
61

Strategy Synthesis for Linear Arithmetic Games

AZADEH FARZAN, University of Toronto

ZACHARY KINCAID, Princeton University

Many problems in formal methods can be formalized as two-player games. For several applications—program

synthesis, for example—in addition to determining which player wins the game, we are interested in computing

a winning strategy for that player. This paper studies the strategy synthesis problem for games defined within

the theory of linear rational arithmetic. Two types of games are considered. A satisfiability game, described by

a quantified formula, is played by two players that take turns instantiating quantifiers. The objective of each

player is to prove (or disprove) satisfiability of the formula. A reachability game, described by a pair of formulas

defining the legal moves of each player, is played by two players that take turns choosing positions—rational

vectors of some fixed dimension. The objective of each player is to reach a position where the opposing player

has no legal moves (or to play the game forever). We give a complete algorithm for synthesizing winning

strategies for satisfiability games and a sound (but necessarily incomplete) algorithm for synthesizing winning

strategies for reachability games.

CCS Concepts: • Theory of computation→ Automated reasoning; • Software and its engineering→

Automatic programming;

Additional Key Words and Phrases: Logical games, Functional synthesis, Reactive synthesis

ACM Reference format:
Azadeh Farzan and Zachary Kincaid. 2018. Strategy Synthesis for Linear Arithmetic Games. Proc. ACM Program.
Lang. 2, POPL, Article 61 (January 2018), 31 pages.

https://doi.org/10.1145/3158149

1 INTRODUCTION
Logical games are two-player games in which the rules of the game are defined by logical formulas.

Computing winning strategies for logical games has several applications in formal methods, specif-

ically in verification and synthesis of programs. This paper presents algorithms for computing

winning strategies for linear arithmetic games, in which the moves of the game are defined by linear

(rational or integer) arithmetic formulas. This paper considers two classes of linear arithmetic

games, namely satisfiability games and reachability games. We focus on logical games modulo the
theory of linear rational arithmetic, both due to the pervasive use of this theory in formal methods

and the fact that it is relatively well understood.

A quantified formula can be considered as a satisfiability game between two players SAT and

UNSAT: SAT controls the existential quantifiers and aims to prove the formula is satisfiable, while

UNSAT controls the universal quantifiers and aims to prove the formula unsatisfiable [Hintikka

1982]. A winning strategy for SAT is an algorithm for choosing values for existentially quantified

variables based on the preceding choices made by the UNSAT player, such that after all choices

have been made for both players, the formula evaluates to true. Dually, a winning strategy for the

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/1-ART61

https://doi.org/10.1145/3158149

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

https://doi.org/10.1145/3158149
https://doi.org/10.1145/3158149

61:2 Azadeh Farzan and Zachary Kincaid

UNSAT player is an algorithm for choosing values of universally quantified variables to make the

formula evaluate to false. Applications of satisfiability games include:

• Functional synthesis. Approaching program synthesis as theorem proving problem has a long

history [Manna and Waldinger 1980] and remains a competitive approach today [Kuncak

et al. 2010; Reynolds et al. 2015]. A typical synthesis conjecture has the form ∃f .∀x .φ (f ,x)
where f is the function to be synthesized, x is a parameter to the function, and φ (f ,x) is a
logical specification of the function. A SAT strategy for such a formula corresponds to an

implementation of f that satisfies its specification.

• Adversarial planning. Consider the problem of finding a plan to accomplish a task within

some fixed window of time while interacting with adversarial agents. Such a problem can be

encoded as a satisfiability problem where SAT chooses the actions of the plan and attempts

to accomplish the goal and UNSAT controls the adversaries and attempts to avoid the goal

[Dantam et al. 2016]. A winning SAT strategy corresponds to a plan.

There are a variety of decision procedures for linear rational arithmetic that can be used to

determine which player wins a satisfiability game [Bjørner and Janota 2015; Farzan and Kincaid

2016]. However, this paper contributes the first (to our knowledge) complete procedure for strategy

synthesis for such games. Our approach is based on our recent decision procedure for linear

rational/integer arithmetic [Farzan and Kincaid 2016]. We show that using Craig interpolation, it is

possible to extract winning strategies from the certificate produced by this procedure (Section 4).

The resulting procedure is complete in the sense that it is guaranteed to synthesize a winning

strategy (for the winning player) in finite time.

A reachability game is a game between two players (SAFE and REACH) determined by three

formulas, which define the initial positions of the game, the moves of SAFE and the moves of

REACH. SAFE and REACH alternate moves until one has no available moves and loses. In contrast

to satisfiability games which have finite duration, reachability games can be played indefinitely (if

SAFE plays with legal moves indefinitely, then SAFE wins the game). Applications of reachability

games include:

• Reactive synthesis: Reactive synthesis is the problem of a finding a potentially non-terminating

program that interacts with an environment [Alur et al. 2016]. For example, consider a robot

controller that must avoid crashing into moving obstacles—this problem can be modeled as a

reachability game where SAFE controls the robot and attempts to avoid the adversaries, and

REACH controls the obstacles and attempts to crash into the robot. A winning strategy for

SAFE is a program that can be executed by the robot to avoid crashes.

• Branching-time verification: the connection between branching-time verification and games

is well known [Cook and Koskinen 2013]. A branching-time safety property can be encoded

as a logical game where SAFE controls existential path quantifiers and attempts to avoid

some bad state, while REACH controls universal path quantifiers and attempts to reach a bad

state.

• Modular verification: modular verification proves that a program satisfies a property of

interest without having access to the entire code (e.g., the program may make unknown

library calls, or call a different module that is being verified independently). This style of

modular verification requires synthesizing non-trivial specifications for unknown such that,

assuming that specification holds, the property of interest holds [Albarghouthi et al. 2016].

This problem can be encoded as a reachability game where the REACH controls the program

and attempts to reach an error, and SAFE controls the unknown code and attempts to avoid

the error. The specification for the unknown code is part of the proof that a winning strategy

for SAFE is indeed winning.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:3

There has been a great deal of decidability results and algorithms for solving finite state games

of infinite duration [Emerson and Jutla 1991; Kupferman and Vardi 1999; Pnueli and Rosner 1989;

Thomas 1995]. Linear reachability games are infinite state and infinite duration, a class of games

that have received relatively less attention [Beyene et al. 2014; De Alfaro et al. 2001]. There is no

algorithm that can synthesize a winning strategy for the entire class, so it is important to have

a variety of different techniques with different strengths. Our approach to solving reachability

games is based on an insight from automated program verification [McMillan 2006]. To verify a

property of a program, we unroll it, prove that the property holds on the unrolling, and then attempt

to generalize the proof so that it holds for the entire program. Similarly, our strategy synthesis

procedure for reachability games unrolls the game, computes a winning strategy for the unrolling,

and attempts to generalize the strategy to the infinite-length game. This technique for reachability

games crucially makes use of strategy synthesis for satisfiability games, which is a problem also

addressed in this paper.

This paper contributes fully automated procedures for synthesizing winning strategies for both

satisfiability and reachability games. In contrast to many (but not all) approaches to synthesis, our

technique does not require user-supplied hints (such as a program grammar as in syntax guided

synthesis (SyGuS) [Alur et al. 2013], or solution hints in the form of templates in the style of Beyene

et al. [2014]; Srivastava et al. [2013]). While such hints are sometimes natural or even desirable,

fully automated strategy synthesis remains a fundamental algorithmic challenge.

The remainder of this paper is structured as follows. In the next section, we give two examples

for satisfiability and reachability games to establish intuition. In Section 3, we formalize the class of

logical games of interest and establish some foundational results. Sections 4 and 5 present our strat-

egy synthesis algorithms for satisfiability and reachability games, respectively. Section 6 discusses

some additional properties of logical games and our algorithms for solving them. Experimental

evaluation of both algorithms on a number of case studies appears in Section 7. Section 8 discusses

the related work.

2 ILLUSTRATIVE EXAMPLES
We use two examples to explain the high level ideas behind the two main contributions of this paper:

(i) strategy synthesis for (bounded) satisfiability games (Section 2.1) and (ii) strategy synthesis for

(unbounded) reachability games (Section 2.2).

2.1 Linear Arithmetic Satisfiability Games
We use a functional synthesis example to illustrate our algorithm for strategy synthesis for satisfi-

ability games. Functional synthesis is the problem of synthesizing a function that meets a given

specification. Many functional synthesis queries can be encoded as logical formulas of the form: for
all inputs, there exists an output such that some specification holds. Concretely, suppose that we

wish to synthesize a function that computes the least upper bound of two rational parameters. This

synthesis query can be encoded as the formula ∀x .∀y.∃lub.∀ub.φ (x ,y, lub, ub), where
φ (x ,y, lub, ub) ≜ lub ≥ x ∧ lub ≥ y ∧ [(ub ≥ x ∧ ub ≥ y) =⇒ ub ≥ lub] .

The above quantified formula can be interpreted as a game played between two players, SAT

and UNSAT, whose goals are to prove that the formula is respectively satisfiable and unsatisfiable.

A winning strategy for the SAT player (a function that, given the values that the UNSAT player

chooses for x and y, selects a value for lub such that φ holds no matter what the UNSAT player

chooses for ub) corresponds to an implementation of the least upper bound function.

Farzan and Kincaid [2016] give a decision procedure for linear rational arithmetic (and linear

integer arithmetic) that operates by synthesizing a winning strategy skeleton for one of the two

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

61:4 Azadeh Farzan and Zachary Kincaid

•

•

x y

• •

n1 : ⊤

n2 : ⊤

n3 : ⊤ n4 : ⊤

n5 : φ (x ,y,x , ub1) n6 : φ (x ,y,y, ub2)

∀x

∀y

∃lub

∀ub

Quantifier

prefix

(a) Strategy skeleton (b) Tree interpolation problem

Fig. 1. Winning strategy skeleton and its corresponding tree interpolation problem

players. The winning strategy skeleton for the SAT player (of our running example) is illustrated

in Figure 1(a). The skeleton is a tree with one level for each quantifier in the formula. Levels that

correspond to universally quantified variables (chosen by the UNSAT player) are marked with •

placeholders; levels that correspond to existentially quantified variables (chosen by the SAT player)

are marked with its possible moves. The skeleton encodes the information that, there is some way

for the SAT player to win the game by instantiating lub with either x or y (the choice of the UNSAT
player). The skeleton is not a strategy, however, because it does not encode when to choose x and

when to choose y. For instance, the strategy skeleton in Figure 1(a) would also be winning for the

analogous specification of greatest lower bound.

In this paper, we give a method for synthesizing winning strategies from winning strategy

skeletons using tree interpolation [Blanc et al. 2013]. Figure 1(b) depicts the tree interpolation

problem corresponding to the skeleton in Figure 1(a). The structure of this tree is the same as that

of the strategy skeleton. Each leaf is labeled with a formula that represents the constraint that

the game proceeds along the corresponding path of the skeleton (i.e., SAT chooses x along the

left path and y along the right) and SAT loses. Notice the appearance of two distinct copies ub1
and ub2 of the upper bound variable: this duplication reflects the fact that UNSAT may respond

differently depending on whether SAT chooses x or y. The fact that the strategy skeleton is winning

implies that the conjunction of these two formulas is inconsistent; or more intuitively, both moves

cannot be losing moves. This inconsistency guarantees the existence of a tree interpolant. A tree

interpolant is mapping I from the nodes of the tree to formulas that obey certain conditions (given

formally in Definition 4.5). For this particular tree interpolation problem, we are interested in the

formulas I (n3) and I (n4) that label the two nodes n3 and n4 at the ∃lub level. The conditions on tree

interpolants guarantee that (1) ¬φ (x ,y,x , ub1) |= I (n3), (2) ¬φ (x ,y,y, ub2) |= I (n4), (3) I (n3)∧ I (n4)
is inconsistent, and (4) I (n3) and I (n4) are expressed over the symbols x and y that are common to

the branches. The negation of I (n3) is a condition under which choosing x is a winning strategy

for SAT (condition (1)), while the negation of I (n4) is a condition under which y wins (condition

(2)). Condition (3) ensures that at least one of ¬I (n3) and ¬I (n4) must hold. The fact that I (n3)
and I (n4) are expressed only in terms of x and y (condition (4)) makes them suitable for use in

conditionals (SAT’s strategy may not branch depending on the value of ub, because UNSAT chooses

ub after SAT chooses lub). One solution to this tree interpolation problem yields I (n3) = x < y and

I (n4) = y < x , which leads to the following implementation of lub:
lub(x ,y) = if x ≥ y then x else y .

2.2 Linear Arithmetic Reachability Games
We use the Cinderella-Stepmother game [Bodlaender et al. 2012; Hurkens et al. 2011] which is

motivated by data applications in wireless sensor networks, and the minimum-backlog problem. It

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:5

is a turn-based two-player game on an undirected graph, with players Cinderella and her Stepmother.
The graph is a regular pentagon (same configuration as Beyene et al. [2014]; Hurkens et al. [2011])

for the purposes of this example. Each vertex of the pentagon contains a bucket (which represents

a buffer) that can store water (which represents data). All buckets have the same capacity c .
In each round, the Stepmother (the reachability player) distributes exactly one litre of water

arbitrarily over the buckets. Then, Cinderella chooses a pair of neighbouring buckets and empties

them. The Stepmother’s goal is to cause an overflow in at least one bucket. Cinderella’s goal is

to prevent any overflows from happening. When c < 2, the Stepmother can eventually force an

overflow. When c ≥ 2, Cinderella can manage to keep the game running forever avoiding an

overflow.

It is straightforward to observe that for c < 1, the Stepmother can win the game in the first

round by pouring her entire litre into a single bucket. It is also easy to observe that Cinderella can

win the game for c ≥ 3, using a round-robin strategy, that is, she starts from some bucket, and goes

around the pentagon emptying the two buckets adjacent to the two buckets that were emptied in

the last round, independent of Stepmother’s moves. Since round-robin empties any bucket in at

most every three rounds, it is a winning strategy if c ≥ 3. The Stepmother can beat Cinderella’s

round-robin strategy for c < 3 by putting all of her 1 litre into bucket b5 in the first three rounds,

assuming Cinderella starts her round-robin strategy at bucket b1.
Let us assume c = 3, for the purpose of this example. Note that this is an infinite length game that

Cinderella (the safety player) can win. Our algorithm discovers the winning strategy for Cinderella

by solving bounded (satisfiability) games of increasing length, and attempting to prove that the

strategy discovered for an instance of the bounded game generalizes to a strategy to win the

unbounded game.

It is easy to see that for c = 3, the Stepmother cannot win in the first three rounds; she can, at

best, bring the capacity of one single bucket up to 3 by the end of the third round. Let us quickly

discuss how the bounded versions of this game are solved for 1, 2, and 3 rounds, to explain how

our algorithm works. Note that each round consists of two (game) turns, one for each player.

Round 1: For a game with exactly 1 round, Cinderella can play the trivial strategy of emptying

b1 and b2. It is clear that always emptying buckets b1 and b2 is not a general strategy to win the

unbounded game, and therefore, the algorithm proceeds to solve the game for 2 rounds.

Round 2: Cinderella has to decide what move to make in the second round to win the 2-round

game, with the move for round 1 already decided in the previous round. Cinderella can repeat the

move of emptying buckets b1 and b2 and win the 2-round game. Similar to round 1, the strategy is

not generalizable to a winning one for the unbounded game, and therefore, the new goal is set to

solve a game of 3 rounds.

Round 3: Similar to Round 2, Cinderella can again empty buckets b1 and b2 and win the 3-round

game. The strategy is still not generalizable to a winning one for the unbounded game, and the

new goal is set to solve a game of 4 rounds.

Round 4: With the moves for rounds 1-3 already fixed, Cinderella has to pick a move for round

4 of the game to win. The solver of the satisfiability game of depth 4 determines that no such move

exists. That is, once Cinderella has fixed her moves in the first three rounds as discussed above,

the Stepmother has a winning strategy for a game of 4 rounds regardless of what move Cinderella

makes in round 4. As illustrated in Figure 2, while Cinderella keeps emptying buckets b1 and b2,
the Stepmother puts all of her 1 litre of water into bucket b3 at every turn.

Now, the solver has to backtrack. The first attempt will be based on the conjecture that the move

made in the round before last (round 3) was the mistake that needs to be corrected. The new goal

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

61:6 Azadeh Farzan and Zachary Kincaid

Round 2 Round 3 Round 4

b1

b2

b3b4

b5

0

1

0

0

0

Round 1

b1

b2

b3b4

b5

0

0

0

0

b1

b2

b3b4

b5

0

0

0

0

b1

b2

b3b4

b5

0

0

0

0

432

Cinderella empties b1,b2 Cinderella empties b1,b2 Cinderella empties b1,b2

Stepmother puts 1` in b3 Stepmother puts 1` in b3 Stepmother puts 1` in b3 Stepmother puts 1` in b3

Fig. 2. Stepmother wins in round 4, if Cinderella’s first 3 moves are fixed at emptying b1 and b2.

for the algorithm is to revise Cinderella’s move at round 3 and select a new move for round 4 that

will win Cinderella the game in 4 rounds. Since the moves at rounds 1 and 2 are fixed, the solver

is locally solving a game of 2 rounds starting from the beginning of round 3. The satisfiability

game solver can produce a winning strategy for Cinderella for this game. There are several such

strategies. Let us assume that the one picked by the solver is:

(R 3) If b3 ≤ 2 then empty buckets b4 and b5, and if b5 ≤ 2 then empty buckets b3 and b4.
(R 4) Empty buckets b1 and b2.

The algorithm fails to generalize the winning strategy for this 4-round game into a winning

strategy for the unbounded game. It is clear that the chosen move at round 4 is minimally good

enough not to lose the game for Cinderella in 4 rounds, but is not a good move if the game continues

to a 5th round as demonstrated in Figure 3 where there does not exist a good move for Cinderella

for round 5.

Round 2 Round 3 Round 4

b1

b2

b3b4

b5

0

0

0

Round 1

b1

b2

b3b4

b5 0 0

0

b1

b2

b3b4

b5 0 0

0

b1

b2

b3b4

b5 0 0

0 32

Cinderella empties b1,b2

Stepmother puts 1`t in b3 Stepmother puts 1`t in b3 Stepmother puts 1`t in b3

Cinderella empties b4,b5

b1

b2

b3b4

b5 0 0

0

0

4

Stepmother puts 1`t in b3

Cinderella empties b1,b2 Cinderella empties b1,b2

0

0

1

Round 5

0 0

2

Stepmother puts 1`t in b1

1

Fig. 3. Stepmother wins in round 5, if Cinderella’s first 4 moves are fixed as illustrated.

Round 5: With the moves for rounds 1-4 already fixed, Cinderella has no move that will guaran-

tee a win in the 5th round as discussed before. Again, the algorithm has to backtrack. Cinderella’s
move in round 4 will have to be revised, and the algorithm checks if the game can be won for

Cinderella by recomputing moves for rounds 4 and 5 through solving a bounded satisfiability game

of depth 2 starting from the 4th round.

Since there is a conditional move in the 3rd round, the algorithm has to compute moves for

Cinderella in both eventualities for rounds 4 and 5. Effectively, think of the strategy as having a

memory of the choice made in round 3. This satisfiability game of depth 2 can be won by Cinderella,

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:7

and her winning moves for rounds 4 and 5 are:

• If buckets b3 and b4 were emptied in round 3 then:

– (R 4) empty buckets b4 and b5.
– (R 5) empty buckets b1 and b2.
• If buckets b4 and b5 were emptied in round 3 then:

– (R 4) empty buckets b3 and b4.
– (R 5) empty buckets b1 and b2.

Now the game is at a crucial moment. The winning strategy for the game of 5 rounds for

Cinderella is good enough to generalize to the strategy to win a game of any bound.

Strategy Generalization: How can the algorithm compute a winning strategy for the un-

bounded game by generalizing the strategy of a 5-round game? This can be done by identifying

the state of the game at round 6 with the state of the game at one of the earlier rounds, in the

sense that whatever move was a winning move at an earlier state could also be a good move at

this state. This type of cycle discovery enables the strategy to repeat itself and predict all future

winning moves. The main principle behind this discovery is the well-known concept of invariants
from program verification. Intuitively, we associate every sequence of moves with an invariant
that holds for every position that the game may be in after that sequence; if the invariant of one

sequence s implies that of another (sub-)sequence, then a strategy for continuing the game after s
is already known: the game has returned to a position that was previously encountered.

Consider Cinderella’s entire strategy for the game of 5 rounds:

Round (1) Empty buckets b1 and b2.
Round (2) Empty buckets b1 and b2.

Round (3)

If b3 ≤ 2 then If b5 ≤ 2 then

empty buckets b4 and b5. empty buckets b3 and b4.
Round (4) Empty buckets b3 and b4. Empty buckets b4 and b5.
Round (5) Empty buckets b1 and b2. Empty buckets b1 and b2.

The following are invariants that hold (for the game state) before Cinderella is about to make her

move at each round:

(R 1) φ1 = (b1 ≤ 3) ∧ (b2 ≤ 3) ∧ (b3 ≤ 1) ∧ (b4 ≤ 1) ∧ (b5 ≤ 1) ∧ (b3 + b5 ≤ 1)
(R 2) φ2 = (b1 ≤ 3) ∧ (b2 ≤ 3) ∧ (b3 ≤ 2) ∧ (b4 ≤ 2) ∧ (b5 ≤ 2) ∧ (b3 + b5 ≤ 2)
(R 3) φ3 = (b1 ≤ 1) ∧ (b2 ≤ 1) ∧ (b3 ≤ 3) ∧ (b4 ≤ 3) ∧ (b5 ≤ 3) ∧ (b3 + b5 ≤ 3)
• Moves under the condition b3 ≤ 2:

(R 4) φ4 = (b1 ≤ 2) ∧ (b2 ≤ 2) ∧ (b3 ≤ 1) ∧ (b4 ≤ 3) ∧ (b5 ≤ 3)
(R 5) φ5 = (b1 ≤ 3) ∧ (b2 ≤ 3) ∧ (b3 ≤ 2) ∧ (b4 ≤ 2) ∧ (b5 ≤ 2) ∧ (b3 + b5 ≤ 2)
(R 6) φ6 = (b1 ≤ 1) ∧ (b2 ≤ 1) ∧ (b3 ≤ 3) ∧ (b4 ≤ 3) ∧ (b5 ≤ 3) ∧ (b3 + b5 ≤ 3)
• Moves under the condition b5 ≤ 2:

(R 4) φ ′
4
= (b1 ≤ 2) ∧ (b2 ≤ 2) ∧ (b3 ≤ 1) ∧ (b4 ≤ 3) ∧ (b5 ≤ 3)

(R 5) φ ′
5
= (b1 ≤ 3) ∧ (b2 ≤ 3) ∧ (b3 ≤ 2) ∧ (b4 ≤ 2) ∧ (b5 ≤ 2) ∧ (b3 + b5 ≤ 2)

(R 6) φ ′
6
= (b1 ≤ 1) ∧ (b2 ≤ 1) ∧ (b3 ≤ 3) ∧ (b4 ≤ 3) ∧ (b5 ≤ 3) ∧ (b3 + b5 ≤ 3)

Note that some invariants are intentionally weaker than the strongest condition that can be

guaranteed so that we can have φ6 = φ ′
6
= φ3. This equality guarantees that if Cinderella follows

the strategy of repeating the moves in rounds 3–5 forever starting from round 3, then she can keep

the game state to always remain within the safe region of

φ = (b1 ≤ 3) ∧ (b2 ≤ 3) ∧ (b3 ≤ 3) ∧ (b4 ≤ 3) ∧ (b5 ≤ 3).

How are these invariants computed? Through techniques that are inspired by invariant generation

for program verification [McMillan 2006]. We will expand on this in Section 5.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

61:8 Azadeh Farzan and Zachary Kincaid

A noteworthy feature of our technique is that it can solve this game without the need for any

hints on the strategy to be introduced by the user. In Beyene et al. [2014], when the same instance

is solved, auxiliary variables that keep track of rounds or conditions (and their roles) have to be

introduced to the solver through templates. Our technique solves the game without the need these

hints/templates.

3 LINEAR ARITHMETIC GAMES
We start by defining two classes of logical games. The first variation is (linear arithmetic) satisfiability
games, which interprets a quantified formula in the theory of linear rational arithmetic as a game

between two players, whose objectives are to prove (disprove) satisfiability of the formula. The

second variation is (linear arithmetic) reachability games, wherein players alternate taking turns

forever, or until one of the players is unable to make a move.

3.1 Satisfiability Games
The syntax of linear rational arithmetic (LRA) is as follows. The set of terms is defined by the

following grammar

s, t ∈ Term ::= c | x | s + t | c · t

where x is a variable symbol and c is a rational number. Quantifier-free formulas are defined by the

grammar

F ,G ∈ Formula ::= t < 0 | t = 0 | F ∧G | F ∨G

Notice that we (without loss of generality) assume that formulas are negation-free. When we use

use the negation symbol ¬F , we refer to the negation-free formula equivalent to ¬F , obtained in

the obvious way. A prenex formula is a formula of the form

φ = Q1x1.Q2x2.· · · Qnxn .F ,

where each Qi is either ∃ or ∀, F is a quantifier-free formula (the matrix of φ), and all variable

symbols {x1, ...,xn } are assumed to be distinct. For a formula φ (or term t), we use fv(φ) (fv(t)) to
denote the free variables which appear in φ (t). A prenex formula is a sentence if it has no free

variables.

A valuation is a functionM : V → Q, whereV is some finite set of variable symbols. For a term

t and a valuation V , we use JtKM to denote the interpretation of t within the valuationM . We use

M |= φ to denote thatM satisfies the formula φ (M is a model of φ), defined in the usual way. For a

valuationM , a variable x , and a rational number c , we useM {x 7→ c} to denote the extension ofM
where x is interpreted as c:

M {x 7→ c} ≜ λy.if y = x then c elseM (y)

A prenex sentence

φ = Q1x1.Q2x2.· · · Qnxn .F

defines a satisfiability game, which is played as follows. There are two players, SAT and UNSAT,
which take turns picking rational numbers. At round i of the game, if Qi is ∃, then SAT chooses a

rational number to assign to the variable xi ; if Qi is ∀, then the choice belongs to UNSAT. After
playing this game for n rounds, the players’ choices define a play ρ ∈ Qn : a sequence of rational
numbers of length n. This play can be identified with a valuation of the variables {x1, ...,xn } where
for each i , ρ (xi) ≜ ρi . The SAT player wins ρ if ρ |= F , otherwise UNSAT wins.

Definition 3.1 (Satisfiability Strategy). Let
φ = Q1x1.Q2x2.· · · Qnxn .F

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:9

be a prenex LRA sentence. A SAT strategy for the satisfiability game φ is a function

f : {ρ ∈ Q∗ : |ρ | < n ∧ Q |ρ |+1 = ∃} → Q

Similarly, an UNSAT strategy for φ is a function

д : {ρ ∈ Q∗ : |ρ | < n ∧ Q |ρ |+1 = ∀} → Q

We say that a play ρ of φ conforms to a SAT strategy f (UNSAT strategy д) if for every
i ∈ {1, ...,n} such that Qi is ∃ (Qi is ∀),

ρi = f (ρ1...ρi−1) (ρi = д(ρ1...ρi−1))

(i.e., ρi = f (ρ1...ρi−1) whenever f (ρ1...ρi−1) is defined).
We say that a SAT strategy f is winning if SAT wins every play that conforms to f . Similarly,

an UNSAT strategy д is winning if UNSAT wins every play that conforms to д. It is easy to show

that φ is satisfiable if and only if the SAT player has a winning strategy in the satisfiability game

for φ (and φ is unsatisfiable if and only if the UNSAT player has a winning strategy).

3.2 Reachability Games
Let d ∈ N be a natural number. A (d-dimensional) linear reachability game G (init, reach, safe)
is played as follows: there are two players, REACH (the reachability player) and SAFE (the safety

player), which take turns picking positions in Qd . At each turn i , we denote REACH’s choice by
ri , and SAFE’s choice by si . The legal moves of the game are determined by two LRA transition

formulas reach and safe, each in 2d free variables. REACH may move from position s to position r
if and only if reach(s, r) holds. Similarly, SAFE may move from position r to position s if and only

if safe(r, s) holds. The game starts in a position chosen by REACH, which may be any position r
such that init(r) holds.
A play of the game G (init, reach, safe) is an infinite sequence of positions π = r1s1r2s2· · ·. We

say that REACH wins the play π if init(r1) holds and there is some k ∈ N such that for all i < k ,
reach(si , ri+1) holds, and safe(rk , sk) does not hold; otherwise, SAFEwins π . That is, the first player
to make an illegal move loses, and if no player makes an illegal move then the safety player wins.

Definition 3.2 (Strategies). Let d ∈ N be a natural number. A d-dimensional REACH strategy
is a function f : (Qd)∗ → Qd , and a d-dimensional SAFE strategy is a function д : (Qd)+ → Qd .

Let G (init, reach, safe) be ad-dimensional linear reachability game. A play r1s1r1s1· · · conforms
to a REACH strategy f if for every i , ri+1 = f (s1· · · si). A REACH strategy f is winning if REACH
wins every play that conforms to f . Conformance and winning strategies for the safety player are

defined analogously.

Example 3.3. Consider the Cinderella-Stepmother game from Section 2.2. This is a 5 dimensional

reachability game with one dimension bi corresponding to each bucket. Cinderella is the safety

player, and the Stepmother is the reachability player. The initial formula is

init ≜ *
,

5∑
i=1

bi = 1
+
-
∧ *

,

5∧
i=1

bi ≥ 0
+
-

indicating that the initial position of the game (chosen by the Stepmother) is any position where

the total volume in the 5 buckets is zero. Cinderella’s moves are defined by the formula safe ≜
¬overflow ∧

∨
5

i=1 emptyi where

overflow ≜ *
,

5∨
i=1

bi > 3
+
-

emptyi ≜ b ′i ,b
′
i+1,b

′
i+2,b

′
i+3,b

′
i+4 = 0, 0,bi+2,bi+3,bi+4

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

61:10 Azadeh Farzan and Zachary Kincaid

(subscript arithmetic is mod 5). Thus, the idea that Cinderella loses the game when one of the

buckets overflows is encoded by the fact that Cinderella does not have any legal moves when one

of the buckets is over capacity. Finally, the Stepmother’s moves are defined by the formula

reach ≜
5∑
i=1

b ′i = 1 + *
,

5∑
i=1

bi+
-
∧

5∧
i=1

b ′i ≥ bi .

LetG (init, reach, safe) be a linear reachability game. For any natural numbern ∈ N, the bounded
linear reachability game Gn (init, reach, safe) is played as G (init, reach, safe) except that each
player makes n moves instead of infinitely many. The first player to make an illegal move loses

the game; if no player makes an illegal move, the safety player wins. Bounded games are a bridge

between reachability games and satisfiability games, in the sense that every bounded reachability

game is equivalent to a satisfiability game. More precisely, the reachability player wins the bounded

game Gn (init, reach, safe) if and only if the SAT player wins the satisfiability game

∃x1.∀y1.· · · ∃xn .∀yn .init(x1) ∧ safe(x1, y1) ⇒ unroll(1,n − 1)
where

unroll(k, 0) ≜ false

unroll(k,d) ≜ reach(yk , xk+1) ∧
(
safe(xk+1, yk+1) ⇒ unroll(k + 1,d − 1)

)
.

Proposition 3.4. If there exists some n such that the reachability player wins the bounded game
Gn (init, reach, safe), then the reachability player wins G (init, reach, safe).

3.2.1 The Strategy Synthesis Problem. In this paper, we are interested in the algorithmic problem

of synthesizing winning strategies for reachability games. Any strategy synthesis procedure must

inevitably compute a finite description of a strategy within some suitable description language.

Our procedure synthesizes strategies that are definable in linear arithmetic, with SAFE strategies

additionally restricted to be finite memory, and with REACH strategies additionally restricted to be

bounded.We define these terms precisely in Section 6. The remainder of this section establishes some

basic results concerning reachability games that are independent of a specific strategy description

language, with the aim of setting our expectations of what a strategy synthesis algorithm can be

expected to do.

First, we observe that reachability games are determined: for any reachability game, either

SAFE has a winning strategy or REACH does (this can be shown either by an elementary argument

or a consequence of the celebrated Borel determinacy theorem [Martin 1975]). However, there is

no algorithm for determining which:

Proposition 3.5. There is no algorithm that, given a linear reachability game G (init, reach, safe)
as input, determines which player wins.

Proof Sketch. The transition relation of a program P can be encoded into linear reachability

game by encoding the initial state of the program in init and the transition relation in reach, and
taking safe to be the identity relation (that is,

∧
i xi = yi). The safety player has only one strategy

for this game: the function д(r1...rn) = rn . It is easy to see that д is a winning strategy if and only

if the program P is non-terminating. □

As a result of this proposition, any strategy synthesis procedure for reachability games must

be either non-terminating or incomplete (the procedure fails to synthesize a winning strategy for

some game even though one exists).

The undecidability result also implies that there is no ideal language for describing strategies.
Suppose that we have a hypothetical strategy description language L that is decidable in the sense

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:11

that there is procedure for determining whether any candidate strategy in the language is winning.

Then even though reachability games are determined, they are not determined by strategies that

are definable in L (i.e., there are games for which no player has an L-definable winning strategy).

L-definable determinacy would contradict the undecidability result, since one could decide any

game by enumerating all candidate strategies and testing each one to see if it wins. Under the

reasonable expectation that the description language of a strategy synthesis procedure is decidable,

there are games for which the procedure will fail, simply because there is no winning strategy

within the description language. We discuss some limitations imposed by our particular choice of

description language in Section 6.

4 STRATEGY SYNTHESIS FOR SATISFIABILITY GAMES
This section presents a complete strategy synthesis algorithm for linear satisfiability games. The

algorithm is based on SimSat, our recent decision procedure for the theory of linear rational

arithmetic [Farzan and Kincaid 2016]. We show how to adapt this algorithm to synthesize strategies

by exploiting tree interpolation to extract winning strategies from the satisfiability/unsatisfiability

evidence produced by the decision procedure.

SimSat proves that a formula φ is satisfiable or unsatisfiable by synthesizing a winning strategy

skeleton for one of the two players in the satisfiability game for φ. A strategy skeleton can be

thought of as kind of nondeterministic strategy. We recall the definition of strategy skeletons:

Definition 4.1 (Strategy Skeleton [Farzan and Kincaid 2016]). Let
φ = Q1x1.Q2x2.· · · Qnxn .F

be a prenex LRA sentence. A SAT strategy skeleton for φ is a finite, non-empty set S ⊆ (Term∪ {•})n

of sequences over terms plus a distinguished placeholder •, where each sequence π1· · · πn ∈ S has

length n and such that for all i ∈ {1, ...,n},

• if Qi is ∃, then πi is a term and fv(πi) ⊆ {x1, ...,xi−1}
• if Qi is ∀, then πi is •

An UNSAT strategy skeleton for φ is defined to be a SAT strategy skeleton for the dual game ¬φ.

A strategy skeleton may be viewed as a forest, if common prefixes of different sequences are

unified to form trees. The set of sequences in the skeleton are then exactly the complete paths

through such a forest. In the following, we will typically visualize skeletons as such, and use the

vocabulary of forests and trees to describe features of skeletons (e.g., a skeleton “branches” at the

maximal common prefix of two or more sequences).

Example 4.2. Consider the following formula:

φ ≜ ∀w .∃x .∀y.∃z.w ≤ x ∧ 0 ≤ x ∧ (y < −w ∨ y < w ∨ (x < z ∧ z < y))

•

w −w

• •

x+y
2

x+y
2

A possible SAT strategy skeleton for φ is:

{•w•
x + y

2

, •(−w)•
x + y

2

} ,

which is visualized as the tree to the right. This tree indicates themoves available

to a SAT player who plays according to this skeleton: on turn 1, the UNSAT
player may choose any value forw (represented by the placeholder •). On turn

2, the SAT player may choose betweenw and −w (wherew is the value that the

UNSAT player chose on turn 1). Turn 3 again belongs to the UNSAT player. On turn 4, the SAT
player must choose (x + y)/2, after which the game is finished.

The crucial difference between a strategy skeleton and a strategy is that a skeleton defines only

the moves that a player may take, not when to take them (e.g, the skeleton pictured in Example 4.2

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

61:12 Azadeh Farzan and Zachary Kincaid

indicates that the first move of the SAT player must be eitherw or −w , but does not specify whether

w or −w is the appropriate response to a given move of the UNSAT player). A single strategy

skeleton corresponds to a set of strategies that conform to the skeleton, formalized below.

Definition 4.3. Let φ = Q1x1.Q2x2.· · · Qnxn .F be a prenex LRA sentence, and let S be a strategy

skeleton for the SAT player on φ. We say that a play ρ of φ conforms to S if there exists some

π1· · · πn ∈ S such that for all i ∈ {1, ...,n} such that Qi is ∃, we have JxiKρ = JπiKρ . We say that a

SAT strategy f forφ conforms to S if every play that conforms to f also conforms to S . Conformance

for UNSAT skeletons is defined similarly. It is important to note that when a play conforms to a

skeleton, it conforms to one of its paths, however, when a strategy conforms to a skeleton, it does

not necessarily conform to a single path.

Example 4.4. Consider the SAT strategy skeleton from Example:4.2. One strategy that conforms

to the skeleton is the function f1:

f1 (w) ≜ ifw < 0 thenw else −w

f1 (wxy) ≜
x + y

2

Another conforming strategy is the function f2:

f2 (w) ≜ w

f2 (wxy) ≜
x + y

2

Note that f1 is a winning strategy and f2 is not.

A critical property of strategy skeletons is that they are naturally ordered: one skeleton is “better”

than another if it allows more moves (or equivalently, more strategies conform to it). In contrast,

there is no obvious way of saying that one strategy is better than another: either a strategy is

winning or it is not. SimSat makes essential use of this order. It operates by iteratively improving

strategy skeletons (ascending in the order) for both the SAT and UNSAT players until one of

the players finds a winning strategy skeleton (i.e., a skeleton to which some winning strategy

conforms).

In light of this, we may view SimSat as a complete algorithm for synthesizing winning strategy

skeletons for linear satisfiability games. While SimSat guarantees the existence of a winning strategy

that conforms to the synthesized skeleton, it does not need to construct a strategy to provide a

yes/no answer to a satisfiability query. The algorithmic problem we must address is thus how can a
winning strategy be extracted from a winning strategy skeleton? Comparing the (winning) strategy

skeleton in Example 4.2 and the (conforming) winning strategy f1 in Example 4.4, the essential

problem is to synthesize branching conditions to replace the nondeterministic branching in the

skeleton with deterministic conditionals.

Our strategy extraction procedure is based on tree interpolation, a variation of Craig interpolation

that has been previously used to synthesize procedure summaries for interprocedural program

verification [McMillan and Rybalchenko 2013]. We recall the definition below.

Definition 4.5 (Tree interpolant [McMillan and Rybalchenko 2013]). A labeled tree T = ⟨N ,E, r ,Φ⟩
consists of a directed tree ⟨N ,E, r ⟩ with root r and an annotation Φ : N → Formula. An interpolant
for T is a function I : N → Formula such that

(1) I (r) = false
(2) For all n ∈ N , Φ(n) ∧

∧
(n,c)∈E I (c) |= I (n)

(3) For all n ∈ N , I (n) is expressed over the variables common to its descendants and non-

descendants. That is, for each variable x ∈ fv(I (n)), there is a descendant d of n and a

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:13

non-descendant e such that x appears in both Φ(d) and Φ(e).

An interpolant for a labeled treeT = ⟨N ,E, r ,Φ⟩ always exists as long as the conjunction of allT ’s
annotations (

∧
n∈N Φ(n)) is unsatisfiable. The approach we take to strategy synthesis is to construct

from a winning skeleton a labeled tree that satisfies this property, and such that conditional guards

can be read off an interpolant for the tree. We start with an example, and proceed to the formal

definition subsequently.

Example 4.6. Consider again the SAT strategy from Example 4.2. From this skeleton, we construct

the structurally isomorphic tree pictured below to the left. Each internal node ni (i = 1, 2, 3, 4, 5) is
annotated with assertion true (Φ(ni) = true). Each leaf is annotated with a formula whose models

correspond to plays of the game φ, where the SAT player plays according to the path from the root

to the leaf and loses.

n1

n2 n3

n4 n5

n6 n7

Φ(n6) = ¬φ[z 7→
x + y

2

][y 7→ y1][x 7→ w][w 7→ w]

= ¬
*...
,

w ≤ w ∧ 0 ≤ w

∧
*.
,

y1 < −w ∨ y1 < w

∨

(
w <

w+y1
2
∧

w+y1
2
< y1

) +/
-

+///
-

Φ(n7) = ¬φ[z 7→
x + y

2

][y 7→ y2][x 7→ −w][w 7→ w]

= ¬
*...
,

w ≤ −w ∧ 0 ≤ −w

∧
*.
,

y2 < −w ∨ y2 < w

∨

(
−w <

y2−w
2
∧

y2−w
2
< y2

) +/
-

+///
-

The formulas Φ(n6) and Φ(n7) are obtained from the negation of the matrix of the formula φ by

substituting the terms appearing on the associated path for the existentially quantified variables

and substituting fresh variables for the universally quantified variables (shown underlined). The

naming of the fresh variables reflects the structure of the tree: there is one copy of the variablew
(corresponding to the one node n1 at level 1) and two copies of the variable y (corresponding to the

two nodes n4,n5 at level 3).
Each model of the formula Φ(n6) ∧ Φ(n7) corresponds to strategy for the UNSAT player to beat

any SAT strategy that conforms to the skeleton: given such a modelM , the UNSAT player’s strategy

is as follows: for the first turn, choose JwKM forw . A SAT player that conforms to the given skeleton

must respond by choosing JwKM or −JwKM for x . If the SAT player chooses JwKM , then the UNSAT
player responds with Jy1KM ; otherwise, with Jy2KM . However, the SAT skeleton is winning, so no

such UNSAT strategy can exist: Φ(n6) ∧ Φ(n7) must be unsatisfiable, and therefore there exists an

interpolant I for the tree. We construct a winning strategy f for SAT as follows:

f (w) ≜ if ¬(I (n2))[w 7→ w] thenw else −w

f (wxy) ≜
x + y

2

.

First we argue that f is a well-defined, in the sense that the variables that appear on the right hand

side of an equation are bound on the left. From the property of interpolants we have that I (n2)
must be defined over the symbols common to Φ(n6) and Φ(n7), which is only w . Thus, the only

variable appearing in I (n2) isw , which is a bound variable.

Next we argue that f is winning. From property 2 of Definition 4.5, we have

Φ(n6) |= I (n6) |= I (n4) |= I (n2) .

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

61:14 Azadeh Farzan and Zachary Kincaid

Taking the converse, we have ¬I (n2) |= ¬Φ(n6). Recalling that Φ(n6) is a formula describing the

plays of the game φ where the SAT player plays according to the left path and loses, its negation
describes plays where the SAT player wins. So f is a winning strategy as long as the UNSAT player’s

first move satisfies the condition G. Last, we must show that f wins the plays where the UNSAT
player’s first move does not satisfy G. From property 2 of Definition 4.5, we have

I (n2) ∧ I (n3) |= I (n1)

From property 1, we have I (n1) = false. It follows that I (n2) |= ¬I (n3). Again using property 2, we

have

Φ(n7) |= I (n7) |= I (n5) |= I (n3)

and taking the converse we have ¬I (n3) |= ¬Φ(n7). Combining the two previous, we have I (n2) |=
¬Φ(n7). Thus, if the UNSAT player’s first move does not satisfy G, it must satisfy Φ(n7), meaning

that the right path is winning.

Letφ = Q1x1.Q2x2.· · · Qnxn .F be a prenex LRA sentence, and suppose that S is awinning strategy
skeleton for the SAT player on φ (the case that the φ is unsatisfiable can be handled symmetrically).

We define a labeled tree T (S,φ) as follows.
With any sequence π ∈ (Term ∪ {•})∗ we associate a unique variable symbol that we denote by

x (π). For any path π ∈ S , we associate a losing formula lose-path(x1 · · · xn ,π ,¬F) describing the
plays where the SAT player conforms to π and loses:

lose-path(y, ϵ,G) ≜ G

lose-path(yy,π ′•,G) ≜ lose-path(y,π ′,G[y 7→ x (π ′)])

lose-path(yy,π ′t ,G) ≜ lose-path(y,π ′,G[y 7→ t])

Finally, the tree T (S,φ) ≜ ⟨N ,E, r ,Φ⟩ is defined as:

N ≜ {π ∈ (Term ∪ {•})∗ : Q |π | = ∃ and ∃π ′.ππ ′ ∈ S }

E ≜ {⟨π ,π•⟩ : π ,π• ∈ N } ∪ {⟨π ,πt⟩ : π ,πt ∈ N }

r ≜ ϵ

Φ(π) ≜

lose-path(x1 · · · xn ,π ,¬F) if π ∈ S

true otherwise

Suppose that I is an interpolant for T (S,φ). For any π ∈ N , we use G (π) to denote ¬I (π)[σ],
where σ is a substitution mapping each x (π1· · · πn) to xn+1. We define a strategy extract(S, I ,φ) to
be the function that maps each ρ ∈ Q∗ to f (ϵ, ϵ, ρ), where

f (πt , ρ, ϵ) ≜ JtKρ

f (π•, ρ, ϵ) is undefined

f (π , ρ,aρ ′) ≜

f (π•, ρa, ρ ′) if Q |π |+1 = ∀

f (πt , ρa, ρ ′) if Q |π |+1 = ∃, t = select(π , ρa)

and where select(π , ρa) is defined to be the unique t such that πt ∈ N if there is only one such

t , and some term t such that πt ∈ N and ρa |= G (πt) if not (choosing some arbitrary syntactic

condition to break ties should they occur).

Proposition 4.7. Let φ = Q1x1.Q2x2.· · · Qnxn .F be a prenex LRA sentence, let S be a winning
SAT strategy skeleton for φ. Let T (S,φ) be constructed as above. Let I be any interpolant for T (S,φ),
and let f = extract(S, I ,φ). Then f is a winning strategy for the SAT player in the game φ.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:15

If the UNSAT player wins φ, then we can compute a winning strategy for UNSAT by following the
same procedure using the dual game ¬φ.

Complexity The decision problem of determining whether a formula is satisfiable is NExptime-

hard [Fischer and Rabin 1974]. The SimSat algorithm always returns a strategy skeleton whose size

is at most 2
2
cn
, where n is the size of the input formula and c is a constant, matching the worst-case

complexity of quantifier elimination [Ferrante and Rackoff 1975]. The complexity of our procedure

for extracting a strategy from a strategy skeleton depends on the complexity of the underlying

tree interpolation procedure; supposing that I is a function such that the size of a tree interpolant

has size O (I (t)) (where t is the size of the input tree), the overall space complexity of our strategy

synthesis procedure is O (I (n22
cn
)).

5 STRATEGY SYNTHESIS FOR REACHABILITY GAMES
This section presents a procedure for synthesizing winning strategies for linear reachability games.

The procedure is based on the intuition that a winning strategy for a reachability game can be

synthesized from winning strategies for bounded variations of the game, which can be obtained

through the technique introduced in Section 4.

We begin by defining safety trees, a data structure that our strategy synthesis procedure uses to

represent both (1) a partial strategy for the safety player and (2) a partial proof that the strategy is

winning. We then describe our strategy synthesis algorithm for reachability games, which operates

by iteratively expanding a safety tree until it is complete (represents a winning strategy) or cannot

be expanded further (the reachability player wins). Last, we describe the two important subroutines

of this algorithm: covering, which detects situations in which the partial strategy can be made

complete; and expansion, which unfolds the game one time step staring from a designated node

in the tree, re-calculating previous moves if necessary, by finding a winning SAFE strategy for a

bounded variation of the game.

A complete safety tree represents both a winning strategy for the safety player in a reachability

game and an annotation that proves that the strategy is indeed winning. More generally, (not

necessarily complete) safety trees represent partial strategies, which define moves of the safety

player along some but not necessarily all possible sequences of positions.

Definition 5.1. Let G (init, reach, safe) be a d-dimensional linear reachability game. A safety tree
for G (init, reach, safe) is a tuple T = ⟨N ,E, r ,X ,Φ,M, ▷⟩ where
• (N ,E) is a tree with root r ∈ E
• X ⊆ N is a set of (“expanded”) nodes

• Φ : N → Formula is an annotation, mapping every node to a formula in d free variables

{x1, ...,xd }, that describes a set of game positions. Intuitively, the annotation serves the same

role as an inductive invariant in program verification—it serves as the basis of a proof that

the strategy represented by a safety tree is winning.

• M : E → Formula × Termd
is a move assignment, mapping every node to a pair ⟨G,m⟩

consisting of a guard G ∈ Formula and a d-tuple of terms m, both in d free variables

{x1, ...,xd }. For any (u,v) ∈ E, we define the shorthand ⟨G (u,v),m(u,v)⟩ ≜ M (u,v).
• ▷ ⊆ (N \ X) × X is a covering relation. The covering relation is functional: if u ▷ v and u ▷w ,

we must have v = w .

We say that T is well-labeled if

(1) Initiation: init(x) |= Φ(r) (x)
(2) Consecution: For all (u,v) ∈ E,

Φ(u) (x) ∧G (x) ∧ y = m(x) ∧ reach(y, x′) |= Φ(v) (x′)

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

61:16 Azadeh Farzan and Zachary Kincaid

n1: b ≤ 3, 3, 1, 1, 1 ∧ (b3 + b5) ≤ 1

n2: b ≤ 3, 3, 2, 2, 2 ∧ (b3 + b5) ≤ 2

n3: b ≤ 1, 1, 3, 3, 3 ∧ (b3 + b5) ≤ 3

n5: b ≤ 2, 2, 1, 3, 3 n6: b ≤ 2, 2, 3, 3, 1

n9: b ≤ 3, 3, 2, 2, 2 ∧ (b3 + b5) ≤ 2

n10: b ≤ 1, 1, 3, 3, 3 ∧ (b3 + b5) ≤ 3

n11: b ≤ 3, 3, 2, 2, 2 ∧ (b3 + b5) ≤ 2

n12: b ≤ 1, 1, 3, 3, 3 ∧ (b3 + b5) ≤ 3

true : ⟨0, 0,b3,b4,b5⟩

true : ⟨0, 0,b3,b4,b5⟩

b5 ≤ 2 : ⟨b1,b2, 0, 0,b5⟩ b3 ≤ 2 : ⟨b1,b2,b3, 0, 0⟩

true : ⟨b1,b2,b3, 0, 0⟩

true : ⟨0, 0,b3,b4,b5⟩

true : ⟨b1,b2, 0, 0,b5⟩

true : ⟨0, 0,b3,b4,b5⟩

Fig. 4. A complete, well-labeled safety tree for the Cinderella-Stepmother game with bucket capacity 3.

whereM (u,v) = ⟨G,m⟩.
(3) Covering: For all u ▷ v , Φ(u) (x) |= Φ(v) (x).
(4) Availability: For all (u,v) ∈ E,M (u,v) = ⟨G,m⟩ is a legal move in the sense that

G (x) ∧ y = m(x) |= safe(x, y) .
(5) Adequacy: For all expanded nodes u ∈ X , we have

Φ(u) (x) |=
∨

(u,v)∈E

G (u,v) (x)

We say that T is complete if every node is either expanded or covered (N = X ∪ {u : ∃v .u ▷ v}).

Example 5.2. Consider the Cinderella-Stepmother game from Section 2.2. Figure 4 depicts a

complete, well-labeled safety tree for this game. Each node is labeled with an identifier (n1, n2, n3,
...) and its annotation, and each tree edge is labeled by its move assignment. Expanded nodes are

drawn as rectangles, and un-expanded nodes as rounded rectangles. The covering relation is shown

as a dashed edge.

A well-labeled safety tree defines a partial strategy for the safety player, while a complete

and well-labeled safety tree defines a winning (total) strategy for the safety player. Intuitively, to

determine the move dictated by safety tree in response to a sequence of positions, we traverse the

sequence, matching each position to an edge of the tree, such that the position satisfies the guard

of that edge—the move selected to respond to the sequence is the move of the the last matched

edge. Safety trees have finite height, but the covering relation allows the safety player to respond to

sequences of unbounded length by jumping from u to v when u ▷ v—this effectively creates cycles

in the tree where the back-edges belong to the covering relation.

We now formalize the association between partial strategies and well-labeled safety trees. Let

T = ⟨N ,E, r ,X ,Φ,M, ▷⟩ be a well-labeled safety tree for a d-dimensional linear reachability game.

For any expanded node u ∈ X , let v1, ...,vn be a list of u’s children, and define its successor function
succ : Qd → N as follows:

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:17

succuT (r) ≜

v1 if G (u,v1) (r)
v2 if G (u,v2) (r)

...

vn otherwise

The successor function simply navigates through the tree by choosing the first edge with a

satisfied guard. For the expanded node u ∈ X we define its partial strategy дuT : (Qd)+⇀Qd as

follows:

дuT (r) ≜ m(u,v) where v = succuT (r)

дuT (r1· · · rm) ≜ дvT (r2· · · rm) where v = succuT (r1)
The partial strategy of a covered node u ▷ v , is defined to be the strategy of the node covering it

дuT ≜ дvT . The partial strategy of an un-expanded, un-covered node is undefined on all inputs. Finally,

the partial strategy associated with the safety tree is the partial strategy of the root, дT ≜ дrT .
Suppose that u ∈ X is an expanded node. Observe that, due to the Availability and Adequacy

conditions, from any position r that satisfies Φ(u), дuT (r) is a legal move for the safety player. Due

to the Consecution condition, if r1 satisfies Φ(u) and the reachability player may legally move from

дuT (r1) to r2, then r2 |= Φ(nextuT (r1)). Due to the Covering condition, the same holds if u is a covered

node. Combining these facts, we have the following lemma:

Lemma 5.3. Let T = ⟨N ,E, r ,X ,Φ,M, ▷⟩ be a well-labeled safety tree, let u ∈ N , and let π =
r1s1· · · rnsn be a partial play that starts in a position r1 that satisfies the annotation Φ(u) of u, and
that conforms to the partial strategy of u (i.e., for all i , дuT (r1· · · ri−1) is defined and equal to si). Then
SAFE does not lose π , in the sense that either (1) all of SAFE’s moves are legal, or (2) REACH makes an
illegal move before any illegal move of SAFE.

Thus, we may view the annotation Φ(u) of a node u as defining a safe region: a set of positions
starting from which the partial strategy дuT does not lose. From the perspective of program verifi-

cation, one might view a safety tree as a labeled unwinding of a program [McMillan 2006]. The

Initiation, Consecution, and Covering conditions ensure that Φ is an inductive annotation for the

graph formed by collapsing every pair of nodes u and v such that u covers v . The fundamental

difference is that a safety tree is not an unwinding of some fixed program: the “program” is the

safety strategy, which must be synthesized. In fact, checking that an assertion of a program succeeds

can be encoded as a reachability game in which the safety player does nothing and the reachability

player simulates the program of interest. In this case, the safety strategy is trivial and our strategy

synthesis algorithm simulates lazy abstraction with interpolants [McMillan 2006].

The following proposition states the soundness of safety trees as a system for proving that the

safety player wins a reachability game. It follows easily from Lemma 5.3.

Proposition 5.4. Let G (init, reach, safe) be a linear reachability game. If there exists a well-labeled,
complete safety tree for G (init, reach, safe), then the safety player wins G (init, reach, safe).

Our strategy synthesis procedure for reachability games, described in Algorithm 1, aims to find

either (1) a complete, well-labeled safety tree representing a winning strategy for the safety player

or (2) a winning reachability strategy for some bounded version of the game (cf. Proposition 3.4).

At a high-level, the algorithm accomplishes this task by maintaining a well-labeled safety tree

and repeatedly covering or expanding nodes until the tree is complete or expansion fails due to a

winning strategy for the reachability player being discovered.

The algorithm begins by initializing a trivial safety tree (lines 2-5). At each iteration of the main

loop (lines 6-14), we choose a vertex v that is neither expanded nor covered and either cover it (line

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

61:18 Azadeh Farzan and Zachary Kincaid

1Procedure strategy-synthesis(init, reach, safe,d)
2 r ← fresh vertex

3 N ← {r }

4 E ← ∅, X ← ∅, ▷← ∅

5 Φ(r) ← true
6 while T is not complete do
7 Pick a vertex v that is neither expanded nor covered

8 if force-cover(v) then
9 continue

10 switch expand(v , 1) do
11 case Fail: f
12 return Reachability strategy f

13 case Success
14 continue
15 return Safety strategy T

Algorithm 1: Strategy synthesis for reachability games .

8) or expand it (line 10). The algorithm covers v when it detects that the strategy used to reach v
forces play into a region that appears elsewhere in the tree. It is the key generalization step that

turns a strategy for a bounded game into a strategy for an unbounded game. If no covering exists,

the algorithm expands v by synthesizing a strategy for the safety player to continue the game

starting from the region that the game is in after following the strategy leading to v . Synthesizing
such a strategy may be impossible due to a poor move in the strategy leading tov , and so expansion
may require the algorithm to back-track and re-synthesize moves earlier in the game. In sections

Section 5.1 and Section 5.2, we will describe the covering and expansion sub-procedures in more

detail, using the Cinderella-Stepmother game from Section 2.2 as a running example. Note that

in the expansion and covering algorithms the variables N , r ,E,Φ are treated as globals, as are the
parameters init, reach, safe, and d .
Before we get into algorithmic details, we state two important high-level properties of the

algorithm; namely, the algorithm is sound, and it is complete for bounded reachability strategies:

Proposition 5.5 (Soundness). If Algorithm 1 synthesizes a reachability strategy for a game
G (init, reach, safe), then that strategy is winning; if it synthesizes a safety strategy, that strategy is
winning.

Proposition 5.6 (Bounded completeness). If the reachability player wins Gn (init, reach, safe)
for some n, then (assuming a fair expansion policy, in which any vertex that is added to the safety
tree is eventually either expanded or covered and remains covered)1 Algorithm 1 terminates with a
winning reachability strategy for G (init, reach, safe).

5.1 Covering
Lemma 5.3 shows that for each vertex u in a safety tree, the annotation Φ(u) defines a safe region
for u: a set of positions for which the partial strategy дuT does not lose. If there is a vertex v such

that Φ(u) |= Φ(v), then the partial strategy of the tree rooted at v is at least as good as one at u.
A particular case of interest is when v is an ancestor of u, in which case the path from v to u is

a strategy for remaining in a safe region indefinitely. In this sense, covering is the mechanism

by which our algorithm detects that a winning SAFE strategy for some bounded variation of a

1
This policy can be implemented by selecting vertices of the safety tree in breadth-first manner, and allowing force-cover(v)
to succeed at most once for any given v .

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:19

n1: b ≤ 3, 3, 1, 1, 1 ∧ (b3 + b5) ≤ 1

n2: b ≤ 3, 3, 2, 2, 2 ∧ (b3 + b5) ≤ 2

n3: b ≤ 1, 1, 3, 3, 3 ∧ (b3 + b5) ≤ 3

n5: b ≤ 2, 2, 2, 3, 3 n6: b ≤ 3, 3, 3, 3, 3

n9: b ≤ 3, 3, 3, 3, 3

n10: true

n8: true

true : ⟨0, 0,b3,b4,b5⟩

true : ⟨0, 0,b3,b4,b5⟩

b5 ≤ 2 : ⟨b1,b2, 0, 0,b5⟩ b3 ≤ 2 : ⟨b1,b2,b3, 0, 0⟩

true : ⟨b1,b2,b3, 0, 0⟩

true : ⟨0, 0,b3,b4,b5⟩

true : ⟨0, 0,b3,b4,b5⟩

n1: b ≤ 3, 3, 1, 1, 1 ∧ (b3 + b5) ≤ 1

n2: b ≤ 3, 3, 2, 2, 2 ∧ (b3 + b5) ≤ 2

n3: b ≤ 1, 1, 3, 3, 3 ∧ (b3 + b5) ≤ 3

n5: b ≤ 2, 2, 1, 3, 3 n6: b ≤ 3, 3, 3, 3, 3

n9: b ≤ 3, 3, 2, 2, 2 ∧ (b3 + b5) ≤ 2

n10: b ≤ 1, 1, 3, 3, 3 ∧ (b3 + b5) ≤ 3

n8: true

true : ⟨0, 0,b3,b4,b5⟩

true : ⟨0, 0,b3,b4,b5⟩

b5 ≤ 2 : ⟨b1,b2, 0, 0,b5⟩ b3 ≤ 2 : ⟨b1,b2,b3, 0, 0⟩

true : ⟨b1,b2,b3, 0, 0⟩

true : ⟨0, 0,b3,b4,b5⟩

true : ⟨0, 0,b3,b4,b5⟩

(a) (b)

Fig. 5. Forced covering.

reachability game is also a winning strategy for the unbounded game.

The annotation of a vertex rarely entails another by coincidence. Following [McMillan 2006],

we use a forced covering operation that attempts to refine the annotation of a given vertex v so

that it entails the annotation of another u, and if successful, adds a covering edge v ▷ u. The forced
covering operation appears in Algorithm 2.

We illustrate forced covering by example. Figure 5 depicts the state of a strategy tree before and

after a successful forced covering operation of the vertex n10 by n3 (lines 17-25). Notice that in order

to strengthen the annotation at n10 and maintain the Consecution condition, we must strengthen

the annotation of every vertex on the path from the root n1 to n10. The stronger annotation is found

by computing a sequence interpolant for the path formula corresponding to the path from n1 to n10
(lines 19-20), which we formalize below.

Definition 5.7. Letu1· · ·un be a path in a safety tree, and for each each i let ⟨Gi ,mi ⟩ ≜ M (ui ,ui+1)
be the move assigned to the edge (ui ,ui+1). Define the path formula pf(u1· · ·un) of the path to be

the sequence

pf(u1· · ·un) ≜ R1 · ... · Rn−1

where each Ri ≜ Gi (xi) ∧ reach(mi (xi), xi+1) is a formula that represents one round of the game

(the move of the safety player corresponding to the edge (ui ,ui+1) plus any legal move of the

reachability player).

Definition 5.8. A sequence interpolant for a sequence of formulas Γ of lengthm is a sequence of

formulas I such that (1) each Ii is expressed over the common variables of Γ1, ..., Γi and Γi+1, ..., Γm ,

(2) Γ1 |= I1, (3) for all i > 1, Ii−1 ∧ Γi |= Ii , and (4) Im = false.

Let us return to our example of covering n10 by n3. Let

Γ ≜ init(x1) ∧ pf(n1n2n3n5n9n10) ∧ ¬(b7 ≤ 1, 1, 3, 3, 3 ∧ (b73 + b75) ≤ 3︸ ︷︷ ︸
Φ(n3)[x7→x7]

)

(cf. line 19). Γ constrains the first 7 moves of the reachability player to be legal, assuming that

the safety player conforms to the path n1n2n3n5n9n10, and for the final position to belong to the

safe region Φ(n3) of n3. Let I be a sequence interpolant for Γ. By Definition 5.8 property (1), each

Ii is expressed only over the variables xi , and thus can be interpreted as a formula over a single

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

61:20 Azadeh Farzan and Zachary Kincaid

n1: b ≤ 3, 3, 2, 2, 2

n2: b ≤ 3, 3, 3, 3, 3

n3: true

true : ⟨0, 0,b3,b4,b5⟩

true : ⟨0, 0,b3,b4,b5⟩

n1: b ≤ 3, 3, 1, 1, 1

n2: b ≤ 3, 3, 2, 2, 2

n3: b ≤ 3, 3, 3, 3, 3

n4: true

true : ⟨0, 0,b3,b4,b5⟩

true : ⟨0, 0,b3,b4,b5⟩

true : ⟨0, 0,b3,b4,b5⟩

n1: b ≤ 3, 3, 1, 1, 1 ∧ (b3 + b5) ≤ 1

n2: b ≤ 3, 3, 2, 2, 2 ∧ (b3 + b5) ≤ 2

n3: b ≤ 2, 2, 3, 3, 3 ∧ (b3 + b5) ≤ 3

n5: b ≤ 3, 3, 3, 3, 3 n6: b ≤ 3, 3, 3, 3, 3

n7: true n8: true

true : ⟨0, 0,b3,b4,b5⟩

true : ⟨0, 0,b3,b4,b5⟩

b5 ≤ 2 : ⟨b1,b2, 0, 0,b5⟩ b3 ≤ 2 : ⟨b1,b2,b3, 0, 0⟩

true : ⟨0, 0,b3,b4,b5⟩ true : ⟨0, 0,b3,b4,b5⟩

(a) (b) (c)

Fig. 6. Expansion of a safety tree for the Cinderella-Stepmother game with bucket capacity 3.

game position. The refine sub-procedure strengthens the annotation along the path by setting

Φ(n1) ← Φ(n1) ∧ I1[x1 7→ x] through Φ(n10) ← Φ(n10) ∧ I7[x7 7→ x]. The resulting tree is well-

labeled: Initiation holds by (2) and Consecution by (3). Strengthening the annotation may violate

the Covering condition, so the refine procedure must also remove violating pairs from the covering

relation (lines 31-32); this does not occur in the running example. Last, the force cover procedure

checks that the annotation of n10 entails the annotation of n3 and adds the covering edge n10 ▷ n3
(lines 22-24).

16Procedure force-cover(v)
/* Given a vertex v ∈ N \ X , try find a vertex u
that so that v’s annotation can be

strengthened so that u covers v ; return true if
such a vertex is found and false otherwise */

17 Let r = u1...un = v be the path from root to v

18 foreach u ∈ X do
19 Γ ← init(x1) ·pf(u1...un) · ¬ (Φ(u)[x 7→ xn])
20 if Γ has a sequence interpolant I then
21 refine(I,v)
22 if Φ(v) |= Φ(u) then
23 ▷← ▷ ∪ (v,u)

24 return true
25 return false

26Procedure refine(I,v)
/* Given a sequence of formulas I and a vertex v ,
strengthen the annotation of every node on

the path to v using I */

27 Let r = u1...un = v be the path from root to v

28 for i ← 1 to n do
29 Φ(ui) ← Φ(ui) ∧ Ii [xi 7→ x]
30 foreach u such that u ▷ ui do
31 if Φ(ui) ̸ |= Φ(u) then
32 Remove (u,ui) from ▷

Algorithm 2: Forced covering

5.2 Expansion
Expansion is the mechanism by which the algorithm synthesizes new moves for the safety player

by computing winning strategies for bounded variations of the reachability game. The expand

procedure is given in Algorithm 3.

Figure 6 depicts two expansion steps, going from (a) to (b) by expanding n3 and from (b) to (c) by

expanding n4. The node n3 is expanded by finding a single safe move for Cinderella to make in the

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:21

third round of the game, assuming that her first two moves are fixed to emptying the buckets b1 and
b2. As explained in Section 2.2, attempting to expand n4 similarly fails: Stepmother can overflow a

bucket pouring 1L into bucket 3 on each round. As a result, the algorithm backtracks by deleting

the node n4 and expanding the node n3 again but with an increased depth of 2 (lines 37-43). We will

explain the expand procedure by illustrating the operation of expand(n3, 2) in more detail.

33Procedure expand(v,k)
/* Given a vertex v and a number k , expand v by

k rounds (or some ℓth ancestor of v at least

k + ℓ rounds); if this is impossible return a

winning reachability strategy. */

34 Let r = u0...un = v be the path from r to v

35 F ←

*......
,

∃x1...xn .
∀yn .∃xn+1∀yn+1 · · · ∃xn+k∀yn+k

*.
,

init(x1)
∧pf(u1 · · ·un)
∧safe(xn , yn)

+/
-
⇒ unroll(n,k − 1)

+//////
-

36 switch SimSat(φ) do
37 case Winning SAT skeleton S
38 if ∃(p,v) ∈ E then

/* Delete v from T */

39 For all u ▷ v , remove (u,v) from ▷

40 E ← E \ {(p,v)}

41 N ← N \ {v}

/* Increase depth, expand parent */

42 d ← max(k + 1, height(v))
43 return expand(p,d)
44 else

/* v = r : REACH wins */

45 f ← REACH strategy extracted

from S

46 return Fail: f
47 case Winning UNSAT skeletonU
48 U ← {π : •dnπ ∈ U }

49 Γ ← init(x1) · pf(u1...un) · lose(U ,n)
50 I← sequence interpolant for Γ

51 refine(I,v)
52 paste(U ,v ,n)

53 return Success

54Procedure paste(U ,v,n)
/* Given an UNSAT strategyU , a vertex v , and

number n s.t. Φ(v)[x 7→ xn] |= ¬lose(U ,n), add
U as a subtree of v */

55 {t1, ..., tm } ← {t ∈ Termd
: ∃π .tπ ∈ U }

56 For each i , letUi = {tiπ : tiπ ∈ U }
57 I ← tree interpolant for

0 : Φ(v)[x 7→ xn]

1 : lose(U1, n) m : lose(Um, n)
· · ·

58 for i ← 1 tom do
59 ci ← fresh vertex

60 N ← N ∪ {ci }, E ← E ∪ {(v, ci)}

61 G ← ¬I(i)[xn 7→ x], m← ti [xn 7→ x]
62 M (v, ci) ← ⟨G,m⟩
63 U ′ ← {π : ti •d π ∈ U }

64 if U ′ , ∅ then
65 csc← Φ(v) ∧G ∧ reach(m, xn+1)
66 annot← Interpolant for csc,

lose(U ′,n + 1))
67 Φ(ci) ← annot[xn+1 7→ x]
68 paste(U ′, ci ,n + 1)
69 else
70 Φ(ci) ← true

Algorithm 3: Node expansion

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

61:22 Azadeh Farzan and Zachary Kincaid

We expand n3 (going from (b) to (c)) using an UNSAT strategy for a satisfiability game φ (line 35)

defined as

φ :

∃b1b2b3∀b′3∃b4∀b
′
4
.

*..
,

init(b1) ∧ pf(n1n2n3)

∧

(
safe(b3, b′3) ⇒

(
reach(b′

3
, b4)

∧
(
safe(b4, b′4) ⇒ false

))) +//
-

The formula represents the bounded game where each player plays four moves, but Cinderella’s

first two moves are fixed (she empties b1 and b2 on both rounds). Using Farzan and Kincaid [2016]’s

SimSat procedure, we get the following UNSAT strategy, which indicates that Cinderella can win

the bounded game by emptying either b3 and b4 or b4 and b5 on round 3, and b1 and b2 on round 4:

U =

{
•15b3,1b3,200b3,5 •

5
00b4,3b4,4b4,5,

•15b3,1b3,2b3,300 •
5
00b4,3b4,4b4,5

}
(In the above, •n refers to a sequence of n •s. In particular, the leading •15 corresponds to the

leading quantifier prefix ∃b1b2b3). Similarly to the forced covering procedure, we use sequence

interpolation to strengthen the annotation at n1, n2, and n3 to ensure that U defines a winning

strategy from any position that satisfies the annotation at n3 (lines 49-51). The leading prefixes •15

(corresponding to the existential quantifier prefix ∃b1b2b3) are removed fromU , and then paste is
called to addU as a subtree to n3.
Given a node v and an UNSAT strategy skeleton U for some bounded unrolling of a game,

the paste procedure adds U as subtree to v while simultaneously synthesizing conditionals and

annotations. Conditional synthesis is accomplished via tree interpolation, as in Section 4. On the

running example, the paste procedure begins by computing the set of first moves permitted by U
and partitionsU by the first move:

t1= b3,1b3,200b3,5 U1= {b3,1b3,200b3,5 •
5
00b4,3b4,4b4,5}

t2= b3,1b3,2b3,300 U2= {b3,1b3,2b3,300 •
5
00b4,3b4,4b4,5}

We find guards for each move by computing a tree interpolant for a tree with one branch for each

move:

0 : b3 ≤ 1, 1, 3, 3, 3 ∧ (b3 + b5) ≤ 2

1 : lose(U1, 3) 2 : lose(U2, 3)

where

lose(U1, 3) : lose(U2, 3) :

*..
,

safe(b3,b3,1b3,200b3,5) ⇒

*
,

reach(b3,1b3,200b3,5, b1
4
)

∧
(
safe(b1

4
, 00b4,3b4,4b4,5) ⇒ false

) +
-

+//
-

*..
,

safe(b3,b3,1b3,2b3,300) ⇒

*
,

reach(b3,1b3,200b3,5, b2
4
)

∧
(
safe(b2

4
, 00b4,3b4,4b4,5) ⇒ false

) +
-

+//
-

The tree is unsatisfiable because starting from any position that satisfies the annotation at n3, we
know that either t1 or t2 is a winning move. Notice that the interpolants for the subtrees 1 and 2

may only be over the common variables b3: we interpret I (1) and I (2) as guards for their respective
branches by negating and substituting b3 7→ b. We then iterate over each move t1, t2 to create new

children and recursively paste the appropriate sub-strategy ofU . E.g., for the move t1, we create the
child n5 and paste the sub-strategy consisting of the single move inU1 after t1:U ′ = {00b4,3b4,4b4,5}.
The annotation at n5 is computed using binary interpolation between the consecution formula

csc ≜ Φ(n3) ∧G (n3,n5) ∧ reach(m(n3,n5), xn+1) and the losing formula lose(U ′,n + 1), ensuring that

(1) the consecution condition holds and (2) U ′ is a winning strategy starting from any position

satisfying Φ(n5). Finally, we recursively paste U ′ to n5, which has the effect of adding n7 as a child
of n5. The other branch for t2 proceeds similarly, adding the nodes n6 and n8.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:23

6 STRATEGY DESCRIPTION LANGUAGES AND THEIR IMPLICATIONS
A strategy synthesis procedure must inevitably compute a finite description of a strategy within

some suitable description language. For satisfiability games, the strategies we consider are those

definable in linear rational arithmetic (in a sense we will define precisely below). For reachability

games, a safety strategy is described by a safety tree, while a reachability strategy is described by a

definable function in linear rational arithmetic. The description language suggests a refinement of

the question of determinacy: rather than ask if, for every game, one of the players has a winning

strategy, we can ask if, for every game, one of the players has a winning strategy that can be

defined within the description language. This section addresses this refined determinacy question

and discusses the resulting limitations imposed on our strategy synthesis algorithms.

For linear arithmetic games, a natural requirement is that strategies should be definable within

linear arithmetic. We recall the notion of definability (specialized to linear rational arithmetic)

below.

Definition 6.1 (Definability, [Marker 2000]). Let S ⊆ Qn be a set of n-tuples of rationals. We say

that S is definable (in linear rational arithmetic) if there exists a LRA formula φS (x1, ...,xn) such
that for all a1, ...,an ∈ Q, ⟨a1, ...,an⟩ ∈ S if and only if φS (a1, ...,an) holds.

A function f : Qn → Q is definable if its graph

{(a1, ...,an , f (a1, ...,an)) : a1, ...,an ∈ Q}

is definable. Equivalently, f is definable if it is a piece-wise linear function, with each cell in the

partition of Qn defined by a linear arithmetic formula.

We extend the notion of definability to strategies for satisfiability games as follows. Let φ =
Q1x1.Q2x2.· · · Qnxn .F be a formula, and k1, ...,km be the sequence of existential positions in φ (i.e.,

{k1, ...,km } = {i : Qi = ∃}). A SAT strategy

f : {ρ ∈ Q∗ : |ρ | < n ∧ Q |ρ |+1 = ∃} → Q

for φ can be identified withm functions f1, ... fm such that each fi is a total function fi : Q
ki−1 → Q

and fi (a1, ...,aki−1) = f (a1· · ·aki−1) for all a1, ...,aki−1 ∈ Q. We say that f is definable if each fi is
definable. Definable UNSAT strategies are defined similarly.

The algorithm presented in Section 4 is a constructive proof that satisfiability games are definably

determined: for any game, either SAT has a definable winning strategy or UNSAT does. However,

our strategy synthesis algorithm for reachability games does not enjoy this property, as we will

demonstrate in the following.

First, we give a characterization of the SAFE and REACH strategies that can be synthesized by

our algorithm. Safety trees describe definable finite memory strategies, where the finite memory

comes from the control structure provided by the tree. More precisely, we say that f is a definable
finite memory strategy if there is a directed graph G = ⟨V ,E⟩, a vertex v ∈ R, a function

Φ : E → Formula, and a function m : V → Termd
such that: (1) for any r1· · · rn ∈ (Qd)∗,

there is a unique path r = v1· · ·vn emanating from r such that ri |= Φ(vi ,vi+1) for all i , and (2)

f (r1...rn) = m(vn) (rn). Note that not every definable finite memory strategy can be represented

by a safety tree because a safety tree also incorporates a linear arithmetic proof that it is winning

(its annotation). There exist definable finite memory strategies with no such proofs (analogous to

the situation in program verification: there are programs in linear arithmetic with no safe inductive

invariant in linear arithmetic). The class of REACH strategies that can be synthesized by our

algorithm corresponds to the class of definable strategies for some fixed bounded variation of the

reachability game.

In Section 3.2.1, we argued that every strategy description language must have limitations. We

will now comment on some of the specific limitations of Algorithm 1 that result from our choice of

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

61:24 Azadeh Farzan and Zachary Kincaid

strategy description language.

Definable Bounded Reachability Strategies A consequence of limiting the reachability player

to bounded strategies is that our algorithm is not capable of synthesizing termination arguments

for the reachability player, as illustrated in Example 6.2.

Example 6.2. Consider a two dimensional reachability game G (init, reach, safe) where
init(x0,x1) ≜ x0 = 0 ∧ x1 = 0

safe(x0,x1,y0,y1) ≜ (x0 = 0 ∧ y0 = 1) ∨ (x0 = y0 ∧ x1 > 0 ∧ y1 = x1)

reach(y0,y1,x0,x1) ≜ x0 = y0 ∧ x1 = y1 − 1
The game starts at the position (0, 0). In the first move of the game, the safety player moves to (1,p)
for some p ∈ Q, after which the players take turns decrementing p and checking that p is positive.

The reachability player has a winning strategy for this game, but not for Gn (init, reach, safe) for
any n.

Termination arguments are typically necessary for proving liveness properties. It would be an

interesting direction of future research to complement our strategy synthesis procedure (which is

primarily aimed at synthesizing safety strategies) with a more powerful method for synthesizing

reachability strategies.

Definable Finite-Memory Safety Strategies Reachability games are a special case of Gale-Stewart

games [Gale and Stewart 1953], and so are determined bymemoryless strategies. Thus at first glance,
restricting (as we do) the safety player to a finite memory strategy may not seem like a limitation.

However, this result does not take definability into account: there are reachability games where

the safety player has a definable infinite-memory strategy but no definable finite-memory strategy.

The game in Example 6.3 is one such example.

Example 6.3. Consider a four dimensional reachability game G (init, reach, safe) where
init(x0,x1,x2,x3) ≜ x0 = 1 ∧ x1 > 0 ∧ x2 = 0 ∧ x3 = 0

safe
(
x0,x1,x2,x3,
y0,y1,y2,y3

)
≜ y1 = x1 ∧ y2 = x2 ∧

(
(x0 , 0→ y0 = x0 ∧ y3 = x3)
∧(x0 = 0⇒ y0 = −1)

)

reach
(
y0,y1,y2,y3,
x0,x1,x2,x3

)
≜ x1 = y1 ∧

*.
,

(y0 = 1⇒ ((y0 = 1 ∨ y0 = 0) ∧ x2 = y2 + y1 ∧ x3 = y3)

∧(y0 = −1⇒

(
¬(y2 = 0 ∧ y3 = 0)
∧x0 = y0 ∧ x2 = y2 − y1 ∧ x3 = y3 − 1)

) +/
-

The game starts at a position (1,k, 0, 0), with k > 0 chosen by the reachability player. The game

consists of three phases 1,0,−1, with the phase stored in the first coordinate. In the first phase of

the game (addition phase), the safety player is passive and the reachability player either moves

from (1,k,n, z) to (1,k,n + k, z) or transitions to phase 0 by moving to (0,k,n + k, z). In phase

0 (guess phase), the safety player transitions to phase −1 and selects some value for the fourth

coordinate j , moving from (0,k,n, z) to (−1,k,n, j). In phase -1 (subtraction phase), the safety player
is passive and the reachability player moves from (1,k,n, j) to (1,k,n − k, j − 1) unless n and j are
simultaneously zero, in which case the reachability player loses.

The safety player has an obvious nonlinear (i.e., not definable) strategy of choosing j to be n/k in

phase 0. The safety player also has an infinite memory strategy, in which, it remembers the number

of rounds played with the game being in phase 1. There is no definable finite memory strategy.

7 CASE STUDIES
We illustrate the effectiveness of our strategy synthesis approach by applying it to a variety of

games and program synthesis examples. We implemented our approach in a tool we call SimSynth,

which is written in OCaml on top of the implementation of SimSat [Farzan and Kincaid 2016].

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:25

Name Alchemist-CSDT CVC4-1.5.1 SimSynth

max15 Timeout 3.3s Timeout

array_search15 Timeout 0.1s 3.0s

array_sum8_15 Timeout 0.0s 0.3s

tenfunc2 0.0s 0.1s 0.1s

polynomial4 0.0s 21.0s 0.0s

hms Timeout Timeout 0.0s

scaleweights Timeout 0.1s 0.3s

lub10 Timeout 38.1s 4.0s

inverse10 Timeout Timeout 2.4s

round10 Error Timeout 8.8s

puzzle35 Timeout Timeout 0.1s

puzzle35_opt Timeout Unknown 0.2s

Fig. 7. Functional synthesis benchmarks

SimSynth uses the Craig interpolation facilities of Z3 for sequence, tree, and binary interpolation

[McMillan and Rybalchenko 2013]. Our experiments were conducted on a machine running Ubuntu

16.04 equipped with a 4-core Intel(R) Core(TM) i7 2.70GHz processor and 8GB memory.

7.1 Linear Satisfiability Games Instances
Functional Synthesis Benchmarks The procedure presented in Section 4 is a decision procedure

for the single invocation functional synthesis problem [Reynolds et al. 2015]. Instances of single

invocation synthesis can be translated into ∀∗∃∗ formulas. In Figure 7, we compare this procedure

with Alchemist-CSDT and CVC4-1.5.1, the two top competitors in the conditional linear integer

arithmetic category of the 2016 Syntax-Guided Synthesis Competition (SyGuS-COMP). The bench-

marks are drawn from the most difficult single-invocation benchmarks from SyGuS-COMP,
2
from

[Kuncak et al. 2010], and some new benchmarks. The lub10, round10, and puzzle35_opt bench-

marks are particularly interesting since they are optimal synthesis problems, which correspond to

∀∗∃∗∀∗ formulas.

7.2 Linear Reachability Games
This section includes a collection of instances for the reachability game solver.

assume(21 <= temp <= 24);
while(*) {

assert(20 <= temp <= 25);
// keep the temperature between 20 and 25
if (isOn == 1) {
temp = temp + 1 - (1/10 * (temp - 19));

} else {
temp = temp - (1/10 * (temp - 19));

isOn = ??;
}

}

Program Synthesis The code snippet on the

right illustrates an incomplete program (i.e. a pro-

gram with unknown parts) that is a controller for

a thermostat (taken from [Beyene et al. 2014]).

The task, which is the standard task of program

synthesis, is to discover the appropriate code for

the unknown part so that the program satisfies

its specification. This specification is captured

by an assert statement in the code. SimSynth

finds a winning strategy for the safety player, (who wants to maintain the safety of the assertion), in

0.3 seconds. It suggests for the unknown ?? to be filled in with the value 1 once every six iterations

of the loop and zero for all others. Note that this problem is not a functional synthesis problem. It

2
SyGuS-COMP contains several families of parameterized benchmarks. We selected the benchmark in each family with the

largest parameter (e.g., we selected 15-way maximum, but omitted 14-way maximum, 13-way maximum, ...).

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

61:26 Azadeh Farzan and Zachary Kincaid

is unclear what the specification for a functional synthesis problem should be for the purpose of

synthesizing the missing code. The task of the synthesizer in an instance like this is to discover both

the missing code and the loop invariant that would guarantee the desired property. The strength of

our approach is exactly this: synthesizing the code and the invariant that proves its correctness

together.

Cinderella-Stepmother Game We used several instances of the game introduced in Section

2.2, which have different winners and different winning strategies for each winner to test our

reachability game solver.

Capacity Winner Time

c=3 Cinderella 2.2s

c=2.5 Cinderella 53.8s

c=2 Cinderella 68.9s

c=1.8 — to

c=1.7 Stepmother 2.5s

c=1.6 Stepmother 1.5s

c=1.5 Stepmother 1.4s

c=1.4 Stepmother 0.2s

The table on the right summarizes the results, for varying

bucket capacities c (timeout is set at 10 minutes). In Section 2.2

we argued that the Stepmother can trivially win the game when

c < 1, and Cinderella can win the game for c ≥ 3 by adapting

a round-robin strategy. We used the specific case of c = 3 as the

example to illustrate our algorithm. The game becomes more

challenging to determine for 1 < c < 3. In this range, Cinderella

has a winning strategy for 2 ≤ c and the Stepmother has a

winning strategy for c < 2. We refer the reader to [Hurkens

et al. 2011] for descriptions of winning strategies for bucket

capacities in this range.

In [Beyene et al. 2014], it is conjectured that “the problem becomes more challenging for 1.5 ≤
c < 3 . . . in such cases fully automated strategy synthesis seems unrealistic, and computer-assisted

proofs driven by user-provided hints or templates are more plausible.” SimSynth can solve a large

section of this interval without any user-provided hints.

Heap Sizes Winner Time

(4,4) Player 2 9.2s

(4,5) Player 1 13.0s

(5,5) Player 2 68.6s

(5,6) Player 1 66.2s

(6,6) — to

(2,2,2) Player 1 0.4s

(1,2,3) Player 1 2.9s

(2,3,3) Player 1 2.1s

(3,3,3) Player 1 2.0s

(4,4,4) Player 1 11.7s

(5,5,5) Player 1 106s

(5,5,6) — to

(2,2,2,2) Player 2 111s

(2,2,2,3) — to

Game of Nim Nim is played with a number of heaps of pebbles.

Two players take turns removing pebbles from distinct heaps.

On each turn, a player must remove at least one pebble, and

may remove any number of pebbles provided that they all come

from the same heap. The goal of the game is to be the player

to remove the last object. We experimented with 3 variations of

the game, with 2, 3, and 4 heaps. The table on the right reports

the results. The tuple parameter indicates the initial number

of pebbles in each heap. The number of rounds is bounded by

the values of initial heap sizes across all plays in a game, but

different plays can take different number of rounds (in contrast

to games corresponding to quantified formulas that are always

played at a fixed number of rounds). As a consequence of the

boundedness of the game, our strategy synthesis algorithm is

complete for this family of games, making it an interesting stress

test for SimSynth. The timeout was set at 10 minutes for the

purpose of this experiment.

Game of Tag This pursuit-evasion-style game is a version of the playground game of Tag, where
a tagged player is chasing other players to tag them. For this example, we have two players on

the 2-dimensional plane, represented as two points, which move at different speeds v1 (for the
reachability player or the tagged player) andv2 (for the safety player). We considered two variations:

• v1 > v2, where the reachability strategy was synthesized in 1.9 seconds, and
• v2 > v1, where the safety strategy was synthesized in 0.5 seconds.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:27

8 RELATEDWORK
Games on Finite Graphs and Restricted Infinite Graphs. There is a rich literature on decision

procedures for games on graphs with application to formal methods [Emerson and Jutla 1991;

Kupferman and Vardi 1999; Pnueli and Rosner 1989; Thomas 1995]. There are many known algo-

rithms for solving games on finite graphs. These include both explicit-state [Thomas 1995] and

symbolic [Harding et al. 2005; Piterman et al. 2006] techniques. There are known decidability results

for games on certain restricted classes of infinite graphs, such as pushdown graphs [Cachat 2002;

Walukiewicz 2001] and prefix-recognizable graphs [Cachat 2003].

Both types of games, unlike linear reachability games, are decidable and admit efficient algorithms,

and so we will forgo a direct comparison of our approach with these.

Infinite Games on Infinite Graphs. For graphs that represent the state space of infinite-state

programs, the known approaches for solving games falls in one of the the two categories: (1)

those based on symbolic execution, and (ii) those based on abstraction-refinement. The approach

proposed by De Alfaro et al. [2001] is an example of the first category, where a symbolic semi-

algorithm explores the state space of the game directly. The exploration is based on the controllable
precondition operator, which keeps track of the set of states from which a player can force the game

into a given region in a single round by choosing the appropriate move. The state-space of the game

is partitioned into equivalence classes (e.g. through the two-player versions of trace equivalence

of bisimilarity), with a classification of the termination of their semi-algorithm coinciding with

the corresponding equivalence relation having a finite index on the games state space. These

termination criteria, however, are not sufficient to guarantee the possibility of synthesizing a

winning strategy, the main focus of this paper. An extra condition is required for that, namely the

availability of only finitely many possible moves between two regions related by the controllable

precondition operator.

The second category of methods [Ball and Kupferman 2006; Fecher and Huth 2006; Fecher

and Shoham 2011; Grumberg et al. 2005, 2007; Gurfinkel and Chechik 2006] adapt an approach

to solving games inspired by predicate abstraction and CEGAR, originally proposed for safety

verification. These methods make use of an abstract transition system with overapproximate

(“may”) and underapproximate (“must”) transitions, and properties are interpreted over a 3-valued

semantic domain. These approaches, which are referred to as reductionist methods in De Alfaro

et al. [2001], an explicit abstraction is constructed so that verification/game solving is reduced to a

well-understood finite state problem. Our approach (like modern methods for program verification

[McMillan 2006]) does not explicitly construct such an abstraction. In contrast, our approach

exploits the intuition deals with infinite-state games of increasing lengths to solve the general

problem.

The closest work to this paper is the technique proposed in Beyene et al. [2014]. Sound and

complete proof rules for verifying the existence of winning strategies for safety, reachability, and

linear temporal logic games are devised in Beyene et al. [2014]. The proof rules are expressed

as constrained Horn clauses with existential quantifiers, allowing solvers for such clauses to be

brought to bear on solving games, in particular Ehsf [Beyene et al. 2013]. To cope with existential

quantifiers, Ehsf makes use of Skolem relations with templates. An advantage of the template-

based approach is that it can be used to model human intuition about the problem at hand. The

disadvantage is that it places an additional burden on the user to provide the templates.

Pnueli and Kesten [2002] present a sound and relatively complete proof system for proving CTL
∗

properties of (possibly infinite state) reactive systems. This system can be used to prove that a given

player wins a linear reachability games. Pnueli and Kesten focus on the design of the proof system,

and do not address automation. Pnueli and Kesten’s proof system is based on statification: iteratively

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

61:28 Azadeh Farzan and Zachary Kincaid

replacing temporal subformulae with sufficient (non-temporal) state formulae. Their proof system

accomplishes a similar task to our safety trees, for a broader set of properties but without a clear

road towards practical automation. The disjunction of annotations of all vertices of a safety tree

corresponds to a winning region for the safety player, which corresponds to a statification of the

temporal game formula.

Program Synthesis and Repair. There is a close relation between games and program syn-

thesis/repair. There is a long tradition of using game-solving at the service of reactive program
synthesis, however the majority of the effort has been for reactive finite-state systems [Jobstmann

et al. 2005; Pnueli and Rosner 1989; Solar-Lezama et al. 2006], or on functional, rather than reactive,

programs [Kuncak et al. 2010; Reynolds et al. 2015; Srivastava et al. 2010; Vechev et al. 2010].

Branching-Time Verification. There are several techniques for verifying various classes of

branching time program properties[Ball and Kupferman 2006; Cook and Koskinen 2013; Fecher and

Huth 2006; Fecher and Shoham 2011; Grumberg et al. 2005, 2007; Gurfinkel and Chechik 2006]. The

work of Cook and Koskinen [2013] stands out as the most recent and most complete (handling the

entire class of CTL, CTL*, or modal µ-calculus properties) among the automated techniques. Cook

and Koskinen [2013] proposed an automatic proof method for verifying branching-time properties

of programs, through a combination of a form of Skolemization with a refinement loop. They

reduce existential reasoning to universal reasoning by placing restrictions on the program state

space and then ensuring the original existential property holds using non-termination [Gupta et al.

2008] proofs to prove that the chosen restriction is recurrent. The iteratively refine the candidate

restrictions until an appropriate one is found. Their proof rule is sound and complete, but their

algorithm is incomplete because it relies on (i) an incomplete universal CTL reasoning, (ii) an

incomplete algorithm to synthesize restrictions, which may too greedy in its proof search and fail

to produce a proof. In principle, the class of games handled by Cook and Koskinen [2013] is more

general than reachability games; however our approach for solving reachability games rests on

substantially different foundations.

Satisfiability Games. Game semantics for quantifiers is a classical topic in logic [Hintikka 1982]

that has been recently been exploited in the design of decision procedures [Bjørner and Janota

2015; Farzan and Kincaid 2016]. Such procedures determine the winner of satisfiability games. This

paper contributes the first complete method for synthesizing the strategy of the winner.

ACKNOWLEDGMENTS
We thank Aws Albarghouthi, Pavol Cerny, and the anonymous reviewers for their valuable feedback

on this paper.

REFERENCES
Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. 2016. Maximal specification synthesis. In POPL. 789–801.
Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A Seshia, Rishabh Singh,

Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal Methods in
Computer-Aided Design (FMCAD), 2013. IEEE, 1–8.

Rajeev Alur, Salar Moarref, and Ufuk Topcu. 2016. Compositional Synthesis of Reactive Controllers for Multi-agent Systems.

In CAV. 251–269.
Thomas Ball and Orna Kupferman. 2006. An abstraction-refinement framework for multi-agent systems. In LICS. IEEE,

379–388.

Tewodros Beyene, Swarat Chaudhuri, Corneliu Popeea, and Andrey Rybalchenko. 2014. A Constraint-based Approach to

Solving Games on Infinite Graphs. In POPL. 221–233.
Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. 2013. Solving Existentially Quantified Horn Clauses. In

CAV. 869–882.
Nikolaj Bjørner and Mikolás Janota. 2015. Playing with Quantified Satisfaction. In LPAR - short presentations. 15–27.
Régis Blanc, Ashutosh Gupta, Laura Kovács, and Bernhard Kragl. 2013. Tree Interpolation in Vampire. In LPAR-19. 173–181.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:29

Marijke Bodlaender, Cor Hurkens, Vincent Kusters, Frank Staals, Gerhard Woeginger, and Hans Zantema. 2012. Cinderella

versus the Wicked Stepmother. In IFIP TCS. 57–71.
Thierry Cachat. 2002. Symbolic strategy synthesis for games on pushdown graphs. In ICALP. 704–715.
Thierry Cachat. 2003. Uniform solution of parity games on prefix-recognizable graphs. Electronic Notes in Theoretical

Computer Science 68, 6 (2003), 71–84.
Byron Cook and Eric Koskinen. 2013. Reasoning about Nondeterminism in Programs. In PLDI. 219–230.
Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki. 2016. Incremental Task and Motion Planning:

A Constraint-Based Approach. In Robotics: Science and Systems XII, University of Michigan, Ann Arbor, Michigan, USA,
June 18 - June 22, 2016.

Luca De Alfaro, Thomas Henzinger, and Rupak Majumdar. 2001. Symbolic algorithms for infinite-state games. In CONCUR.
Springer, 536–550.

E. Allen Emerson and Charanjit Jutla. 1991. Tree automata, mu-calculus and determinacy. In FOCS. IEEE, 368–377.
Azadeh Farzan and Zachary Kincaid. 2016. Linear Arithmetic Satisfiability via Strategy Improvement. In IJCAI. 735–743.
Harald Fecher and Michael Huth. 2006. Ranked predicate abstraction for branching time: Complete, incremental, and precise.

In ATVA. Springer, 322–336.
Harald Fecher and Sharon Shoham. 2011. Local abstraction–refinement for the µ-calculus. STTT 13, 4 (2011), 289–306.

Jeanne Ferrante and Charles Rackoff. 1975. A decision procedure for the first order theory of real addition with order. SIAM
J. Comput. 4, 1 (1975), 69–76.

Michael J Fischer and Michael O Rabin. 1974. Super-Exponential Complexity of Presburger Arithmetic. Technical Report.
Project MAC Mass. Inst. Of Tech.

David Gale and Frank M Stewart. 1953. Infinite games with perfect information. Contributions to the Theory of Games 2
(1953), 245–266.

Orna Grumberg, Martin Lange, Martin Leucker, and Sharon Shoham. 2005. Don’t know in the µ-calculus. In VMCAI.
233–249.

Orna Grumberg, Martin Lange, Martin Leucker, and Sharon Shoham. 2007. When not losing is better than winning:

Abstraction and refinement for the full µ-calculus. Information and Computation 205, 8 (2007), 1130–1148.

Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, Andrey Rybalchenko, and Ru-Gang Xu. 2008. Proving non-

termination. In POPL. 147–158.
Arie Gurfinkel and Marsha Chechik. 2006. Why waste a perfectly good abstraction? In TACAS. 212–226.
Aidan Harding, Mark Ryan, and Pierre-Yves Schobbens. 2005. A new algorithm for strategy synthesis in LTL games. In

TACASs. Springer, 477–492.
Jaakko Hintikka. 1982. Game-theoretical semantics: insights and prospects. Notre Dame Journal of Formal Logic Notre-Dame,

Ind. 23, 2 (1982), 219–241.
Antonius J. C. Hurkens, Cor A. J. Hurkens, and Gerhard J. Woeginger. 2011. How Cinderella Won the Bucket Game (and

Lived Happily Ever After). Mathematics Magazine 84, 4 (2011), pp. 278–283.
Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. 2005. Program Repair as a Game. In CAV. 226–238.
Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. 2010. Complete functional synthesis. In PLDI. 316–329.
Orna Kupferman and Moshe Y. Vardi. 1999. Robust satisfaction. In CONCUR. 383–398.
Zohar Manna and Richard Waldinger. 1980. A Deductive Approach to Program Synthesis. ACM Trans. Program. Lang. Syst.

2, 1 (Jan. 1980), 90–121.

David Marker. 2000. Introduction to model theory. Model theory, algebra, and geometry 39 (2000), 15–35.

Donald A. Martin. 1975. Borel Determinacy. Annals of Mathematics 102, 2 (1975), 363–371.
Kenneth McMillan. 2006. Lazy abstraction with interpolants. In CAV. 123–136.
Kenneth McMillan and Andrey Rybalchenko. 2013. Solving Constrained Horn Clauses using Interpolation. Technical Report.

MSR.

Nir Piterman, Amir Pnueli, and Yaniv SaâĂŹar. 2006. Synthesis of reactive(1) designs. In VMCAI. 364–380.
Amir Pnueli and Yonit Kesten. 2002. A Deductive Proof System for CTL*. In CONCUR. 24–40.
Amir Pnueli and Roni Rosner. 1989. On the synthesis of a reactive module. In POPL. ACM, 179–190.

Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark W. Barrett. 2015. Counterexample-Guided

Quantifier Instantiation for Synthesis in SMT. In CAV. 198–216.
Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A. Saraswat. 2006. Combinatorial

sketching for finite programs. In ASPLOS. 404–415.
Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2010. From program verification to program synthesis. In POPL.

313–326.

Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2013. Template-based program verification and program synthesis.

International Journal on Software Tools for Technology Transfer 15, 5 (01 Oct 2013), 497–518.
Wolfgang Thomas. 1995. On the synthesis of strategies in infinite games. In STACS. 1–13.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

61:30 Azadeh Farzan and Zachary Kincaid

Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2010. Abstraction-guided synthesis of synchronization. In POPL. 327–338.
Igor Walukiewicz. 2001. Pushdown processes: Games and model-checking. Information and computation 164, 2 (2001),

234–263.

A PROOFS
Lemma 5.3. Let T = ⟨N ,E, r ,X ,Φ,M, ▷⟩ be a well-labeled safety tree, let u ∈ N , and let π =

r1s1· · · rnsn be a partial play that starts in a position r1 that satisfies the annotation Φ(u) of u, and
that conforms to the partial strategy of u (i.e., for all i , дuT (r1· · · ri−1) is defined and equal to si). Then
SAFE does not lose π , in the sense that either (1) all of SAFE’s moves are legal, or (2) REACH makes an
illegal move before any illegal move of SAFE.

Proof. Letv = succuT (r1). We will prove that SAFEmay legally move from r1 to s1, and that either
REACH’s move from s1 to r2 is illegal or r2 satisfies Φ(v). The main result follows by induction.

If u is an expanded node, then by the Adequacy condition and the fact that r1 satisfies Φ(u), we
have that G (u,w) (r1) holds for some (u,w) ∈ E; by the definition of succuT we have that G (u,v) (r1)
holds (i.e., r1 must satisfy the guard of the transition from u to v). By the Availability condition

and the fact thatG (u,v) (r1) holds, we can conclude that safe(r1, s1)—i.e., the move from r1 to s1 is a
legal for the SAFE player. By the Consecution condition and the fact that r1 satisfies Φ(u) andG (u,v) ,

we conclude that either reach(s1, r2) fails to hold (i.e., moving from s1 to r2 is illegal for REACH),
or Φ(v) (r2) holds.
If u is covered by some node u ′, then by the Covering condition we have that r1 that satisfies

the annotation Φ(u ′) and proceed as above. Note that since u ′ may not be covered, there is no

circularity in this argument. □

Proposition 5.5. Let G (init, reach, safe) be a linear reachability game. If there exists a well-labeled,
complete safety tree for G (init, reach, safe), then the safety player wins G (init, reach, safe).

Proof. LetT = ⟨N ,E, r ,X ,Φ,M, ▷⟩ be a well-labeled, complete safety tree for G (init, reach, safe)
Let π = r1s1· · · be a play conforming to T . We must show that SAFE wins π . If r1 is a legal move

for the REACH player, we have that r1 satisfies Φ(r) by the Initiation condition (if not, then we are

done—REACH has made an illegal move and SAFE wins). By Lemma 5.3, we have that SAFE does

not lose any finite prefix of π . It follows that SAFE wins π . □

Proposition 5.6. If the reachability player wins Gn (init, reach, safe) for some n, then (assuming a
fair expansion policy, in which any vertex that is added to the safety tree is eventually either expanded
or covered and remains covered) Algorithm 1 terminates with a winning reachability strategy for
G (init, reach, safe).

Proof. We prove that, if the algorithm does not terminate, then SAFE wins Gn (init, reach, safe)
for all n.
For any i , let Ti = ⟨Ni ,Ei , r ,Xi ,Φi ,Mi , ▷i ⟩ denote the safety tree that results after i iterations

of the main loop in Algorithm 1. Let Ui, ℓ denote the set of vertices of Ti at level ≤ ℓ that are not
expanded. We define n-reachability in Ti as follows:

• The root vertex is n-reachable for all n.
• If u is n-reachable and (u,v) ∈ Ei , then v is (n + 1)-reachable.
• If u is n-reachable and u ▷i v , then v is n-reachable.

We begin with a lemma: for any ℓ, there is some i such thatUi, ℓ = Ui′, ℓ for all i
′ > i . We proceed

by induction on ℓ. The base case is trivial: the root of the tree is unchanging, and after expanding it
remains expanded (i = 1 suffices). For the induction step, let ℓ be a natural number and suppose that

i is such that Ui, ℓ = Ui′, ℓ for all i
′ > i . Observe that, since vertices at level ≤ ℓ are never expanded

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

Strategy Synthesis for Linear Arithmetic Games 61:31

after iteration i (otherwise the set of unexpanded vertices at level ≤ ℓ would change, contradicting

the induction hypothesis), we have Uj, ℓ+1 ⊇ Uj+1, ℓ+1 for all j ≥ i (expansion of a vertex at level

≥ ℓ + 1 may result in removing unexpanded nodes at level ℓ + 1, but can only add expanded nodes

to level ℓ + 1). Since a descending chain of finite sets cannot strictly decrease infinitely often, there

is some k such thatUk, ℓ+1 = Uk ′, ℓ+1 for all k
′ > k .

Now we prove that for every n, there exists ℓn and in such that for all i ′ > in (1) every n-reachable
vertex in Ti′ is at level ≤ ℓn (2) every (n − 1)-reachable vertex in Ti′ is either expanded or covered.

We prove this by induction on n. The base case is trivial: there is only one 0-reachable vertex in any

tree (the root) and it is always at level 0. For the induction step, let n be arbitrary and suppose that

in and ℓn are as above. By the lemma above, there is some j such that Uj, ℓ+1 = Uj′, ℓ+1 for all j
′ > j.

By the assumption of fairness, for each u ∈ Uj, ℓ+1, there is some natural k (u) and some vertex c (u)
such that u ▷k ′ c (u) for all k

′ > k (u) (i.e., a vertex that is never expanded must eventually become

covered and stay covered). Define in+1 to be the maximum over j and all k (u) (u ∈ Uj, ℓ+1) and ℓn+1
to be the maximum over ℓn + 1 and the level of c (u) (for u ∈ Uj, ℓ+1). Let i

′ ≥ in+1 be arbitrary.

(1) Let v be (n + 1)-reachable in Ti′ . We must show that v has level ≤ ℓn+1.
• Case: there is some (u,v) ∈ Ei′ such that u is n-reachable. Since u is n-reachable, it must

have level ≤ ℓn (by the induction hypothesis), and thus v must have level ≤ ℓn + 1 ≤ ℓn+1.
• Case: there is some u ▷i′ v such that u is (n + 1)-reachable. Since u is covered by v , u is not

expanded, and thus may not cover any vertex. Thus, there is some (u ′,u) ∈ Ei′ such that

u ′ is n-reachable. As above, we have that u has level ≤ ℓn + 1. By the construction of in+1
and ℓn+1, we have that v = c (u), and thus v must have level ≤ ℓn+1.

(2) Let v be n-reachable in Ti′ . By the induction hypothesis, v has level ≤ ℓn , and thus by

construction of in+1, v is either expanded or covered by k (v).

Finally, observe that for any n, the treeTin defines a partial SAFE strategy such that дrTin
(r1· · · rm)

is defined for all sequences of lengthm ≤ n such that r1 satisfies init. By Lemma 5.3, SAFE does

not lose any play of ≤ n rounds that conforms to this strategy. We conclude that the partial

strategy defined by Tin , when restricted to sequences of length ≤ n, is a winning SAFE strategy for

Gn (init, reach, safe). □

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 61. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Illustrative Examples
	2.1 Linear Arithmetic Satisfiability Games
	2.2 Linear Arithmetic Reachability Games

	3 Linear Arithmetic Games
	3.1 Satisfiability Games
	3.2 Reachability Games

	4 Strategy Synthesis for Satisfiability Games
	5 Strategy Synthesis for Reachability Games
	5.1 Covering
	5.2 Expansion

	6 Strategy Description Languages and Their Implications
	7 Case Studies
	7.1 Linear Satisfiability Games Instances
	7.2 Linear Reachability Games

	8 Related Work
	Acknowledgments
	References
	A Proofs

