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Abstract. We present an algorithm for automatically constructing a decomposi-
tional shape model from examples. Unlike current approaches to structural model
acquisition, in which one-to-one correspondences among appearance-based fea-
tures are used to construct an exemplar-based model, we search for many-to-
many correspondences among qualitative shape features (multi-scale ridges and
blobs) to construct a generic shape model. Since such features are highly ambigu-
ous, their structural context must be exploited in computing correspondences,
which are often many-to-many. The result is a Marr-like abstraction hierarchy, in
which a shape feature at a coarser scale can be decomposed into a collection of at-
tached shape features at a finer scale. We systematically evaluate all components
of our algorithm, and demonstrate it on the task of recovering a decompositional
model of a human torso from example images containing different subjects with
dissimilar local appearance.

1 Introduction

The early generic object models proposed by researchers such as Marr and Nishihara
[11] and Brooks [10] not only decomposed a 3-D object into a set of volumetric parts
and their attachments, but supported the representation of objects at multiple scales,
using an abstraction hierarchy. Marr’s classical example of a human consists of a sin-
gle cylindrical part at the highest level, a torso, head, and arms appearing at the next
level, an upper arm and lower arm appearing at the next level, etc. Modeling an ob-
ject at different levels of abstraction is a powerful paradigm, offering a mechanism for
coarse-to-fine object recognition. Unfortunately, such models were constructed manu-
ally, and the feature extraction and abstraction machinery required to effectively recover
volumetric parts, much less their abstractions, was not available at the time.

The recognition community has recently returned to the problem of modeling ob-
jects as configurations of parts and relations, with the goal of automatically recover-
ing (or learning) such descriptions from examples. For example, collections of interest
points [1, 7] or affine-invariant image patches [2], forming a “constellation” of fea-
tures, capture the “parts” and their geometric relations that define a view-based ob-
ject category. Armed with powerful new machine learning techniques, complex con-
figuration models can be automatically recovered from image collections or image se-
quences. For example, one can extract models based on motion and persistent appear-
ance [4, 6, 12, 3, 5]. Global detectors that combine both motion and appearance have
also been successfully applied to pedestrian tracking tasks [13].
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As powerful as these part-based techniques are, they all rely on computing a one-
to-one correspondence between low-level, appearance-based features. However, two
exemplars belonging to the same class may not share a single appearance-based feature.
Yet at some higher level of abstraction, the two exemplars may share the same coarse
part structure. Local, appearance-based features simply do not lend themselves to the
types of abstract object representations proposed by Marr and his peers – abstractions
in which a single part may cover an entire subcollection of local, appearance-based fea-
tures. One approach might be to try and group the appearance-based features into local
collections each of which defines an abstract part. However, appearance-based features
are texture encodings of neighborhoods centered at interest points, and do not reflect
the underlying shape structure required for perceptual grouping. Granted, the analysis
of moving interest point-based features can support their partitioning into groups. But
again, this requires the tracking of an exemplar, for which one-to-one feature correspon-
dence is assured. Moreover, it is not clear how to abstract a coarse part model from a
sparse set of local features.

In this paper, we address the problem of recovering a Marr-like abstraction hier-
archy from a set of examples. We begin by applying a multi-scale blob and ridge de-
tector [18] to a set of images containing exemplars drawn from the same class. The
extracted features become the nodes in a blob graph whose edges reflect nonacciden-
tal proximity relations between pairs of features. Blobs and ridges capture the coarse
part structure of an object, and represent low-order projections of restricted classes of
volumetric part models, including generalized cylinders, superquadric ellipsoids, and
geons. Unfortunately, as feature complexity increases, so does its reliability decrease,
as seen in Figure 1, showing the extracted blob graphs from a set of images of different
humans with varying appearance and arm articulations. Some parts are over-segmented,
some are under-segmented, some are missing, and some are spurious (possibly repre-
senting background clutter). These segmentation errors all pose a significant challenge
to a matching algorithm whose goal is to find common structure in a set of images.
Whereas one-to-one matching of local appearance-based features can exploit the high
dimensionality of the features to ensure robust matching, one-to-one matching of noisy
blobs and ridges is ripe with ambiguity, and structural relations and context must be
exploited for successful matching.

Still, there is an even more challenging problem to be solved here. In Figure 1,
sometimes an arm may appear as a single, elongated ridge (when the arm is extended),
while at other times, an arm is broken into two smaller ridges (due to articulation at the
elbow). Any matching algorithm that assumes a one-to-one correspondence between
features cannot match these two descriptions, therefore failing to capture the notion that
a coarser feature can be decomposed (at a finer level of abstraction) into two smaller
features. Detecting these decompositional or abstraction relations between features re-
quires a matching strategy that can match features many-to-many. Only then can we
recover the multi-scale abstraction models that support true generic object recognition
or categorization.

In this paper, we propose a framework for learning a shape abstraction hierarchy
from a set of examples with dissimilar local appearance. From a set of noisy, poorly-
segmented blob graphs, capturing the articulated part structure of objects at different
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Fig. 1. Blob graphs extracted from a set of images, each containing the upper body of a differ-
ent person (with different clothing). The high level of feature abstraction comes at the cost of
increased segmentation errors in the form of under- and over-segmentation, missing features,
and spurious features (including background clutter). Notice also that features may be extracted
at different levels of abstraction, such as a straight arm (single ridge) or bent arm (two smaller
ridges). Edges between blobs reflect a commitment to nonaccidental proximity-based grouping
(see text) with edge width reflecting strength of grouping.

levels of abstraction, we construct an abstraction hierarchy, in the form of a graph, that
contains both coarse-to-fine decompositional (abstraction) relations as well as attach-
ment relations. Relaxing the one-to-one feature correspondence assumption common to
most structure learning frameworks, we draw on recent results in many-to-many graph
matching to match blob graphs many-to-many, allowing the matching of two exemplars
whose parts may appear at different levels of abstraction. An analysis of the many-to-
many matching results over all pairs of input exemplars ultimately yields the nodes and
edges (both abstraction and attachment) in the final model.

We begin with a summary of related work (Section 2) and proceed to present our
graph construction computed over a multi-scale blob and ridge decomposition (Sec-
tion 3). We then describe our many-to-many graph matching technique (Section 4), our
technique for identifying persistent parts (Section 5.1), and our technique for defining
both attachment and abstraction relations (and their probabilities) (Section 5.2). We
evaluate each stage of the pipeline using ground truth data, and explore the sensitivity
of each step to changes in parameters (Section 6). Finally, we offer some conclusions
(Section 8) as well as directions for future research.

2 Related Work

Many authors have attempted to learn categorical models from examples, and we high-
light only a few due to space limitations. Constellation models have emerged as a pop-
ular representation for modeling general categories, such as motorbikes, faces, and cars
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[1, 7]. Constellation models represent objects as configurations of local, appearance-
based descriptors together with their spatial distributions. Learning these models can be
accomplished robustly since appearance-based patches can be matched effectively and
independently across training examples, therefore providing an efficient model boot-
strapping step. The domain of human structural modeling from examples has also re-
ceived considerable recent attention [8, 6, 5, 3]. Specific human structural tree models
have been used in conjunction with efficient dynamic programming search methods by
[8], while others [6, 4] assume an unknown (but tree-shaped) model structure and rely
on ribbon detectors or temporal tracking [3] and clustering of body parts to recover a
kinematic human representation using maximum weight spanning tree algorithms [9].

There are three critical differences between our approach and the above frameworks.
The first is our use of generic shape features, as opposed to specific appearance-based
features. Using appearance-based features not only constrains the training set to the
same object exemplars, but yields a simple correspondence problem. Our generic fea-
tures, in the form of ridges and blobs, are highly ambiguous, and cannot be tracked
across training examples on the basis of their properties alone. This gives rise to the sec-
ond major difference, whereby the context of a feature, i.e., the nature of its structural
connections to nearby blobs, is critical to computing blob/ridge correspondence across
training examples. The use of perceptual grouping to commit to this necessary structure
prior to matching is in contrast to approaches in which the use of robust, local feature
correspondences allows structural relations to be computed following matching. The fi-
nal, and perhaps most critical difference, is our recovery of decompositional relations
between features, allowing us to capture a coarse-to-fine representation of an object.
Recovering such relations hinges on being able to match features many-to-many, as op-
posed to assuming a one-to-one feature correspondence. Without motion (of a single
exemplar), appearance-based features cannot be matched many-to-many, due to their
lack of generic structure.

3 Representing Qualitative Image Structure

We seek a decomposition of an image into a set of qualitative parts and attachment
relations, and adopt the multi-scale blob and ridge decomposition proposed in [18].
Since blobs are generic features, they encode no appearance-specific information. Con-
sequently, matching a blob in one image to a blob in another cannot be done on the
basis of a blob’s parameters, which include only a blob vs. ridge feature type, position
(not translation or articulation invariant), orientation (not rotation invariant), ridge ex-
tent (not viewpoint invariant), and saliency. To overcome this tremendous ambiguity
during matching, we need to draw on a blob’s context, i.e., the structure of nearby blobs
thought to be part of the same object. Specifically, we seek a set of edges that span
features that are unlikely to be in close proximity by chance. Given our desire to de-
scribe objects at multiple levels of abstraction, spatial coherence and continuity dictate
that, for example, when a coarse, elongated shape is decomposed into a set of smaller,
elongated shapes, the latter will likely be attached end-to-end.

To set the edge weights, we must look ahead slightly to how they will be used at
matching time. The many-to-many graph matching algorithm (to be described in more
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Fig. 2. Edge construction: (a) ridge-ridge; (b) ridge-blob; and (c) blob-blob. The total length of
the bold lines represents the assigned edge weight between the two features in the graph.

detail later) first embeds the nodes of two graphs to be matched into two weighted point
sets in Euclidean space. In this geometric space, a powerful many-to-many weighted
point matching algorithm, the Earth Mover’s Distance (EMD) [14], yields a solution
which, in turn, specifies a many-to-many node correspondence between the original
graphs. EMD will map (or “spread”) a point from one graph to a collection of points
from another graph if the members of the collection are in close geometric proximity.
Therefore, if we want multiple parts at a finer scale in one graph to match a single part
at a coarser scale in another graph, the edge weights (distances) linking the finer scale
parts to be grouped must be relatively small.

A connectivity measure is computed for each pair of features, according to:

max{d1/major(A), d2/major(B)}, (1)

where major(X) is the length of the major axis of blob X . If this measure is greater
than a threshold (whose sensitivity we evaluate in Section 6.1), the blobs are considered
disconnected; if the measure is less than the threshold, an edge is inserted between the
blobs whose weight is a function of d1 and d2, as shown in Figure 2. Due to scene
clutter, the graph may have a number of connected components, representing multiple
objects. We greedily choose the largest (in terms of number of nodes) connected compo-
nent as a simple method for figure-ground separation, and discard the other components.
Ultimately, a distance matrix over these remaining features is necessary to construct an
embedding of the graph into a geometric space. To ensure that the distance matrix is in-
variant to part articulation, the distance between any two nodes is defined as the shortest
path distance (along graph edges) between the nodes.

4 Computing Many-to-Many Blob Correspondences

Given an input training set of blob graphs, we compute a many-to-many matching be-
tween each pair of graphs. In the graph domain, this is an intractable problem that would
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require matching (perhaps connected) subsets of nodes in one graph to subsets of nodes
in another. Our technique is based on a recent approach to this problem, proposed by
Demirci et al. [16], which transforms the many-to-many graph matching problem to a
many-to-many weighted point matching problem, for which an efficient algorithm ex-
ists. Given a shortest-path distance matrix encoding node-to-node distances, the algo-
rithm employs a spherical coding technique to yield a low-distortion embedding of the
nodes in a low-dimensional Euclidean space (we adopt a simpler, spectral embedding
technique). The approach essentially throws out the original graph edges, and locates
the points in space such that the Euclidean distances between points in the embedded
space is close (with low distortion) to shortest path distances between nodes in the orig-
inal graph.

The embedded points can now be matched many-to-many using the Earth Mover’s
Distance (EMD) under transformation [15]. If the points corresponding to one graph are
viewed as piles of earth, while the points corresponding to the other graph are viewed
as holes, the EMD algorithm computes the assignment of earth to holes that minimizes
the amount of work required to move the earth to the holes. If we assume that mass is
approximately conserved through levels of abstraction, then points should be assigned
a weight that’s proportional to the areas of their corresponding blobs. Returning to our
“arm” example, the mass of the straight arm blob should roughly equal the sum of the
masses of the broken arm blobs. The EMD under transformation is an iterative assign-
ment/alignment process that quickly converges on a solution which can be mapped to
a many-to-many node correspondence between the original graphs. In the following
subsections, we provide the details on these steps.

4.1 Graph Embedding

A number of techniques are available for embedding the distance matrix into Euclidean
space; examples include metric tree embedding [17], spherical codes [16], and ISOMAP
[19]. We adopt a spectral embedding of a distance matrix computed in terms of shortest
paths between nodes in a blob graph, similar to [19]. Each blob in the graph maps to a
point which encodes the blob’s embedded position and mass (blob area). The matching
of two blob graphs can now be formulated as the matching of their embedded weighted
point sets, in which a source point’s mass can flow to multiple target points and a tar-
get point can receive flow from multiple source points. For our experiments, we embed
the graph into a 2-D space. Though higher dimensional embeddings will result in a
lower distortion and a more accurate many-to-many matching, the alignment computa-
tion may become underconstrained since more point correspondences will be needed.
A 2-D space was chosen since it requires only 3 point correspondences for an affine
alignment computation. Most of our exemplar images do share at least 3 feature corre-
spondences. It is possible to adapt the dimensionality of the embedding space for each
particular matching, the subject of future work.

4.2 Weighted Point Matching

The Earth Mover’s Distance (EMD) algorithm under transformation [15] allows us to
compute a many-to-many matching of the embedded points which, in turn, specifies
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Fig. 3. Many-to-many matching of blob graphs using Earth Mover’s Distance under transforma-
tion in embedded (Euclidean) space. Left two images show the detected blobs with green lines
indicating blob connections and line width indicating edge strength (nonaccidental, proximity-
based grouping strength). The right figure shows the embedded features (red for left image, blue
for right image) after alignment, using the modified EMD under transformation. The flows are
shown in green, with line width indicating amount of flow; note that since the blobs are well
aligned, the flow distances are very small. The sizes of the circles correspond to the point masses
(blob areas).

a many-to-many node correspondence between the nodes in the original graphs. The
EMD is a global assignment problem, and assumes that the total masses of the two
graphs are the same. However, with noise, occlusion, and clutter, this assumption is
violated, and we must modify the algorithm to take a more local approach. Specifically,
the mass of each feature in the first image is distributed among its nearby features in the
second image in a greedy fashion, with both small flows and flows over large distances
eliminated. If we compute the flows in the opposite direction, i.e., from the second
image to the first image, the flows may be different, due to our greedy approximation.
Augmenting the EMD cost function (the amount of work required to redistribute the
mass) with terms that penalize for unmatched masses in the two images by adding the
sum of untransferred masses in source nodes and the sum of unfilled masses in target
nodes to the cost, we select the direction with minimum cost.

The flows associated with a given direction are used to compute an affine transfor-
mation between the corresponding point sets using a least-squares minimization of the
sum of squared differences between the location of a point in the one set and a weighted
(by the flows) average location of its matched points in the other set:

∑

i

‖(Pos(i) − T (
∑

j

Flows(i, j) × Pos(j)))‖2, (2)

where T is an N−dimensional affine transformation. In this approximation to the itera-
tive FT (an optimal Flow and an optimal Transformation) algorithm [15], which alter-
nates between computing the EMD flows and computing the affine transformation, the
algorithm typically converges in 3-4 iterations. Figure 3 shows two blob graphs and the
final matching, as computed by EMD under transformation. The final flow matrix com-
puted by Algorithm 1 defines a direction of minimum cost. This matrix can be “inverted”
to yield a consistent flow matrix for the opposite direction. These two matrices will play
a key role in our procedure for extracting the parts in the final decompositional model.
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Algorithm 1. EMD Under Transformation for Many-to-Many Matching of Two
Weighted Point Sets
1: Compute the distance matrix d(i, j) = ‖P1i − P2j ‖.
2: Compute the F lows matrix using the above distance matrix d.
3: repeat
4: Compute the transformation T that minimizes∑

i ‖(P1i − T (
∑

j F lows(i, j) × P2j ))‖2.
5: Transform each point P2j from the second set with the computed transformation T .
6: Compute a new distance matrix d(i, j) = ‖P1i − P2j ‖.
7: Compute a new F lows matrix using the new distance matrix d.
8: until the change in the F lows matrix is small
9: Assign a cost to the computed F lows matrix.

10: Return computed flow matrix F lows and its cost.

5 Model Construction

Using the above feature matching framework, each pair of the P input exemplars is
matched, resulting in O(P 2) pairs of mass flow matrices (one per direction). Further-
more, each pair of flow matrices can be row normalized to 1, with each row entry indi-
cating the fraction of mass flowing from the feature specified by the row to the feature
specified by the column. These matrices are combined to form a single N ×N matching
matrix, M , where N is the total number of blobs in all of the exemplar images. M is a
block matrix, where the (i, j)-th block stores the flows from features in image i to fea-
tures in image j; diagonal blocks are identity matrices, reflecting the perfect one-to-one
matching that would result from matching an image to itself.

The final decompositional model is derived from the matching matrix M and the
original blob graphs. First, the one-to-one flows are analyzed to yield consistently ap-
pearing parts, i.e., parts that match one-to-one across many pairs of input images. Next,
the many-to-many flows (M ) between these extracted parts are analyzed to yield the
decompositional relations among parts detected in the first step. Finally, the input blob
graphs are analyzed to yield the attachment edges between the extracted parts. The ex-
tracted parts and their relations are used to construct the final decompositional model.
The following subsections outline these steps in more detail.

5.1 Extracting Parts

Our goal in populating the final model is to select parts that occur frequently across
many input exemplars, i.e., parts that match one-to-one. Recall that entry (p, q) in the
matching matrix M contains the computed flow from blob p (in the image in which it
was detected) to q (in the image it was detected) when the two images were matched;
(q, p) contains the flow in the other direction. If both flows are close to 1.0, then the
blobs are said to be in one-to-one correspondence. However, if part p or q is involved in
a many-to-one decompositional relation, the flow in one direction will be less than 1.0.

By redefining both entries to be the minimum of the two flows, the entries rep-
resenting one-to-one correspondences will retain their high values (close to 1.0) and
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the matrix becomes symmetric. Subtracting the entry from 1 turns the symmetric flow
matrix into a symmetric distance matrix, setting up a clustering problem where clus-
ters represent collections of nodes in one-to-one correspondences. Again, we draw on
spectral techniques to embed the distance matrix in a low-dimensional space, and use
the k-means1 algorithm for clustering. The quality [0, 1] of the cluster is proportional
to the “cliqueness” of the one-to-one matches among the members of the cluster. If a
cluster is of sufficient size and quality, it becomes a node in the final decompositional
model.

5.2 Extracting Relations

Two types of edges are used to link together the extracted parts (nodes). Decomposi-
tional edges are directed from one part to multiple parts, and capture the notion that
a feature can appear alternatively as a set of component features, due to finer scale or
articulation (or, in the reverse direction, a set of features can be abstracted to form a
single feature). Attachment relations are the same nonaccidental proximity relations
found in the blob graphs computed from the training images. An attachment edge is
undirected, and implies that the blobs spanning the edge are connected. The many-to-
many matching results (flows) between the extracted parts will be analyzed to extract
the decompositional edges, while the attachment relations (in the original blob graphs)
between the extracted parts will be analyzed to extract the attachment relations.

The K extracted parts represent clusters of matching blobs in the matrix M . For
attachment relations, we compute the likelihood with which any two such parts not
only co-appear in the images in which they were found, but are attached as well. If this
likelihood of attachment exceeds a threshold, we define an attachment relation between
the two extracted parts. The likelihood [0, 1] of attachment between parts i and j is
defined by the K × K matrix PA (part attachment) as:

PA(i, j) =

∑P
p=1

∑B(p)
k=1

∑B(p)
l=1 [Cp(k) = i][Cp(l) = j]connp(k, l)

∑P
p=1

∑B(p)
k=1

∑B(p)
l=1 [Cp(k) = i][Cp(l) = j]

(3)

where P is the number of training images, B(p) is the number of blobs in training
image p, Cp(k) is the cluster that blob k in image p is assigned to, [Cp(k) = i] is an
indicator function whose value is 1 when Cp(k) = i and 0 otherwise, and connp(k, l)
has value 1 if there is an attachment between blobs k and l in image p (and 0 otherwise).
The expression captures the number of times blobs drawn from the two clusters were
attached, normalized by the number of times blobs from the two clusters co-appeared in
an image. Part attachment relations above a threshold Tattach are inserted into the final
model. We found that Tattach = 0.6 worked well for our complete set of experiments,
representing the condition that co-occurring blobs belonging to two different parts are
connected in at least 60% of the input images.

1 We first run k-means with a large value of k, resulting in over-segmented clusters. In a post-
processing step, we reassign some blobs to more compatible clusters, remove noisy blobs from
clusters, remove weak clusters, and merge similar clusters. The resulting procedure yields
stable clusters that are less sensitive to the initial choice of k.
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For decompositional relations, we restrict ourselves to one-to-many decomposi-
tional relations. A directed, one-to-many decompositional relation between one ex-
tracted part (parent) and a set of two or more extracted parts (children) must satisfy
three conditions:

1. Most of the mass of the parent flows to the children.
2. In the reverse (many-to-one) direction, most of the mass of each child flows to the

parent.
3. The children form a connected component, implying a spatial coherence constraint.

Testing the first two (flow) conditions requires a K ×K part flow matrix, PF (i, j),
constructed by averaging the flows from all blobs in extracted part i’s cluster to all blobs
in extracted part j’s cluster:

PF (i, j) =
∑N

k=1
∑N

l=1[C(k) = i][C(l) = j]M(k, l)

(
∑N

k′=1[C(k′) = i]) × (
∑N

l′=1[C(l′) = j])
(4)

where N is the total number of blobs extracted from all images, C(l) is the cluster
that blob l is assigned to, and M is the N × N matching matrix. The expression rep-
resents the sum of all flows from blobs in cluster i to blobs in cluster j, normalized
by the number of flows, yielding a mean flow. The entries in the matrix PF are in the
range [0, 1].

Given the part flow (PF ) and part attachment (PA) matrices, Algorithm 2 ex-
tracts the part decomposition relations among the extracted parts in the final model.
Tchild (0.6) is determined empirically and reflects the degree to which a conservation of

Algorithm 2. Extracting Decompositional Relations
1: for i = 1 to K do
2: Find all parts j �= i, s.t. PF (j, i) ≥ Tchild. Let D be the set of all such parts, representing

the potential children of i.
3: for all subsets D′ of D do
4: Let PAD′ be the upper triangular matrix of PA(k, l), where k, l ∈ D′.

5: The quality of the decomposition of part i into the set D′ is e−|1−
∑

j∈D′ PF (i,j)| ×
min{1,

∑
k,l∈D′ PAD′ (k,l)

|D′|−1 } {The first term in the quality measure cost is high when
most of the parent’s mass flows to the children (and low otherwise). The second term
encourages the children to form a connected component, where a connected component
of D′ children implies at least D′ − 1 attachment edges among them.}

6: end for
7: end for
8: Choose decompositions whose quality exceeds Tdecomp

mass constraint can be imposed between the children and their parent in a many-to-one
mapping. A higher threshold, reflecting a stronger constraint, implies less blob over-
or under-segmentation in the image domain in which the models are being learned.
Tdecomp is also set to 0.6, reflecting the fact that a parent distributes most of its mass to
its children and that the children are attached (the product of the two terms needs to be
larger than 0.6).
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5.3 Assembling the Final Model Graph

The final model is a graph whose nodes represent the extracted parts and whose edges
represent the extracted attachment and decompositional relations. Associated with each
node is a saliency value, defined as the average of all the compatibility values of the
blobs in a given cluster (defined in Section 5.1). The attachment relation between parts
i and j has an associated likelihood, defined by PA(i, j). The decompositional relation
between a parent part and its constituent children has both an associated quality, defined
by the algorithm above, and a probability reflecting how likely the decomposition is,
i.e., the probability that the set of children will be observed in an image in lieu of the
parent.

6 Experimental Results

We evaluate our model on a database of 86 torso images containing different individ-
uals with different arm articulations; the blob graphs extracted from some of these
images can be seen in Figure 1. Ground truth is provided for each input image in
the form of a labeling of the extracted blobs in terms of the parts in an ideal torso
decompositional model, shown in Figure 4; blobs that are not deemed (by a human
observer) to correspond to a part on the ideal model are labelled as noise. This al-
lows us to systematically evaluate each component of the system, including the detec-
tion of the blobs and attachment relations forming the input graphs, the many-to-many
matching results, the detection of parts (clustering) that become the nodes in the final
graph2, and the attachment and decompositional relations that link the nodes together.
Moreover, we can evaluate the sensitivity of each step as a function of any underlying
parameters.

Head

Torso

UR Arm

Attachment

Decompostion

Right Arm

LR Arm LL Arm

Left Arm

UL Arm

Fig. 4. The ideal torso decompositional model, representing ground truth for the experiments

2 Since the clustering step is not deterministic (due to the random initialization of clusters),
the clustering experiments, as well as all experiments that rely on the clustering results, were
conducted 20 times for each value of the parameter being evaluated.
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6.1 Evaluation of Input Blob Graphs

As mentioned in Section 1, the detection of blobs is a noisy process, resulting in over-
and under-segmentation, spurious blobs, missing blobs, and poorly localized blobs.
Given the ground truth labeling, we can evaluate the blob detection process. According
to the part labels shown in Figure 4, the percentage of images in which the designated
part was detected was: head (47%), torso (83%), left arm (50%), right arm (51%), left
upper arm (37%), left lower arm (36%), right upper arm (40%), and right lower arm
(37%). These relatively low percentages reflect the significant degree of noise in the
detection of blobs (note that a straight arm and its two components cannot simultane-
ously appear). The attachment relations are governed by a single proximity threshold.
Large threshold values cause all blobs to be attached and thus produce false positive
attachment relations among parts, whereas small threshold values create sparse graphs
with false negative attachment relations among parts. Figure 5(a) shows the error in in-
dividual attachment, representing the sum of the SSD error in the attachment matrices
of all exemplar blob graphs.

6.2 Evaluation of Many-to-Many Matching

The error in the many-to-many matching component is computed by finding the sum
of the SSD errors in the flow matrices of each pair of exemplars. Given the optimal
proximity threshold, our matching algorithm yields a 9% error based on an element-by-
element comparison of the computed matching matrix M to the ground truth data.

6.3 Evaluation of Part Extraction

The error in the clustering step comprising part extraction is a function of two parame-
ters. The cluster error is computed by first finding the best cluster for every part in the
ideal model. Given a labeling of each image in terms of the ideal model, we can then
compute both precision and recall for each model part. The minimum (worst-case) of
the precision and recall values is averaged across all clusters and then inverted to yield
a final error measure. Figure 5(b) plots smoothed error as a function of embedding di-
mension. From the figure, we conclude that the choice of the embedding dimension is
not critical. The second parameter is k, representing an upper bound on the true number
of clusters. Figure 5(c) plots smoothed error as a function of k (maximum number of
clusters). Since the minimum is rather shallow, our algorithm is not very sensitive to the
choice of k.

6.4 Evaluation of Edge Extraction

Errors in the extraction of part attachment and part decomposition edges are computed
by first finding the correspondence between the ideal model (ground truth) parts and
the computed clusters, from which the SSD errors in the attachment and decomposition
edges can be computed. Since the correspondence between ground truth and computed
clusters is not necessarily one-to-one, and since a computed cluster does not necessarily
correspond to any ground truth cluster, an additional error term is added to account for
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Fig. 5. Evaluating the Model: (a) Input attachment relation error as function of proximity-based
grouping threshold; (b,c,f) The four curves represent clustering error, recovered attachment edge
error, recovered decomposition edge error, and final decompositional model error as a function of
dimensionality of embedding, the upper bound k on the number of putative clusters, and training
set size, respectively; (d) Recovered attachment edge error as a function of Tattach; (e) Recovered
decomposition edge error as a function of Tchild and Tdecomp
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Fig. 6. Final decompositional model obtained by our system on 86 input images. Red edges in-
dicate part attachment, while blue edges indicate part decomposition (or, inversely, abstraction).
The values on the decomposition edges specify the children (square brackets), the quality of the
decomposition, and the probability of the decomposition. The top number inside a node is its
part number, the middle number is its cluster quality, and the bottom number is the probability
of occurrence of the part. At the bottom is one example image for each part (shown in red), sam-
pled from its cluster. The model not only captures the correct attachments between parts, but also
captures the decompositional relations between each arm and its constituent subparts.
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the dissimilarity in the number of edges between the ground truth model and the final
recovered model. The error term is the difference in the number of edges relative to
the maximum number of edges in the ground truth and retrieved models. Figures 5(d)
and 5(e) show the error in attachment edges, as a function of the threshold Tattach, and
decomposition edges, as a function of the thresholds, Tchild and Tdecomp. The same
clustering results are used throughout these two experiments. As can be seen from the
figures, there is a range of thresholds that results in good attachments and decomposi-
tion edges.

6.5 Evaluation of the Final Model

From the above experiments, we determined optimal values for the different parame-
ters and manually entered them into the system. In our final experiment, we evaluate the
error of the final decompositional model as a function of the size of the input training
set. The error is defined by averaging the clustering error, the recovered part attachment
error, and the recovered part decomposition error. Figure 5(f) shows the smoothed final
model error and its three components as a function of training set size. It can be clearly
seen that the errors decrease as the number of training images increases. The automat-
ically generated model (for the full training set) is shown in Figure 6. The recovered
model is isomorphic to the ideal model, reflecting our algoithm’s ability to correctly
recover a decompositional model from noisy examples.

7 Limitations

The many-to-many matching component of our framework can handle spurious noise
in the form of missing features and small extraneous features. However, the presence
of a large noise feature or large occluder may result in incorrect assignments during
the EMD stage, for it may draw too much mass from correct features (if it’s a “hole”)
or flood too many correct features (if it’s a “pile”). The impact of such features can be
minimized by assigning additional properties to the features, such as shape or appear-
ance, and then using these properties as constraints in computing the mass flows during
EMD. Another important limitation arises from the fact that positional information of
the blobs is lost during the embedding. Although the use of distance between features
yields articulation invariance, it also means that feature ordering may be lost, as exem-
plified by a head on one torso matching a similarly sized noise blob on the bottom or
side of another torso. Again, the role of additional blob properties as constraints may
help to alleviate this problem.

8 Conclusions and Future Work

We have presented an algorithm for automatically recovering a decompositional, generic
shape model from examples; parts of the model can be represented at different levels
of abstraction – an important representational goal originally proposed by Marr. Two
important challenges face this task: 1) the inherent ambiguity in generic shape features,
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such as ridges and blobs; and 2) the need, due to articulation, scale, and segmentation
error, to match such features many-to-many. By imposing a graph-based perceptual
grouping on the parts, we provide the structural context necessary to match ambiguous
parts many-to-many. Our algorithm requires a number of parameters, and we have es-
tablished the relative insensitivity of the results to changes in the parameters. We have
demonstrated the approach on recovering a decompositional torso model from example
images of different subjects. Although our features and grouping rules are tuned for
articulated objects, such as humans, the framework could be applied to other features
and grouping rules that are more suitable for other categories. The correctness of the
recovered model as a function of the size of the training set has been evaluated with
respect to ground truth. Preliminary results are very encouraging, and current efforts
are aimed at recovering more complex models having a higher incidence of decompo-
sitional structure. Moreover, we seek to augment the recovered model with both node
and relation constraints, derived from the input data. Finally, we plan to apply machine
learning techniques to recover optimal perceptual grouping parameters, and develop
object recognition techniques adapted to part-based decompositional models.
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