Parallel corpora and semantic typology

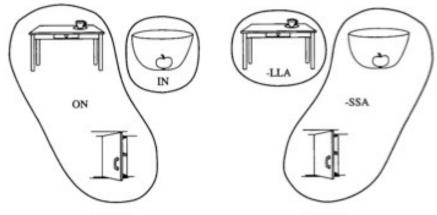
Barend Beekhuizen barend@cs.toronto.edu University of Toronto (joint work with Suzanne Stevenson)

Computational Linguistics Seminar @ UvA November 1, 2016

- Languages vary widely in how they carve up the space of possible meanings
- But there are also strong biases: only a small subset of all possible variations are attested
- Semantic typology: describing and explaining the types of semantic categorization systems
- Given this: how to do meaning in CL in a language-independent way?

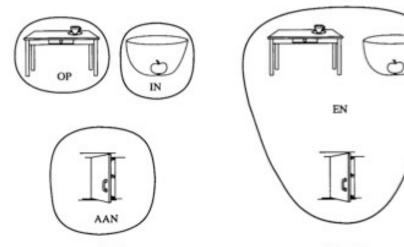
		-		5	1
- Faroese	koppur				
Dutch (BE)	tas				beker
Frisian	kopke		beker		
Danish	kop			krus	
Norwegian	kopp			krus	glass
Icelandic	bolli			krús	glas
Luxembourgish	Taass			Béierkrou	Becher
German	Tasse			Krug	Becher
Schwyzerdütsch	tassli			humpè	bächèr
Swedish	kopp		ma	88	glass
English	cup mu		mug		cup
Dutch (NL)	kopje	kom	m	k	beker

Majid et al. (2014)



a. English

b. Finnish

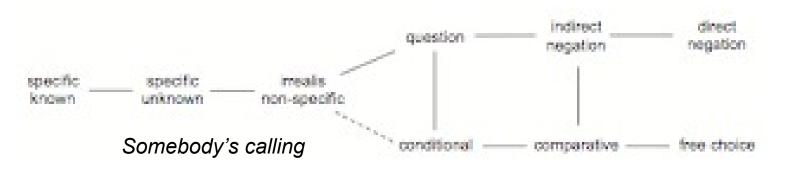


Bowerman (1996)

c. Dutch

d. Spanish

Did anybody see my dog?



Mary can run faster than anybody

Haspelmath (1997)

Data and methods

- Sources of data:
 - Grammars/dictionaries (Haspelmath 1997, Youn 2016)
 - Elicitation (Bowerman 1996, Lang 2001, Majid et al. 2008, 2014)
 - Corpora (Mayer & Cysouw 2012)
- Method of analysis:
 - Visualization (manual, automatic; Croft & Poole 2008, Majid et al. 2008, 2014)
 - Implicational semantic maps (Haspelmath 1997, Ito & Narrog 2009, Regier et al. 2013)

Issues with data/methods

- Elicitation is resource-intensive
- Decisions, hence room for bias in:
 - Functions
 - what delimits a 'recipient'
 - Domains
 - where does 'the dative region' end?
 - Correspondence
 - are 'recipients' in two languages the same function?
 - Analysis
 - where to place functions on map, where to draw edges?

The view from CL

- Word alignments from parallel corpora:
 - Brown et al. (1993), Liang et al. (2006)
 - But only bitext (exceptions: Östling 2012, Mayer & Cysouw -- however don't scale)
- Why not use word embeddings?
 - Monolingual (e.g., Word2Vec Mikolov et al 2012)
 - Project onto each other for bitext (Faruqui & Dyer 2014)
 - ... or multilingual (Hermann & Blunsom 2014, Vulic & Moens 2014, Upadhyay et al 2016)
 - But:
 - only one embedding per word type
 - question of scalability to *n* languages
 - Otherwise interesting -- still exploring

Our contribution

- Start from sentence-aligned translated texts as a source of analysis for semantic typology (cf. Mayer & Cysouw 2012)
- Working at the token/exemplar level: no functions, just 'clouds' of instances (Croft ms.)
- Allowing for full-corpus coverage: domains simply larger 'clouds' of instances
- (Automatic graph inference -- for another day)

A pipeline for corpus-based semantic typology

- Sentence-aligned translations
- Extract symmetrical pairwise alignments
- Per utterance:
 - Create a graph of all pairwise alignments
 - Use graph clustering to extract sets of strongly mutually aligned words
 - Use dimensionality reduction techniques over these to create a semantic space of word usages

Sentence-aligned translations

- [Eng] it rained yesterday
- [Dut] het regende gisteren
- [Ger] es regnete gestern
- [Spa] ayer llovió

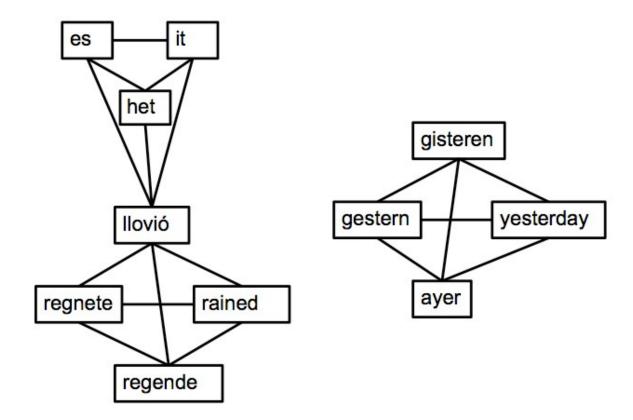
Word alignment

- [Eng] it rained yesterday
- [Dut] het regende gisteren
- [Ger] es regnete gestern
- [Spa] ayer llovió
- Using Liang et al. (2006) symmetrical alignment method

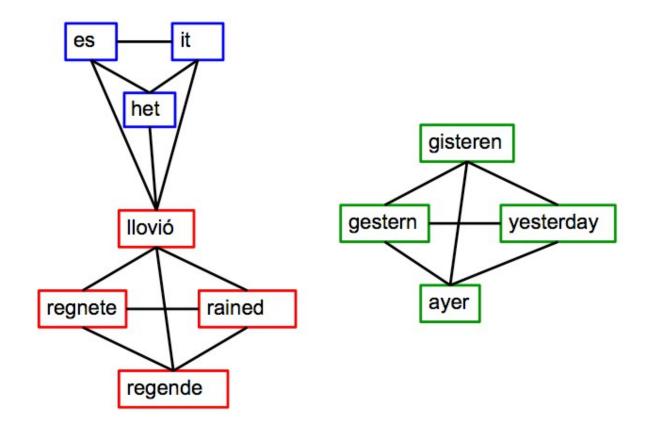
Word alignment

- [Eng] it rained yesterday
- [Dut] het regende gisteren
- [Ger] es regnete gestern
- [Spa] ayer llovió
- Using Liang et al. (2006) symmetrical alignment method

Utterance graph



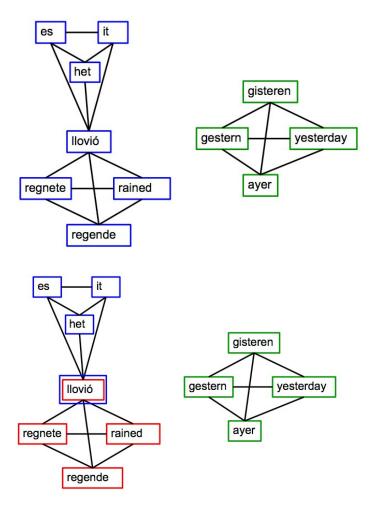
Finding mutually aligned words



Graph clustering

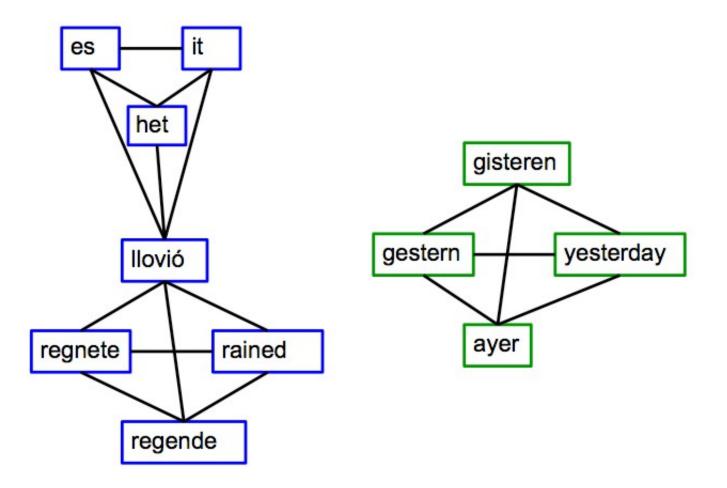
- Two extremes of graph clustering:
 all connected components (top)
 all maximal cliques (bottom)
 connected components
 - --> too underconstrained
- maximal cliques
 - --> too strict
- solution: graph clustering
 - finding sweet spot in between

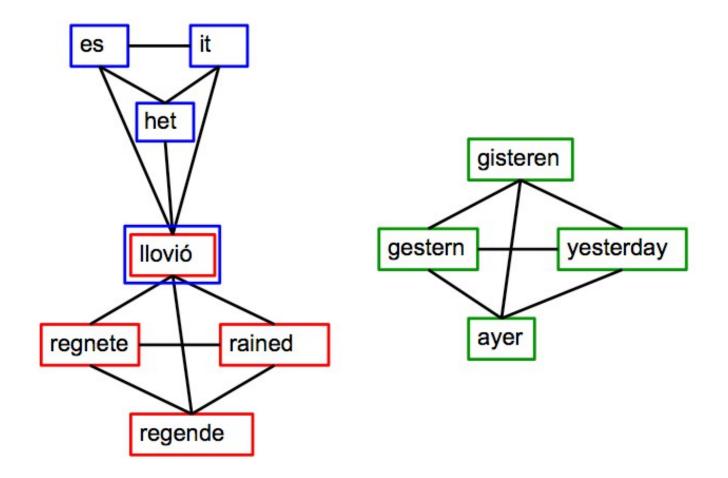
components and cliques



K-clique clustering/percolation

- Get all *k*-cliques (cliques of size *k*)
- Get adjacencies between k-cliques
 k-cliques are adjacent if they share k 1 nodes
- Clusters ('communities') are the maximal unions of adjacent k-cliques





Dimensionality reduction

- *K*-cliques to table
- Idea: same kind of table as elicitations: how to express a particular bit of meaning

Eng	Dut	Ger	Spa
it	het	es	llovió
rained	regende	regnete	llovió
yesterday	gisteren	gestern	ayer

Dimensionality reduction

- 1] random projection (Dasgupta 2000):
 - Vectorize words so that we have ud matrix (u usages, d vectorized words)
 - Obtain *uk* (where *k* << *d*) matrix: form a random matrix *R* = *kd* and project *ud* through *R* onto *uk*
 - Good for global inspection and evaluation
- 2] Optimal Classification (Croft & Poole 2008)
 - Scale ud into k dimensions
 - by trying to optimally place all usages *u* in the *k* dimensional space, s.t. for every word, there is a cutting plane in the space that divides the space into instances of that word and non-instances ('classification')
 - Good for visualization in case studies

Some preliminary studies: evaluation

- Global:
 - Quality of multilingual alignment: Strong's numbers
 - Quality of derived vector spaces: wordsimilarity task
- Case studies:
 - Procedure for discovering biases in crosslinguistic variation

- Bible is available in >900 languages.
- But small data (6K 27K lines)
- Strong's numbers (annotation of Hebrew/Greek source words) --> clusters of translation-equivalent words
- We use these as a gold standard and see how well our clusters approximate them

- Stong's numbers available for 9 bibles (2 German, 2 English, 1 Dutch, 1 Indonesian, 1 Portuguese, 1 French, 1 Rusian)
- ~ 6000 lines
- Cluster quality evaluated by F₁ score per gold cluster, with cluster Precision and Recall:

$$- P = \max_{c_u} |c_g! c_u| / |c_u|$$

 $= R = max_{c_u} |c_g! c_u| / |c_g|$

• (Östling (2012) proposes similar task, but scores are incomparable)

k	Р	R	F ₁ micro	F ₁ macro
k=2	.20	.98	.25	.33
k=3	.69	.95	.75	.80
k=5	.89	.90	.89	.89
components	.21	.98	.25	.35
cliques	.98	.89	.93	.93

- components-clusters too large (lowest P, highest R)
- *k*-clique with low *k* similar
- clique-clusters better scores (high P, highest R)
- but have hard time with MWUs (Ind. di dalam 'in')
- higher ks make k-clique method approach clique
- <u>and</u> get MWUs

- Cliques give best clusters
- But fail to capture many-to-one mappings
- Finding *k* ...
- Ideally, parameter-free clustering (High-Density Clustering)

Studies II & III: subtitles

- Bible many languages, but: small corpus & v. particular genre norms
- Other massively-parallel corpus: subtitles
- OPUS (Lison & Tiedemann 2016), based on www.opensubtitles.org
- From bitext to multitext (parallel stcs across all lgs): (~27K lines subtitles in 30 languages)
- Some diversity (East Asian (5 lg. fams), Semitic, many Indo-Eur. languages)
- Somewhat naturalistic language -- film dialogue

Study II: subtitles

- Other evaluation: how well do the usage clusters reflect human-rated word similarities
- Word similarity rating
 - SimLex 999 (999 word pairs; Hill et al. 2014)
 - Rated similarity between 0 and 10
- Method: <u>usage</u> clusters to <u>usage</u> vectors with Random Projection (diff. from <u>word</u> vector)
- Model word similarity as nearest-neighbors of two word's usages:

 $- \sin(w_1, w_2) = 1 - \min_{u_1, u_2} \cos(u_1, u_2)$

- Compare model word similarity to human word sim. rating with Spearman's rho.
- Only looking at words for which *n* > 10

Study II: similarity

this model	k = 9, d = 128	.34 [.3142] 163 words
	k = 9, d = 256	.32 [.2838]
	k = 15, d = 128	.32 [.2938] 190 words
	k = 15, d = 256	.34 [.3138]
	k = 21, d = 128	.36 [.2847] 114 words
	k = 21, d = 256	.37 [.3249]
Word2Vec	(Mikolov et al. 2013)	.37
Best resource-free	(Schwartz et al. 2016)	.56

Study II: similarity

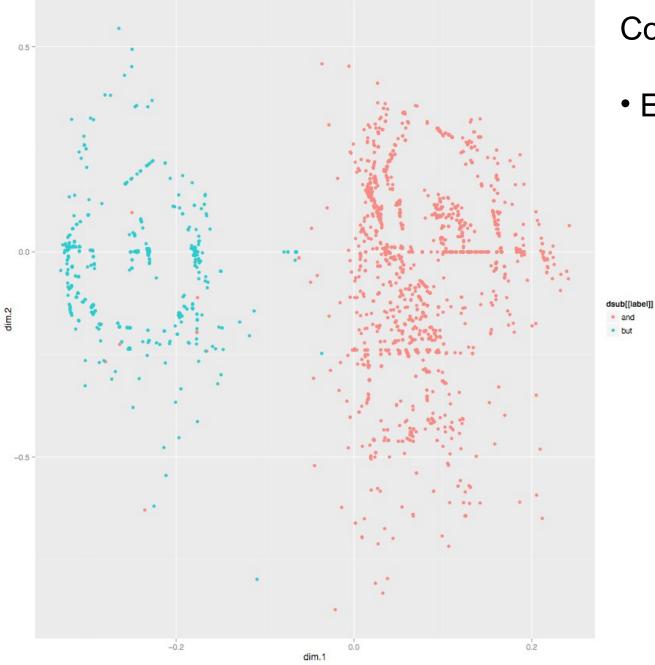
- Vectors from clusters give reasonable performance
- Much room for improvement in dim. reduction
- Future: word <u>usage</u> similarity (Erk et al. 2009)
 - This **bank** was built in 1816
 - My **bank** doesn't charge fees
 - We were fishing from the **bank** of the river
 - I like going to the **shore** to fish

Study III: typology

- Patterns of lexical cuts (where does the 'cup' end and the 'mug' start)
- Do we find types of languages?

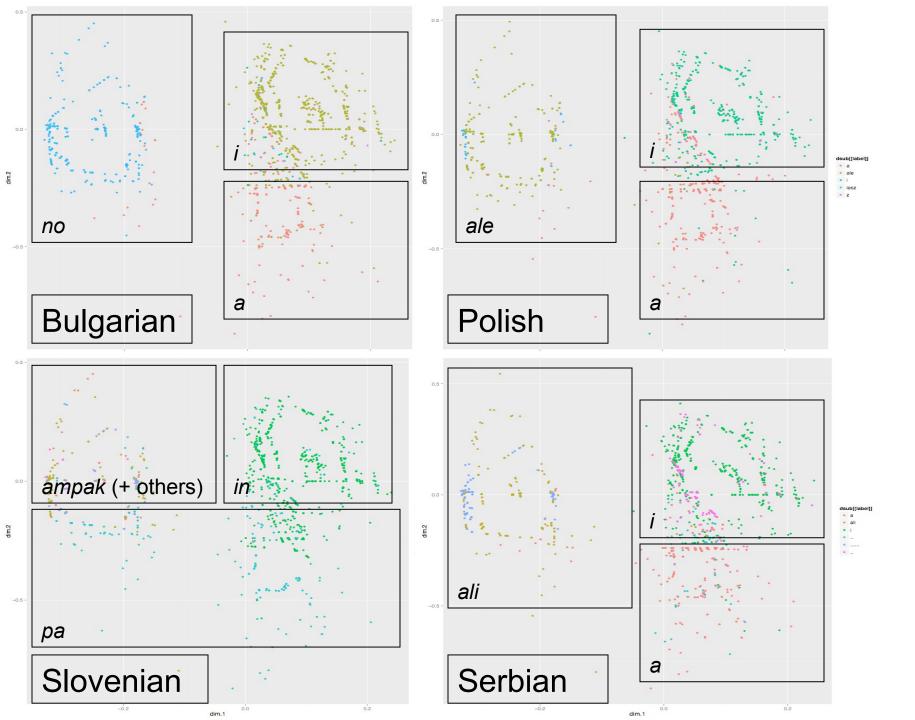
Study III: typology

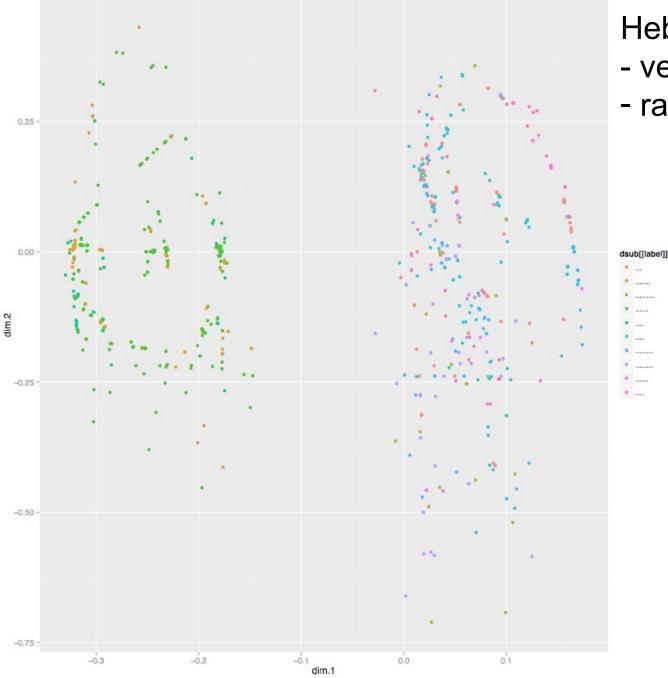
- Method:
 - Same corpus (~27K lines subtitles in 30 languages)
 - Take a field of words in a particular language (e.g. coordinating conjunctions -- and and but)
 - Extract all clusters containing any of those words
 - Apply dimensionality reduction (MDS, PCA)
 - In our case: Croft and Poole's (2008) Opimal Classification MDS



Conjunctions

- English
 - and (right)
 - but (left)





Hebrew:

- very mixed clusters
- raises the question: Indo-Eur. bias?

Study III: typology

- Discovering crosslinguistically common (English, most Slavic), and rare (Slovenian) ways of expressing some meaning
- Future: more analysis of differences
- Future: comparing clustering of usages against 'manual' groupings
- Future: predicting naturalness of categorization (is Slovenian conjunction system harder to learn)
- Future: using morphological segmentation/stemmer in pipeline

Conclusion

- Semantic typology: structure in the wordmeaning inventory of the world's languages
- Mostly manual
- Pipeline: alignment -- graph clustering -dimensionality reduction
 - Lots of room for further exploration: alignments vs. embeddings, various clustering algorithms and dimensionality reduction procedures
- Yields good clusters that reflect human semantic similarity judgments reasonably and can be used to study variation in expression and how common particular systems are

Thank you!