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Overview of the Method 3b. CRF inference

Use Loopy Belief propagation for inference
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 Over-segment the image
using Normalized Cuts

 Each superpixel
becomes node in graph

« At every iteration update messages in parallel
« Use damping for stability
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3. Train CRF

3a. Bethe Free Energy Approximations for CRF

« Use Conditional Maximum likelihood learning
« Compute log-likelihood of the data under the model
» Use Bethe Free Energy to approximate log Z
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