar(q)} guarantees that the formula above has no free vari-
ables, and therefore its DNF corresponds to a set of configurations.
Note also that the formula above may contain equalities and dise-
qualities, but since they are ground (have no free variables), they
are equivalent to either true or false, and thus can be eliminated.

We can think of δ(q, σ) as a rewrite rule whose application
instantiates the (implicit) formal parameters i1, ..., iar(q) of q to the
actual parameters i1, ..., in and instantiates i0 to k (the index of the
letter being read). In light of this interpretation, we will often write
δ in a form that makes the (implicit) formal parameters explicit: for
example, instead of

δ(q, σ) =(i0 6= i1 ∧ (q(i0, i1) ∨ q(i1, i2)))

∨ (i0 = i1 ∧ q(i1, i2) ∧ q(i2, i1))

we will typically write

δ(q(i, j), 〈σ : k〉) =(k 6= i ∧ (q(k, i) ∨ q(i, j)))
∨ (k = i ∧ q(i, j) ∧ q(j, i)) .

A trace τ = 〈σ1 : i1〉· · · 〈σn : in〉 is accepted by A if there is
a sequence of configurations Cn, ..., C0 such that:

1. Cn is initial

2. for each r ∈ {1, ..., n}, Cr
σr :ir−−−→ Cr−1

3. C0 is accepting

It is important to note that the definition of acceptance implies that a
PA reads its input from right to left rather than left to right. We will
discuss the reason behind this when we explain the correspondence
between proof spaces and predicate automata (Proposition 6.4).

Our first example of a predicate automaton will be the one
constructed to accept the language of error traces of a program:

Proposition 6.3 Given a program P , there is a predicate automa-
ton AP such that L(AP ) is the set of error traces of P . ⌟

Proof. Let P be a program given by the thread template

P = 〈Loc,Σ, `init, `err, src, tgt〉 .
We define a PA AP = 〈Q, ar,Σ, δ, ϕstart, F 〉, which closely mir-
rors the (reversed) control structure of P .

• Q = {loc, err} ∪ Loc, where err and loc are distinguished
predicate symbols, to be explained in the following.
• ar(loc) = ar(err) = 0 and for all ` ∈ Loc, ar(`) = 1

• Let σ ∈ Σ with, say, `1 = src(σ) and `2 = tgt(σ).

The transition rule for a location ` ∈ Loc is given by

δ(`(i), 〈σ : j〉) ={
(i = j ∧ `1(i)) ∨ (i 6= j ∧ `(i)) if ` = `2
i 6= j ∧ `(i) if ` 6= `2

The transition rule for loc is given by

δ(loc, 〈σ : i〉) = loc ∧ `1(i)

The transition rule for err is given by

δ(err, 〈σ : i〉) =

{
`1(i) if `2 = `err
err if `2 6= `err

• ϕstart = loc ∧ err
• F = {`init, loc}

Intuitively, the distinguished predicate symbol err represents “some
thread is at the error location.” The loc predicate is responsible
for “initializing” the program counter of threads (in the backwards
direction). That is, loc ensures that in every reachable configuration
C of AP , every σ ∈ Σ and every i ∈ N, we have that if C σ:i−−→ C′,
then `1(i) ∈ C′, where `1 = src(σ). For example, let σ ∈ Σ
with `1 = src(σ) and `2 = tgt(σ). By reading 〈σ : 3〉, the initial
configuration loc ∧ err may transition to `1(3) ∧ loc ∧ err if `2 is
not `err or to `1(3) ∧ loc if `2 is `err.

We omit a formal proof that L(AP ) is indeed the set of error
traces of P .

As the following proposition states, predicate automata are also
sufficiently powerful to represent the set of traces which are proved
correct by a given finitely-generated proof space.

Proposition 6.4 Let H be a proof space which is generated by
a finite set of basic Hoare triples H . There exists a PA AH (which
can be computed effectively from H) such that L(AH) is exactly
the set of traces τ such that {true} τ {false} ∈H . ⌟

Proof. LetH be a set of basic Hoare triples. The predicate automa-
ton AH = 〈Q, ar,Σ, δ, ϕstart, F 〉 closely mirrors the structure of
H: intuitively, the predicates of AH correspond to the assertions
used in H , and each Hoare triple corresponds to a transition in δ.

The key step in defining AH is to show how each Hoare triple
inH corresponds to a transition rule (noting that if there are several
Hoare triples with the same postcondition, we may combine their
transition rules disjunctively). For a concrete example, consider the
Hoare triple:

{t(3) ≥ 0 ∧ t(9) > t(3)} 〈t := 2*t : 9〉 {t(9) > t(3)}
This triple corresponds to the transition

δ([t(1) > t(2)](i, j), σ : k) = i 6= j ∧ i = k ∧ j 6= k

∧[t(1) ≥ 0](j) ∧ [t(1) > t(2)](k, j)

The predicates which appear in this formula are canonical names
for the formulas in the Hoare triples (e.g., [t(1) ≥ 0] is the
canonical name for t(3) ≥ 0).

After constructing the transition relation as in the example, we
construct AH by taking the set of predicates to be the canonical
names for formulas which appear in H , [false] to be the initial
formula, and {[true]} to be the set of final formulas.

The construction of a PA from a set of basic Hoare triples
for Proposition 6.4 reveals that the reason we defined predicate
automata to read a trace backwards (i.e., the sequence of indexed



commands from right to left) is the asymmetry between pre- and
postconditions in basic Hoare triples. Definition 4.2 requires that
the postcondition of a basic Hoare triple cannot be constructed by
conjoining two other formulas, while the precondition is arbitrary
(i.e., we may think of the postcondition as a single proposition,
while the precondition is a set of propositions). Since the transition
function of a PA is defined on single propositions, the action of a
transition must transform a postcondition to its precondition, which
necessitates reading the traces backwards.

Propositions 6.3 and 6.4 together imply that the problem of
checking whether a proof space proves the correctness of every
trace of a program can be reduced to the language inclusion prob-
lem for predicate automata. The following proposition reduces the
problem further to the emptiness problem for predicate automata
(noting that L(AP ) ⊆ L(AH) is equivalent to L(AP )∩L(AH) =
∅):

Proposition 6.5 Predicate automata languages are closed under
intersection and complement. ⌟

Proof. The constructions for intersection and complementation of
predicate automata follow the classical ones for alternating finite
automata.

Let A and A′ be PAs. We form their intersection A ∩ A′ by
taking the vocabulary to be the disjoint union of the vocabularies
of A and A′, and define the transition relation and accepting predi-
cates accordingly. The initial formula is obtained by conjoining the
initial formulas of A and A′.

Given a PA A = 〈Q, ar,Σ, δ, ϕstart, F 〉, we form its comple-
ment A = 〈Q, ar,Σ, δ, ϕstart, F 〉 as follows.

We define the vocabulary (Q, ar) to be a “negated copy” of
(Q, ar): Q = {q : q ∈ Q} and ar(q) = ar(q). The set of ac-
cepting predicate symbols is the (negated) set of rejecting predicate
symbols from A: F = {q ∈ Q : q ∈ Q \ F}. For any formula
ϕ in F(Q, ar), we use ϕ to denote the “De Morganization” of ϕ,
defined recursively by:

– q(~i) = q(~i)
– i = j = i 6= j and i 6= j = i = j
– ϕ ∧ ψ = ϕ ∨ ψ and ϕ ∨ ψ = ϕ ∧ ψ

We define the transition function and initial formula of A by
De Morganization: δ(q, σ) = δ(q, σ) and the initial formula is
ϕstart.

6.2 Checking emptiness for predicate automata
In this section, we give a semi-algorithm for checking PA emptiness
which is sound (when the procedure terminates, it gives the correct
answer) and complete for counter-examples (if the PA accepts a
word, the procedure terminates). Our procedure for checking PA
language emptiness is a variant of the tree-saturation algorithm for
well-structured transition systems (cf. [18]). The algorithm is es-
sentially a state-space exploration of a predicate automaton (start-
ing from an initial configuration, searching for a reachable accept-
ing configuration), but with one crucial improvement: we equip the
state space with a covering pre-order, and prune the search space by
removing all of those configurations which are not minimal with re-
spect to this order. The key insight behind the development of well-
structured transition systems is that, if the order satisfies certain
conditions (namely, it is a well-quasi order3) this pruning strategy
is sufficient to ensure termination of the search (i.e., although the
search space may be infinite, the pruned search space is finite).

3 A well-quasi order (wqo) is a preorder � such that for any infinite se-
quence {xi}i∈N there exists i < j such that xi � xj .

We begin by defining the covering relation on PA configura-
tions:

Definition 6.6 (Covering) Given a PAA = 〈Q, ar,Σ, δ, ϕstart, F 〉,
we define the covering pre-order � on the configurations of A as
follows: if C and C′ are configurations ofA, then C � C′ (“C covers
C′”) if there is a permutation π : N→ N such that for all q ∈ Q and
all q(i1, .., iar(q)) ∈ C, we have q(π(i1), ..., π(iar(q))) ∈ C′. ⌟

The idea behind the pruning strategy is that if two configura-
tions C and C′ are both in the search space and C � C′, then we
may remove C′. The correctness of this strategy relies on the fact
that if C � C′ and an accepting configuration is reachable from C′,
then an accepting configuration is reachable from C (and thus, if an
accepting configuration is reachable, then an accepting configura-
tion is reachable without going through C′). This fact follows from
a downwards compatibility lemma:

Lemma 6.7 (Downwards compatibility) Let A be a PA and let C
and C′ be configurations of A such that C � C′. Then we have the
following:

1. If C′ is accepting, then C is accepting.
2. For any 〈σ : j〉 ∈ Σ× N, if we have

C′ σ:j−−→ C′

then there exists a configuration C and an index k ∈ N such that

C σ:k−−→ C
and C � C′. ⌟

We now develop our algorithm in more detail. In the re-
mainder of this section, let us fix a predicate automaton A =
〈Q, ar,Σ, δ, ϕstart, F 〉.

State-space exploration of PA is complicated by the fact that the
alphabet Σ×N is infinite and therefore PAs are infinitely branching
(although for a fixed letter, each configuration has only finitely
many successors). The key to solving this problem is that all but
finitely many i ∈ N are indistinguishable from the perspective
of a given configuration C. With this in mind, let us define the
support supp(C) of a configuration C to be the set of all indices
which appear in C; formally,

supp(C) = {ir : q(i1, ..., iar(q)) ∈ C, 1 ≤ r ≤ ar(q)}
Intuitively, if i, j /∈ supp(C), then i and j are effectively indis-
tinguishable starting from C. This intuition is formalized in the fol-
lowing lemma:

Lemma 6.8 Let C be a configuration, k1, k2 ∈ N \ supp(C),
and σ ∈ Σ. For all configurations C1 such that C σ:k1−−−→ C1, there
exists a configuration C2 such that C σ:k2−−−→ C2 and C1 � C2 and
C2 � C1. ⌟

As a result of this lemma, from a given configuration C, it is
sufficient to explore 〈σ : i〉 such that i ∈ supp(C), plus one
additional j /∈ supp(C). In our algorithm we simply choose the
additional j to be 1 more than the maximum index in supp(C).

Finally, we state our procedure for PA emptiness in Algorithm 1.
This algorithm operates by expanding a reachability forest (N,E)
where the nodes (N ) are configurations and the edges (E) are la-
beled by indexed letters. The frontier of the reachability tree is kept
in a worklist worklist, and the set of closed nodes (configurations
which have already been expanded) is kept in Closed.

Theorem 6.9 Algorithm 1 is sound and is complete for non-
emptiness: given a predicate automaton A, if Algorithm 1 returns
Empty, then L(A) is ∅, and if L(A) is nonempty, then Algorithm 1
returns a word in L(A). ⌟



Input: predicate automaton A = 〈Q,Σ, δ, ϕstart, F 〉
Output: Empty, if L(A) is empty; a word w ∈ L(A), if not
Closed← ∅;
N ← ∅;
E ← ∅;
worklist← dnf(ϕstart) ;
while worklist 6= [] do
C ← head(worklist);
worklist← tail(worklist);
if ¬∃C′ ∈ Closed s.t. C′ � C then

/* Expand C */

foreach i ∈ supp(C) ∪ {1 + max supp(C)} do
foreach σ ∈ Σ do

foreach C′ s.t. C σ:i−−→ C′ and C′ /∈ N do
N ← N ∪ {C′};
E ← E ∪ {C σ:i−−→ C′};
if C′ is accepting then

return word w labeling the path in
the graph (N,E) from C′ to a root;

else
worklist← worklist ++[C′];

end
end

end
end

end
Closed← Closed ∪ {C};

end
return Empty

Algorithm 1: Emptiness check for predicate automata

6.3 Decidability results
Although Algorithm 1 is sound and complete for non-emptiness, it
is not complete for emptiness: Algorithm 1 may fail to terminate in
the case that the language of the input PA is empty. In fact, this must
be the case for any algorithm, because PA emptiness is undecidable
in the general case:

Proposition 6.10 General PA emptiness is undecidable. ⌟

Proof. The idea behind the proof is to reduce the halting prob-
lem for two-counter Minsky machines to the problem of deciding
emptiness of a predicate automaton. The reduction uses two binary
predicates, ln1 and ln2 to encode the value of the two counters: for
example, a configuration

ln1(4, 3) ∧ ln1(3, 5) ∧ ln1(5, 1) ∧ ln2(2, 8)

encodes that the value of counter 1 is 3, while the value of counter
2 is 1 (i.e., the value of counter i corresponds to the length of the
chain lni). The challenging part of this construction is to encode
zero-tests, but we omit this technical discussion from the paper.

Monadic predicate automata. Since PA emptiness is undecidable
in general, it is interesting to consider subclasses where it is decid-
able. We say that a predicate automatonA = 〈Q, ar,Σ, δ, ϕstart, F 〉
is monadic if for all q ∈ Q, ar(q) ≤ 1. We have the following:

Proposition 6.11 Algorithm 1 terminates for monadic predicate
automata (i.e., emptiness is decidable for the class of monadic
predicate automata, and Algorithm 1 is a decision procedure). ⌟

Proof. A sufficient (but not necessary) condition for Algorithm 1
to terminate is if � is a well-quasi order (wqo) - this is a standard

result from well-structured transition systems. The fact that � is a
well-quasi order on configurations of monadic predicate automata
follows easily from Dickson’s lemma.

The fact that Algorithm 1 is a decision procedure for the empti-
ness problem for monadic predicate automata follows from Theo-
rem 6.9 and the fact that it terminates.

The PA for a program (Proposition 6.3) always corresponds
to a monadic PA; a finitely generated proof space H fails to be
monadic (i.e., correspond to a monadic PA) exactly when one of
the basic Hoare triples which generates it {ϕ} 〈σ : i〉 {ψ} has
a postcondition which relates the local variables of two or more
threads together (for example, an assertion of the form x(1) ≤
y(2)).

Monadic PA have a conceptual correspondence to thread-
modular proofs [19], which also disallow assertions which relate
the local variables of different threads. Indeed, if there exists a
thread-modular proof for a program, then there exists a monadic
proof space (i.e., a proof space which corresponds to a monadic
PA). This correspondence is not exact, however: monadic proof
spaces are strictly more powerful than thread-modular proofs. In
particular, one can show that any correct Boolean (or finite-domain)
program has a proof space which corresponds to a monadic proof
space. To see why, consider that the transition function of a Boolean
program corresponds to a finite set of Hoare triples.4

Discussion: decidability beyond monadic predicate automata.
Note that the converse of Proposition 6.11 is not true, i.e., non-
monadic proofs do not necessarily cause Algorithm 1 to diverge.
For example, the proof of the thread pooling program from Sec-
tion 2 is not monadic (for example, the assertion end(1) ≤ c(2)
is dyadic). And yet, Algorithm 1 terminates for this example. We
will informally discuss some other classes for which Algorithm 1
terminates.

We can generalize the monadic condition in a number of differ-
ent ways while maintaining termination. One such generalization is
effectively monadic PA, where there is a finite set of indicesD ⊆ N
such that in any reachable minimal (with respect to �) configura-
tion C, for all q(i1, ..., in) we have at most one of i1, ..., in not in
D. Intuitively, effectively monadic PAs can be used to reason about
programs where one or more processes play a distinguished role
(e.g., a client/server program, where there is a single distinguished
server but arbitrarily many clients). Another alternative is bound-
edly non-monadic PA, where there exists some bound K such that
in any reachable minimal (with respect to �) configuration C, the
cardinality of the set {q(i1, ..., in) ∈ C : ar(q) > 1} is less than
K. The thread pooling example from Section 2 is boundedly non-
monadic with a bound of 3. Intuitively, boundedly non-monadic
PAs can be used to reason about programs which do not require
“unbounded chains” of inter-thread relationships.

There is a great deal of research on proving that classes of sys-
tems are well-quasi ordered which can be adapted to the setting
of predicate automata. For example, we may admit a single bi-
nary predicate which forms a total order relation (by Higman’s
lemma), or a tree (by Kruskal’s tree theorem). Meyer showed in
[30] that depth-bounded processes are well-quasi ordered, which
implies that for depth-bounded processes of known depth, the cov-
ering problem can be decided using a standard backward algorithm
for WSTSs. Intuitively, the covering problem asks whether a sys-
tem can reach a configuration that contains some process that is

4 This assumes that every command of the program is deterministic, but
this is without loss of generality because for Boolean programs, it is always
possible to replace nondeterministic commands (e.g., b := *) with a non-
deterministic branch between deterministic commands (e.g., b := 0 and
b := 1).



in a local error state. The question whether the covering problem
is decidable for the entire class of depth-bounded processes was
later addressed in [39], where an adequate domain of limits was
developed for well-structured transition systems that are induced
by depth-bounded processes, and consequently the existence of a
forward algorithm for deciding the covering problem was demon-
strated.

6.4 Completeness of PA
In this section, we strengthen the relative completeness result from
Section 5. Theorem 5.2 establishes that any Ashcroft proof for a
program P corresponds to a finitely generate proof space H which
covers the traces of P . But given our earlier undecidability result
(Proposition 6.10), there is cause for concern that, although we
can construct a basis H for H , there may be no way to validate
that it covers the traces of a program. In this section, we introduce
emptiness certificates for PA, and complete the picture by showing
that we can construct an emptiness certificate for AP ∩AH .

Definition 6.12 Let A = 〈Q, ar,Σ, δ, ϕstart, F 〉 be a PA. An
emptiness certificate for A is a formula ϕ ∈ F(Q, ar) (which may
additionally have arbitrary quantification of thread variables) such
that:

• ϕstart |= ϕ

• for all C, C′, σ, i such that C |= ϕ and C σ:i−−→ C′, we have
C′ |= ϕ.
• Every model of ϕ is rejecting. ⌟

An emptiness certificate can be seen as a kind of inductive in-
variant which shows that the language of a given predicate automa-
ton is empty.

The following proposition establishes that emptiness certificates
can be viewed as proofs that the language of a given predicate
automaton is empty.

Proposition 6.13 LetA be a PA such that there exists an emptiness
certificate for A. Then L(A) = ∅. ⌟

Finally, we can state a strengthening of the completeness result
from Section 5: not only do Ashcroft proofs correspond to finitely
generated proof spaces, but they correspond to checkable proof
spaces:

Proposition 6.14 (PA Completeness) Let P be a program. If there
is an Ashcroft proof of correctness for P , then there is a proof
space H which covers the traces of P , and there is an emptiness
certificate for the predicate automaton AP ∩AH . ⌟

Proof. We continue from the point started in the proof of Theo-
rem 5.2: we let P be a program, Φinv be an Ashcroft invariant of
the form

Φinv ≡
(
∀i.

∨
`∈Loc

loc(i) = ` ∧ ϕ`(i)
)

∧
(
∀i 6= j.

∨
`,`′∈Loc×Loc

loc(i) = ` ∧ loc(j) = `′ ∧ ϕ`,`′(i, j))
)

and let H be as in Theorem 5.2.
We must construct an emptiness certificate for the automaton

AP ∩ AH . Recall that the vocabulary of AP ∩ AH consists of the
vocabulary ofAP along with the “negated” vocabulary ofAH . That
is, the set of predicate symbols is

Loc∪{loc, err}∪{ϕ` : ` ∈ Loc}∪{ϕ`,`′ : `, `′ ∈ Loc}∪{[false]}

For any ` ∈ Loc we use `(i) as shorthand for∨
{`′(i) : `′ ∈ Loc ∧ ` 6= `′} .

The following formula, which we call Φinv, is such an emptiness
certificate:

loc ∧
((
∃i.

∧
`∈Loc

`(i) ∨ ϕ`(i)
)

∨
(
∃i, j.i 6= j ∧

∧
`,`′∈Loc×Loc

`(i) ∨ `′(j) ∨ ϕ`,`′(i, j))
)

∨ (err ∧ [false])
)

The conditions of Definition 6.12 can easily be checked. The in-
tuition behind this emptiness certificate comes from the observation
that the negation of a forwards inductive invariant is a backwards
inductive invariant.

7. Verification algorithm
In this section, we outline a verification algorithm based on the
automatic construction of proof spaces, and then discuss how the
algorithm can be customized using various heuristics known and
some perhaps yet to be discovered. Keep in mind that our aim in this
section is not the presentation and/or evaluation of such heuristics,
but rather to place proof spaces in their algorithmic context and to
discuss some of the interesting research problems which are posed
by this specific algorithmic context.

The high-level verification procedure based on proof spaces is
given in Algorithm 2. It is essentially a variation of a standard
counter-example guided abstraction refinement (CEGAR) loop.
proof-space(τ) is a procedure that computes a finite set of basic
Hoare triples such that {true} τ {false} belongs to the proof
space generated by proof-space(τ).

One straightforward implementation of proof-space is to use
sequence interpolation [22]. Given a trace τ = 〈σ1 : i1〉· · · 〈σn :
in〉, we may use sequence interpolation to compute a sequence
of intermediate assertions ϕ1, ..., ϕn+1 such that ϕ1 = true,
ϕn+1 = false, and for every j ≤ n, the Hoare triple {ϕj} 〈σj :
ij〉 {ϕj+1} is valid. We may then take the proof-space(τ) to be
the set of all such Hoare triple {ϕj} 〈σj : ij〉 {ϕj+1}.5

Algorithm 2 takes as input a program P and, if it terminates,
returns either a counter-example τ showing that the error location
of P is reachable or a basis H of a proof space which proves the
correctness of P . The algorithm operates by repeatedly sampling
error traces τ of P for which {true} τ {false} is not in the
proof space generated by H . If τ is feasible then the program is
incorrect and the counter-example τ is returned. Otherwise, we
add the Hoare triples from proof-space(τ) to H . If we are unable
to sample a trace τ for which {true} τ {false} is not in the
proof space generated by H , then H is a basis for a proof space
which proves the correctness of P , and we return H . The high-
level properties of this algorithm are summarized in the following
theorem.

Theorem 7.1 Algorithm 2 is sound and is complete for counter-
examples: given a program P , if Algorithm 2 returns Safe, then
`err is unreachable; if `err is reachable, then Algorithm 2 returns a
feasible trace which reaches `err. ⌟

Discussion There is a great deal of flexibility in the design
choices of the proof-space procedure. Let us discuss some of the
design considerations and directions for future research concerning
the construction of a proof space from a trace. An abstract proof-
space procedure can be viewed to include these two steps:

5 Technically speaking, these triples may not satisfy condition 1 of Def-
inition 4.2, so we must define proof-space(τ) to be the set of all
{ϕj ∨ false} 〈σj : ij〉 {ϕj+1 ∨ false}.



Construct program automaton AP ;
H ← ∅; /* Basis for a proof space */

while (AP ∩AH) 6= ∅ do /* Algorithm 1 */

Select τ from AP ∩AH ; /* Algorithm 1 */

if τ is feasible then
return Counter-example τ

else
H ← H ∪ proof-space(τ)

end
end
return Proof H

Algorithm 2: Verify(P )

1. Construct a program P ′ such that P ′ over-approximates the
input trace τ (in the sense that τ is an error trace of P ′ and
{true} P ′ {false}), and construct a proof of correctness for
P ′.

2. Decompose the proof from step 1 to get a finite set of basic
Hoare triples.

Step 1 can be replaced by a variety of different algorithms. The
straightforward algorithm we suggested above (i.e. sequence inter-
polants) is one option. One can also view Step 1 to be implemented
as a refinement loop, in the sense that an approximation is con-
structed and if a proof of correctness cannot be constructed for it, it
is refined until a proof can be found. There are an array of known
techniques that lie in the middle of the spectrum from the sequence
interpolants for the trace (where we take P ′ = τ ), to a fully gen-
eralized refinement construction of the generalization of the trace
(where P ′ is the most general provably correct program containing
τ ). For example, path programs [6] can be used to restore some of
the looping structure from P in order to take advantage of (sequen-
tial) loop invariant generation techniques. Bounded programs [38]
are another category of suitable candidates for P ′, where a loop-
free concurrent underapproximation of P is constructed through
“de-interleaving” τ ; a correctness proof for the bounded program
can then be constructed using techniques for fixed-thread concur-
rent program verification.

Step 2, decomposition of the proof, is more subtle than it might
seem. In particular, the requirement that preconditions of basic
Hoare triples may contain only relevant threads (condition 2 of
Definition 4.2) may be difficult to enforce. An interesting feature
of the sequence interpolation procedure outlined above is that the
relevance requirement follows immediately from the properties of
interpolants. But in general, it may be necessary to develop non-
trivial algorithms for decomposing a proof into basic Hoare triples.

An interesting alternative to step 2 is to consider the problem of
constructing basic Hoare triples directly rather than to extract them
from an existing proof. For example, one possibility is to design
an interpolation procedure which yields monadic proof spaces,
perhaps borrowing techniques from tree interpolation [10].

8. Related work
There is a huge body of work on analysis and verification of concur-
rent programs. In this section, we limit ourselves to the substantial
body of work on verification of programs with unbounded paral-
lelism. Below, we provide some context for our work in this paper,
and compare with the most related work.

Unbounded parallelism and unbounded memory The proof
checking procedure presented in Section 6 can be viewed as a kind
of pre∗ analysis using the proof space, which may be reminiscent
of predicate abstraction. There are two particular approaches to
predicate abstraction for programs with unbounded parallelism and
unbounded memory which are related to ours: indexed predicate

abstraction [28] and dual reference programs [25]. Indexed pred-
icate abstraction allow predicates to have free (thread) variables
(e.g., x(i) ≥ 0), with the ultimate goal of computing an Ashcroft
invariant (i.e., a universally quantified invariant) of a fixed quan-
tifier depth. Admitting free thread variables allows indexed pred-
icates to be combined “under the quantifier” and thus compute
complex quantified invariants from simple components. In view
of the symmetry closure condition of proof spaces, indexed pred-
icates serve a similar function to our ground Hoare triples, and
our use of combinatorial generalization shares the goal of [28] to
compute complex invariants from simple components. [28] uses a
theorem prover to reason about universal quantifiers and program
data simultaneously, and determines an Ashcroft invariant for a
program by computing the least fixpoint in a finite abstract domain
determined by a set of indexed predicates. Our technique does not
require a theorem prover which supports universal quantifiers (or
heuristics for quantifier instantiation), and the predicate automata
inclusion check algorithm (based on the tree-saturation algorithm
for well-structured transition systems) replaces the abstract fix-
point computation. The separation between reasoning about data
and thread quantification provides a fresh perspective on what ex-
actly makes reasoning about unbounded parallelism difficult, and
enables us to state and prove results such as the decidability of
the monadic case (i.e. Proposition 6.11), which has no obvious
analogue in the setting of [28].

Dual reference programs allow two types of predicates: single-
thread predicates (mixed assertions in the terminology in [12]),
which refer to globals and the locals of one thread, and inter-
thread predicates, which refer to globals and the locals of two
threads, where one thread is universally quantified (e.g., ∀j.x(i) <
x(j)). Although dual reference programs are not necessarily well-
structured transition systems, [25] shows that it is always possible
to convert a dual reference program obtained from an asynchronous
program via predicate abstraction to a WSTS. In contrast with [25],
our technique is complete relative to Ashcroft invariants. Moreover,
we are able to use standard techniques from sequential verification
to compute refinement predicates, whereas it is less clear how to
automatically generate their inter-thread predicates that are of the
form ϕ(l, lP ), where l is the local variable of a distinct active
thread, and lp stand for a local variable of all passive threads (and
therefore the predicates are universally quantified).

Model checking modulo theories (MCMT) is a general method
for proving safety of array-based systems [20], which generalize
finite-state parameterized systems. The MCMT algorithm is es-
sentially a pre∗ computation which utilizes techniques from well-
structured transition systems to guarantee termination for a sub-
class of array-based systems (which can be expressed in well-quasi
ordered theories); this is similar in spirit to the proof checking al-
gorithm presented in Section 6 and the covering relation defined in
[20] is strikingly similar to Definition 6.6. In [3], MCMT is com-
bined with interpolation-based abstraction, which in some practical
cases terminates when the MCMT algorithm does not. Perhaps the
most notable difference between our approach and MCMT is that
we separate the verification problem into two sub-problems: con-
structing a proof space, and checking the adequacy of the proof
space.

There is some work on automated invariant generation for pro-
grams where the number of threads and memory are unbounded
[13, 23, 36]. These methods generally differ from ours in that they
compute inductive invariants and are not property driven. In [36],
starting with a set of candidate invariants (assertions), the approach
builds a reflective abstraction, from which invariants of the concrete
system are obtained in a fixpoint process. The number of quanti-
fiers used in the invariants is a parameter of the abstract domain
that needs to be fixed a priori. In [13], data flow graphs are used



to compute invariants of concurrent programs with unboundedly
many threads. Their abstraction is not expressive enough to capture
relations between local variables and global variables, or local vari-
ables of other threads. In [23], a language of recursively defined for-
mulas about arrays of variables, suitable for specifying safety prop-
erties of parameterized systems, is used. Their main contribution is
a proof method for implications between such formulas, which ac-
commodates the implementation of an abstract interpreter. Their
effort was in the direction of proving entailment between complex
formulas; our effort is to avoid them altogether.

The problem of proving data structure invariants for programs
with unboundedly many threads is attacked in [5] and [37]. [5]
aims to exploit thread-modularity in their proofs, which restricts
the ways in which thread-local variables may be correlated (for the
practical gain of a faster analysis). Additional correlations can be
captured using the technique of [37], in which a universally quan-
tified environment assertion is used to keep track of relationships
between a distinguished thread and all other threads.

Unbounded Parallelism and Bounded Memory In [1], a border
case between unbounded and bounded data is investigated where
shared variables range over unbounded domain of naturals but the
local states of processes are finite (i.e. local variables of threads
range over finite domains). There has been a great deal of work
in the area of automated verification and analysis of concurrent
programs where the number of threads is unbounded but the threads
are finite-state [7, 24, 27, 31, 33]. We skip a detailed discussion
of the wealth of techniques in this area, as they are not as closely
related to our technique in the sense that they are limited to finite-
state threads.

Automata on infinite alphabets One of the main contributions
of this paper is a method for determining whether the language of
error traces of some program P are included inside the set lan-
guage of correct traces proved by some proof space H . Classical
automata-theoretic techniques cannot directly be applied because
the alphabet of program commands is infinite. However, the au-
tomata community has developed generalizations of automata to
infinite alphabets; the most relevant to our work is (alternating)
register automata (ARA), which are closely related to predicate au-
tomata.

Register automata were first introduced in [26]. Universality for
register automata was shown to be undecidable in [32], which im-
plies ARA emptiness is undecidable in the general case. However,
the emptiness problem for ARA with 1 register (cf. monadic pred-
icate automata) was proved to be decidable in [11] by reduction to
reachability for lossy counter machines; and a direct proof based
on well-structured transition systems was later presented in [16].

Language-theoretic program verification The method presented
in this paper is inspired by the language-theoretic approach to pro-
gram correctness proposed in [21]. Notably, this approach has also
been used in the context of concurrent programs with a fixed num-
ber of threads [14] and concurrent programs with unboundedly
many threads [15]. One fundamental difference between our ap-
proach and previous language-theoretic techniques is that in [14,
15, 21], a finite set of program statements and therefore a finite
alphabet was used. In [15], counting proofs were presented as a
method for automatically synthesizing auxiliary variables in com-
plex counting arguments for parameterized protocols. Counting
proofs, i.e. proofs that use auxiliary counters are not expressible
as proof spaces without the use of these auxiliary variables. On the
other hand, proof spaces are capable of proving properties of pro-
grams which involve reasoning about infinite-domain local vari-
ables which is beyond the counting proofs framework. It will be in-
teresting to investigate whether the strengths of the counting proofs
and proof spaces can be combined into a single framework.

9. Conclusion
We conclude with a discussion of our work in a wider context and
with an outlook to future work.

Abstract interpretation From the perspective of abstract interpre-
tation, proof spaces introduce a new class of abstract transform-
ers for multi-threaded programs. We will here only sketch the de-
tails of a formalization of proof spaces in the abstract interpretation
framework. The main part of the PA emptiness algorithm (Algo-
rithm 1) applied to the predicate automaton AP ∩AH (for the pro-
gram P and the basis H of a proof space) iterates an abstraction
of the pre-image of the transition function. The corresponding ab-
stract domain is the free lattice generated by the set consisting of
the negations of the assertions that are used in the basis H and
the set of control assertions. The fact that the lattice is free (i.e.,
ignores the logical meaning of assertions) justifies our calling the
abstract fixpoint computation combinatorial. The definition of the
abstract transformer can be inferred from the definition of the tran-
sition function of the predicate automaton.

In contrast to work on software model checking for unbounded
parallelism, we have not phrased abstraction as a source-to-source
transformation, i.e., a mapping of a program into another one. In-
stead, we have taken the more general approach of abstract inter-
pretation, which is to define an abstraction through a mapping of
a semantics-defining function over a partially-ordered domain into
another one.

Symbolic vs. combinatorial reasoning In program verification,
there is a tradition of dividing the problem of proving that a pro-
gram satisfies a property of interest into two sub-tasks: (1) find-
ing a simplified model of the program which simulates it, and (2)
verifying that the property holds in the model. The first is a sym-
bolic problem which requires reasoning about the program’s (often
infinite-domain) data theory (e.g., integers), and the second is com-
binatorial problem over a (possibly very large) finite state space.
A classical example of this is the SLAM tool, which computes a
recursive Boolean program which abstracts a given program using
a finite set of predicates (generated via symbolic reasoning) and
then verifies the Boolean program using CFL reachability [34] (a
combinatorial algorithm).

Proof spaces achieve a similar separation between symbolic and
combinatorial reasoning: symbolic reasoning is required to con-
struct the basis of a proof space, and then checking whether every
error trace can be proved infeasible using the sequencing, symme-
try, and conjunction rules is a combinatorial problem. From this
point of view, our algorithm for predicate automaton emptiness
serves a role which is analogous to CFL reachability in SLAM.
It is interesting to note that (unlike CFL reachability), the empti-
ness problem for general predicate automata is undecidable. There
is a body of work on other combinatorial verification problems to
serve as targets for multi-threaded programs [1, 25], but none are
complete (in the sense of Section 5). Thus, our work reflects a fun-
damental tension between completeness and decidability in the set-
ting of unbounded parallelism which does not exist for sequential
programs or even multi-threaded programs with a fixed number of
threads.

Unbounded vs. Infinite The number of threads which participate
in an error trace of a multi-threaded program is unbounded rather
than infinite. This enables proof spaces to use conjunction and sym-
metry in place of universal thread quantification, and thus avoid the
problem of directly synthesizing quantifiers. One may view using
universal quantification to reason about unbounded threads (as in
Ashcroft’s proof system) as a deficiency, because an entailment is
only provable in first order logic if it holds for all models, including
models which have an infinite universe of threads.



For termination and liveness properties, one needs to reason
about infinite traces. This creates the need to distinguish between
programs with unboundedly many threads (e.g., computations
which are parallelized over a number of processes which is de-
termined at run time) and programs with infinitely many threads
(e.g., programs with dynamic thread creation which spawn in-
finitely many threads over an infinite execution). In the setting of
unbounded parallelism, then even if a trace is infinite, it can involve
only finitely many threads. Thus, it may in principle be possible to
extend proof spaces to termination and liveness properties. This is
a topic of future work.
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