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ABSTRACT

Malware and phishing are two major threats for users seek-
ing to perform security-sensitive tasks using computers to-
day. To mitigate these threats, we introduce Unicorn, which
combines the phishing protection of standard security to-
kens and malware protection of trusted computing hard-
ware. The Unicorn security token holds user authentication
credentials, but only releases them if it can verify an attesta-
tion that the user’s computer is free of malware. In this way,
the user is released from having to remember passwords, as
well as having to decide when it is safe to use them. The
user’s computer is further verified by either a TPM or a
remote server to produce a two-factor attestation scheme.
We have implemented a Unicorn prototype using com-
modity software and hardware, and two Unicorn example
applications (termed as uApps, short for Unicorn Applica-
tions), to secure access to both remote data services and
encrypted local data. Each uApp consists of a small, hard-
ened and immutable OS image, and a single application.
Our Unicorn prototype co-exists with a regular user OS, and
significantly reduces the time to switch between the secure
environment and general purpose environment using a novel
mechanism that removes the BIOS from the switch time.
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1. INTRODUCTION

Malware is one of the greatest security threats for Internet
users today. Evidence suggests that 53% of computers (out
of 21 millions scanned worldwide) are infected with mal-
ware [1]. Much of this malware is designed to steal sensitive
information from and invade the privacy of the computer
user. Aside from malware, computer users also have to con-
tend with phishing attacks, where the adversary social en-
gineers the user into leaking authentication credentials by
producing a web page or interface that appears similar to a
legitimate one. By acquiring these credentials the attacker
can then proceed to steal the user’s identity and access sen-
sitive information that belongs to the user.

Passwords and other authentication credentials can be
protected using security tokens that implement one-time
passwords, or that are able to respond to cryptographic chal-
lenges (e.g., RSA SecurID, and the split trust paradigm [3]).
By introducing the security token, users are protected from
phishing since convincing the user to leak an authentication
credential they know (such as a password) is not sufficient
for the adversary to gain access to the user’s data. How-
ever, even with token authentication, the user’s data is still
vulnerable to theft during an active session by malware on
their computer.

In contrast, trusted-computing hardware can be used to
measure and report integrity of the software stack running
on a computer [7,8,20,21,25,35]. Trusted-computing hard-
ware, developed by the Trusted Computing Group (TCG),
Intel and AMD enables software to utilize a root of trust
based in hardware, which is significantly more difficult for
a remote attacker to subvert than a root of trust based in
software. These systems use hardware to measure the in-
tegrity of software running on the computer, allowing the
hardware to assert, via an attestation, that a system is free
of malware. This attestation may be conveyed to the user
over a trusted channel. Unfortunately, interpreting this at-
testation is difficult for humans and user studies have shown
that users are not always diligent enough to interpret or no-
tice signals that indicate that the attestation has failed [16]
(cf. “the barn door property” [36]).

Our key insight is that security tokens and trusted com-
puting can be combined to produce a system that is as resis-
tant to phishing as standard security token authentication,
but is additionally resistant to attacks by malware. We pro-
pose the use of a Personal Security Device (PSD), which, like
a security token, holds personal authentication credentials,
but differs in that a PSD can verify an attestation from the
user’s computer. Thus, rather than having the user decide



when to release their authentication credential, the PSD ver-
ifies the attestation from the user’s computer and releases
the authentication credential on behalf of the user only if
the attestation is correct. In addition to the attestation by
the PSD, the computer’s software stack is also verified ei-
ther by a remote server that holds user data or the trusted
computing hardware on the computer. Thus user data is in
effect protected by a two-factor attestation.

To evaluate this idea, we have designed a system called
Unicorn.! Rather than trying to preventing malware and
phishing attacks altogether, Unicorn takes a mitigating ap-
proach by safe-guarding Unicorn-protected data from these
attacks. We implement a Unicorn prototype that uses Intel
TXT and TPM as the trusted computing implementation,
and an Android smartphone as the user’s PSD.2. In our
prototype, a user starts initially from an untrusted user op-
erating system (OS), which could be infected with malware.
When the user wishes to access their secure data, which
could be stored on a remote service requiring authentication
(such as banking information), or encrypted on the local
disk, the user uses Unicorn to invoke a Unicorn application
(uApp) from her computer. A uApp is a small, hardened
and immutable OS image with a single application that will
be used to access the user’s sensitive data. Unicorn uses the
trusted computing hardware on the user’s computer to boot
and measure the uApp, generating an attestation that the
user’s PSD will verify. Only by combining this attestation
with the authentication credential on the PSD will the uApp
be able to access the user’s data.

The result is that an adversary may only gain unautho-
rized access to data protected by Unicorn in one of two ways:
the adversary must either (1) simultaneously gain physical
access to the user’s computer and compromise or clone the
user’s PSD, or (2) find and exploit a run time vulnerability
in the uApp that has access to the sensitive data. In the
first case, requiring the adversary to compromise two com-
ponents simultaneously is a straightforward application of
the principle of defense in depth. In the second case, uApps
are intended to be smaller and simpler than the commodity
user OS, giving the adversary fewer vulnerabilities that they
can find and exploit. Consequently, Unicorn serves as a sec-
ond line of defense so that a successful malware or phishing
attack does not expose Unicorn-protected data.

Contributions.

1. We present and perform a security analysis of the de-
sign of Unicorn, which combines an authentication to-
ken with trusted computing to implement two-factor
authentication protection for user data. Unicorn raises
the bar for attackers, forcing them to either gain phys-
ical access to the user’s computer and compromise the
user’s PSD simultaneously, or to find and exploit a run
time compromise in a small hardened uApp.

2. We implement a Unicorn prototype using widely avail-
able commodity hardware and software tools. Unicorn
enables users to use trusted and untrusted systems on
the same computer, switching between them without
a full reboot. Compared to existing solutions, Unicorn
does not require hypervisor support, and does not suf-
fer from performance degradation, while achieving sig-

1A unicorn is a mythical single-horned creature, commonly
known as a protector of innocence, and a symbol of purity.
2For background on trusted computing, see Appendix A

nificantly faster switching time. Our prototype uses
a novel mechanism that reduces the time to invoke a
uApp to approximately 25.5 seconds, which is almost
twice as fast as existing systems [35].

3. We demonstrate the utility of Unicorn with two rep-
resentative uApps. The first is a banking application,
which represents a scenario where sensitive user data
is stored on a remote service requiring authentication.
The second uApp is a secure document reader, which
represents a scenario where sensitive user data is en-
crypted and stored locally on the user’s computer.

We first begin in Section 2 by defining the attacker model
that Unicorn defends against, the guarantees that Unicorn
provides and the limitations that Unicorn has. We then de-
scribe the design and operation of Unicorn in Section 3. The
implementation of our prototype is given in Section 4 and
we describe the two representative uApps we created in Sec-
tion 5. We evaluate both the security of our Unicorn design
and the performance of our Unicorn prototype in Section 6.
Finally we discuss related work in Section 7 and give our
conclusions in Section 8.

2. SECURITY MODEL AND GUARANTEES
2.1 Attacker Model

The goals of the attacker are to compromise the user’s
Unicorn-protected sensitive data in the local machine or a
remote server, or to assume control of a Unicorn-session be-
tween the user and server (session hijacking). We explicitly
distinguish Unicorn-protected data from arbitrary data that
the user may know or have on their computer, which we con-
sider out of scope for Unicorn. Unicorn-protected data must
either be stored on a secure remote server, which requires
authentication for access, or in encrypted format with keys
available only to the user’s computer and PSD.

We assign the attacker the following capabilities. First,
the attacker is capable of infecting the user OS with arbi-
trary malware such that she has full control over the user’s
software platform. For example, she may tamper with the
Master Boot Record (MBR), bootloader, user OS kernel,
applications running on the user OS, and uApp binary im-
ages. Attackers can also tamper with device, BIOS and
CPU configurations, and send arbitrary commands to de-
vices before invoking a uApp. Second, the attacker can fake
interaction with the user to try to convince them that they
have correctly launched a uApp. We note that Unicorn
does not prevent such an attacker from extracting secrets
from the user through the equivalent of a phishing attack,
but will ensure that Unicorn-protected data is not compro-
mised. Third, the attacker may either gain physical access
to the user’s computer, or compromise the user’s PSD, but
not both. Compromising the user’s PSD includes infecting
the PSD with malware, cloning the PSD, gaining access to
PSD secrets, or stealing the PSD. We note that there have
been instances where attackers have compromised both the
computer and PSD at the same time, e.g., the Zeus banking
trojan [6]. However, compromising the user’s computer and
having physical access are not equivalent.

The following attacks are out of scope for Unicorn. While
the attacker may have physical access to user’s computer, we
assume that he cannot subvert the hardware root of trust as
provided by the TPM version 1.2 chip and CPU’s late launch
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Figure 1: Overview of Unicorn user steps

feature; i.e., attacks against hardware trust (e.g., [11,37]) are
considered out of scope. However, the attacker can reset the
TPM and change ownership password. We also assume that
compromises of the remote server storing Unicorn-protected
data are out of scope. Unicorn does not mitigate flaws in the
remote server storing the user data. Finally, we assume that
the attacker cannot compromise the operation of a uApp
after it has launched. This is a standard limitation of trusted
computing hardware, which can only attest to the state of
the computer at the time the measurements are made.

For the communication between the user’s computer and
remote server, a Dolev-Yao (DY) attacker is assumed, who
also can arbitrarily modify and observe any plain text data
in transit. However, the attacker is unable to circumvent
any standard cryptographic mechanisms (e.g., SSL).

2.2 Properties, Guarantees and Limitations

Properties. Unicorn provides two properties from which
we may derive the security guarantee it provides. (1) Unicorn-
protected data is accessible only from the user’s computer.
Access is bound to a secret signing key stored in the TPM
of the user’s computer. Unicorn also deals with relaying
attacks [32], as described in Section 6.1 (under item (d)).
(2) Access to protected data is only granted if the PSD is
present, which will release its secret only if it can verify the
running uApp on the computer.

Guarantee. Unicorn protects user data unless (1) the ad-
versary simultaneously gets physical access to the user com-
puter, and compromises/clones the PSD; or (2) adversary
finds and exploits a run time vulnerability in a uApp. Mal-
ware is defeated because Unicorn-protected data is only ac-
cessible from a verified environment. Unicorn provides equiv-
alent protection to phishing attacks as security tokens —
phishing attacks targeting Unicorn credentials cannot suc-
ceed since Unicorn authentication requires the presence of
the PSD to succeed.

Limitations. Unicorn’s major limitations are the follow-
ing. (1) Unicorn requires a secure setup phase where the
user must be diligent. Both TPM secrets and authentica-
tion credentials for the PSD must be transmitted securely
and to the correct parties (e.g., by out-of-band methods).
Resetting a Unicorn-protected account also requires a sim-
ilar secure bootstrap. (2) Unicorn’s phishing protection is
limited to the user data explicitly protected by Unicorn.
Phishing and social engineering attacks that trick user into
revealing arbitrary information that users know (including

information that Unicorn is protecting) cannot be prevented
by Unicorn. (3) Unicorn is not an intrusion detection sys-
tem and cannot detect if a uApp has been compromised
after the measurements are taken. An attacker who com-
promises a uApp after the measurement phase will be able
to usurp all privileges the uApp has, including access to the
Unicorn-protected data.

3. SYSTEM DESCRIPTION

3.1 Unicorn Architecture

Unicorn requires a setup phase where the PSD is initial-
ized with a long-term authentication credential and correct
measurements of the user’s uApps. This phase requires users
to be diligent, as described below. After this, the regular use
of Unicorn is broken into four steps as described in Figure 1.
In the first step, the user uses Unicorn to invoke a uApp on
their computer. Unicorn suspends or terminates the user OS
and invokes the uApp in a Measured Launch Environment
(MLE). The MLE uses trusted computing hardware to per-
form a quote by computing a hash of the uApp and signing
it with a key in the TPM. This quote is then displayed as
a QR-code image on the screen of the user’s computer. In
the second step, the user scans the quote using her PSD,
which then verifies the correctness of the quote. If correct,
the PSD uses the long-term secret to proceed to the third
step, which grants the uApp access to the user’s data and
allows the user to access the remote service if applicable. If
the quote is not correct, indicating tampering of the soft-
ware stack, Unicorn halts and the user will be unable to use
the uApp or access her data. In the final step, the user can
terminate the uApp and return to the user OS.

Setup phase. In this phase, the PSD must be securely
initialized with the two pieces of information: (1) user au-
thentication credentials (e.g., a user ID and high-entropy
secret); and (2) the hashes of the uApp, in the form of ex-
pected PCR values. In addition, if the uApp uses a remote
service, the remote service must be given the public half of
the AIK of the user’s computer. If the uApp accesses en-
crypted data stored on the user’s computer, then a sub-key
of the encryption key must be sealed to the uApp on the
TPM of the user’s computer. If the user plans to access
their data from more than one computer, then the AIK or
sub-key must be initialized for each such computer. Note
that sharing of AIKs with remote services will mandate a
re-initialization of Unicorn in some cases, including: updat-



ing or resetting the TPM hardware. For distributing uApps,
vendors may choose any channel, including web download.
However, we assume that the vendor’s copy of a uApp is
malware-free.

It is important that the authentication credentials are not
leaked to an adversary, since this would allow the adversary
to clone the PSD. Similarly, if an adversary is able to modify
the values of the hashes associated with a uApp before they
are saved on the PSD, the adversary will be able to cause
the authentication secret to be used with a tampered uApp.
Finally, if an AIK of a computer other than the user’s is
transmitted to the remote server, or the sub-key of the en-
cryption key for local data is leaked, this would allow the
adversary to access the user data from a computer other
than the user’s.

Unicorn requires an out-of-band secure channel during the
setup phase. For example, in our online banking example
of a uApp with a remote service, the PCR hashes of the
uApp and authentication credentials must be transmitted
through a secure channel. Such a channel might be in-person
registration at a branch or postal mail. In these cases, the
information can be conveniently installed via a QR-coded
image. Similarly, the secure channel can also be used to
transmit a one-time authentication credential, with which
the user may login to the remote service and initialize it with
the AIK public-key(s) of their computer(s). The user must
be diligent throughout this process and not inadvertently
leak their credentials to the adversary, provide the wrong
ATIKs to the service, or install the wrong hashes.

Starting a uApp. When invoking a uApp, the user may
choose one of two options as shown in Figure 1: (1) im-
mediate execution of the uApp loader; or (2) save the user
OS and application states into disk using e.g., suspend-to-
disk before executing the uApp loader. The former option
mandates that users will save any unsaved documents before
initiating the switch. The later allows users to resume the
saved environment, but adds the suspend time to switch.

After the user OS has suspended itself to disk (if users
choose this option), it would normally power off the hard-
ware. To invoke the uApp, we modify the user OS to load
the uApp loader into memory and transfer control to it. The
uApp loader sets up the MLE and then transfers control to
the uApp kernel, which then resets the devices to a known
state, completes its boot process and starts the application
in the uApp. Since the uApp kernel now has control of all
the devices, the entire system acts as a shared platform for
both the user OS and the uApp.

Verifying the uApp. Once the user OS transfers control
to the uApp loader, the loader will take measurements of
itself, the hardware state, the uApp kernel and boot pa-
rameters, and store them in the TPM. The uApp kernel
then measures the entire file system image it will use be-
fore mounting the image, and also extends the measurement
into the TPM. uApps are immutable so the measurement
of a correct uApp will produce the same value every time.
These measurements are used to attest the state of the soft-
ware platform. This attestation ensures that the uApp has
not been tampered with in anyway.

The exact attestation procedure depends on the uApp be-
ing invoked. For uApps that interact with remote servers,
attestation is performed with both the user’s PSD and the
remote server, while uApps that do not interact with re-

mote servers only require attestation with the PSD. We dis-
cuss different attestation and authentication modes in more
detail in Section 3.2.

Switch back to user OS. To return to the user OS, the
uApp kernel loads the image of the user OS kernel into
memory and transfers control to it. Since uApp images are
immutable, any persistent state (e.g., user data) must be
saved outside of the uApp, either on the remote server, or
encrypted and saved on the local disk. After this, when con-
trol is transferred to the user OS kernel, it will load a new
OS instance or restore the suspended image.

Hardening uApps. uApps must be resistant to run time
attacks since a compromise of the uApp after it has loaded
means that the adversary will gain access to the user data.
Several standard mechanisms can be used to harden uApps.
First, uApps should be built with a smaller trusted comput-
ing base (TCB). Unnecessary code and functionality should
be removed as uApps are meant to be task-specific appli-
ances. Second, uApps can be built on top of hardened oper-
ating systems, such as SELinux, which have stronger access
control mechanisms designed to mitigate attacks. Finally,
the attack surface of a uApp may also be restricted by lim-
iting its functionality. For example, in the case of a banking
uApp, one could restrict the uApp to only be able to con-
nect to IP addresses or domain names belonging to the bank,
or modify the browser to only accept SSL certificates that
belong to the bank.

Updating uApps. To fix vulnerabilities or to offer new fea-
tures, vendors may distribute updated uApps (a new image
or only the differences) via any channel, secure or otherwise
(e.g., downloaded from a website). However, measurements
of the new image must be updated securely on user’s PSD.
For example, the PSD client may accept only signed mea-
surements from a vendor (the signature verification key is
also stored on the PSD) and only when the updating ver-
sion is newer than the existing one; cf. [26,34].

3.2 Attestation and Authentication

Unicorn supports two scenarios in which user data may
be stored. The first is where the data is stored on a remote
server, such as financial information stored on a bank web-
site. The second is where data is stored locally encrypted
on the user’s computer. An example of this might be an
encrypted document repository.

Remote server. Our combined attestation and authenti-
cation protocol is shown in Figure 2. When the uApp is
launched, the client browser loads the remote site over SSL
and initiates attestation (e.g., by sending an attestation re-
quest). The server responds with a random nonce Ng, a list
of PCR indices P; to be included in the TPM quote, and the
server ID (IDg). Let Ky be a key that represents the long-
term authentication secret stored on the PSD. The uApp
then retrieves PCR values P,, generates a quote Tg using
the TPM, and forwards this quote, server ID and nonce to
the PSD. If PSD can verify the quote (with the help of the
pre-stored AIK and expected values of PCRs as indexed by
IDgs), it generates an HMAC h of (T.IDy.IDg) using Ky .
User ID and h are forwarded to the client browser, which
then forwards these values along with the TPM quote to
the server. If the server can verify the quote, and can cal-
culate the same h, access is granted to the user. Note that,
if the PSD has Internet connectivity, it can directly forward
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Figure 2: Attestation message flow for remote server. The setup phase initiates the PSD and the remote
server with the shared authentication key Ky, AIKy, and expected PCR values.

(T, h, IDy) to the server instead of requiring another PSD-
to-computer communication channel. The remote server will
only accept quotes signed with an AIK private key matching
the AIK public that was registered with it during the setup
phase, preventing access to the user data from any computer
that wasn’t registered during the setup phase. Security of
the protocol remains unaffected even if attackers can col-
lect and replay the response from the PSD as the server will
check freshness of its nonce as used in the protocol. The pro-
tocol in Figure 2 does not establish a session key between
the uApp and remote server. We assume that they negotiate
a session key as part of the secure channel setup (e.g., SSL
session key); see e.g., Goldman [9] for alternatives.

One might be concerned that the PSD does not generate
a nonce and send it to the computer, allowing an attacker
with a tampered uApp to replay quotes to the PSD. In this
case, the PSD will generate HMAC of the quote with the
replayed nonce in it. However, the tampered uApp will still
be unable to authenticate to the remote server, since the
server checks freshness of its nonces. On top of the key-
based authentication, an optional password authentication
mechanism may be deployed.

Locally encrypted data. For applications that do not ac-
cess a remote server, there is no party to share the public
AIK with. Instead, we break the key used to encrypt the
user’s data into two sub-keys. One sub-key is stored on the
PSD as the user’s authentication secret, and the other is
sealed in the TPM to the uApp. Unlike the remote server
scenario, the PSD must send a nonce (Np) to prevent re-
play attacks against the quote operation. The PSD’s sub-key
(Kpsa) is released to the uApp application only if the PSD
can verify the quote. See Figure 3. In this example, we
assume the PSD-to-computer channel is physically secure,
otherwise an attacker may learn Kpsq. When the uApp re-
ceives Kpsq, it will retrieve the sealed part of the encryption
key from the TPM (Kipm), which will succeed only if the
correct uApp is loaded. The decryption key is then gener-
ated as follows: Kgee = Kpsa ® Kipm.-

4. IMPLEMENTATION

In this section, we give implementation details of our Uni-
corn prototype, including how we are able to quickly switch
between the user OS and uApp OS, and the implementa-
tions of the uApp OS and our server- and PSD-based at-
testors. Because our prototype is intended more of a proof

PSD uApp OS
Generates Np, P
nonce Np
To = Py, {P,.Np} 1
ATKy Generates
quote Tg

Verifies To Kpsd

Provides Kpsq

Figure 3: Attestation flow for locally encrypted data

of concept than a polished implementation, we relax some of
the security requirements on the components in our Unicorn
implementation for convenience. First, instead of running a
specialized security OS with a minimal TCB, our uApp OS
is based on a stock Ubuntu 10.04 Linux distribution running
the Linux 2.6.34 kernel. This allows us to make use of exist-
ing open source software packages in our prototype. Second,
because we don’t have the means to program and implement
a real security token as our PSD, we implement our PSD as
an application running on an Android smartphone. In real-
ity, there should not be any other applications running on
our PSD that could allow the adversary to gain access to
the authentication secrets.

4.1 Switching between User OS and uApp

Tools used. To implement fast switching between user OS
and uApp, we leverage two components already present in
the Linux kernel — suspend-to-disk and kexec. Suspend-to-
disk enables the kernel to save its running state to a disk
so that the machine may be powered down and then later
resumed back to the same running state. This functionality
can be found on most commodity OSs. Kexec [22] is a fea-
ture in the Linux kernel that can load another kernel into
memory and transfer control to the new kernel. Kexec is
intended to be used during kernel development to invoke a
crash kernel for debugging after a kernel crash. The kernel
image can be loaded into memory and executed immediately,
or at a later time (e.g., when a crash actually happens). Be-
cause kexec transfers control directly to the new kernel, it
does not need to reset the machine and or invoke the BIOS.



User interaction. When the user wishes to invoke a uApp,
she calls a user-space application. First, we use kexec to
load the uApp loader, uApp kernel, initrd and Authenti-
cated Code (AC) module into kernel memory, but we do not
transfer control to the uApp loader yet. We then invoke the
suspend-to-disk operation in the user OS kernel, if the user
chooses to save her OS and application states. The user can
also use kexec to invoke the uApp loader directly without
suspend-to-disk; this enables faster switching at the expense
of not being able to resume the user OS. When suspend-to-
disk is complete, the Linux kernel normally powers down the
machine. We modify the kernel implementation of suspend-
to-disk to instead call a kexec function that transfers control
to the uApp loader. If the uApp loader is not present in
memory, the transfer of control fails. This would happen if
the user directly called suspend-to-disk in the user OS with
the intention of rebooting or powering down the machine.
In this case, we proceed with the standard suspend-to-disk
code to retain the existing kernel functionality. This change
required only to add a single line of C code to the kernel.

4.2 uApp Loader and OS Implementation

uApp loader. Our uApp loader builds on tboot [13], an
open-source project initiated by Intel. Thoot currently pro-
vides a pre-kernel module as an MLE that uses Intel TXT
to perform a measured and verified launch of the Linux ker-
nel or Xen hypervisor. Normally, tboot is invoked by the
GRUB bootloader. However, to remove the bootloader and
BIOS execution from the switch time, Unicorn invokes thoot
using kexec as discussed above. Thoot creates the MLE and
then extends PCR 17 with several chipset and AC module
specific measurements using GETSEC[SENTER], PCR 18
with measurements of the tboot kernel binary, uApp kernel
binary and boot parameters, and PCR 19 with hashes of the
initrd binary used to boot the uApp Linux kernel. It is im-
portant to measure boot parameters as well as the binaries,
since kernel behavior can be significantly altered by chang-
ing the boot parameters. The final component of the uApp
that must be measured is the partition that will be used to
boot the uApp OS. Unfortunately, tboot is unable to access
the disk directly to perform the measurement, so we modify
the uApp kernel to measure its root partition just before the
kernel mounts the partition, and extend PCR 20 with this
measurement. We set the TPM locality of the uApp ker-
nel to 1 (default is 0), as PCR 20 cannot be extended from
locality 0. This PCR is reset by tboot during initialization.

Cleanup at exit. When exiting from a uApp, we must en-
sure TXT tear down and clean up of residual states so that
secrets used in the uApp session are not exposed to the user
OS. Tboot contains this functionality, so one possibility was
to simply reuse this functionality by exiting the uApp ker-
nel and returning execution back to tboot. However, tboot
does not have support for kexec, so it would not be able
to return directly back to the user OS and instead would
have to reboot the machine to return to the user OS. Thus,
we reimplement the tboot cleanup code in the uApp kernel
and then use kexec to load the user OS kernel and transfer
control to it. We also reset the TPM locality to 0 from the
uApp kernel.

Hardening uApp OS. We take two approaches to harden
the OS in our uApp prototype. First, we reduce the net-
work attack surface by constraining the uApp to only being

able to access a minimal set of network services. We also
cryptographically authenticate the remote services. Net-
work restriction is achieved by using the iptables firewall
to constrain network connections by IP address, and SSL
with client-side verification to authenticate remote servers
(without allowing any user-end override options if certifi-
cate errors are detected). Second, we reduce the code foot-
print of uApps to keep the TCB as small as possible. For our
prototype, this meant removing unnecessary services and bi-
naries from the uApp OS. Hardening of the uApp OS could
be taken further by using a security-oriented high-assurance
OS instead of a commodity OS like Linux. Candidate sys-
tems include: formally verified seL4 micro-kernel [15], en-
forcing security policies via SELinux [17], ensuring kernel
integrity with SecVisor [27], continuous integrity monitor-
ing using HyperSentry [2], and the Nexus OS [28] designed
with trusted computing in mind.

Read-only uApp image and reducing image size. To
make the uApp OS verification possible, we need a read-only
uApp base image which is not changed after being invoked.
However, a read-only root image is problematic to a regular
Linux OS, as certain utilities in Linux require a modifiable
root file system. For example, it is common for applications
to write their PIDs (e.g., into /var/run), and log messages
to disk. To address these issues, we use AUFS (Another
Union File System [23]), which allows several file systems
to be simultaneously mounted at a single mount point and
act as a single file system. AUFS overlays the file systems,
creating a unified hierarchy. Each file system can be con-
figured as read-only or writable. During boot, the uApp
creates a temporary rewritable in-memory file system using
tmpfs. It then combines the root read-only uApp file system
with temporary file system using AUFS. This combined file
system is mounted as the root file system for our uApp OS.
As a result, modifications will be stored in the in-memory
file system and will be discarded when the user exits the
uApp. The uApp starts from its pristine state the next time
it is invoked.

Another challenge is the large size of the uApp base image.
Since a hash must be performed over the entire uApp root
partition, it is critical that the partition be as small as pos-
sible. To achieve this, one might start by removing unneces-
sary applications and kernel modules from the uApp OS. We
made a smaller image by installing Ubuntu in command line
mode and adding X server (Xorg), a simple window man-
ager (openbox) and a login manager (SLiM).® Another way
of reducing the image size is using a compressed file system.
We use squashfs [30], an open source compressed read-only
file system for Linux. In our setup, squashfs shrinks the size
of our uApp base image to less than one-third of its original
size. Altogether, with our optimizations we made a uApp
base image of size less than 260 MB (about 900MB in ext4).
We then copy this image to a 275MB partition.

4.3 Server and PSD Attestors

Attestation can be performed by the remote server, a
PSD, or both. To demonstrate remote server attestation, we
implement a web server that performs attestation of clients
connecting to it using the Twisted [33] networking engine
version 10.0.0 written in python. The web server’s python

3We use auto-login, but without the login manager, Ubuntu
boots into a command-line mode.



module uses a signature verification function we developed
in C through ctypes (a Python wrapper of C library). Ver-
ification of the TPM quote received from the uApp client
requires the RSA signature algorithm and SHA-1 hash func-
tion; we use the openssl library (version 0.9.8k) for these
cryptographic operations.

To perform a quote operation of a uApp client connect-
ing to it, our web server sends a quote request to another
Twisted instance, called the TPM server, running in the
uApp. When the user connects to the remote service, it con-
tacts the TPM server on the uApp client with a nonce, PCR
indices, and requests a quote. The TPM server retrieves the
quote from TPM, and responds to the web server. We note
that in reality, uApp clients are likely to be behind firewalls
so it may not be possible for the remote service to initiate
a connection to the uApp instance in the same way as our
prototype. In this case, we would have to tunnel the quote
request over the existing connection that was initiated by
the uApp client. We leave this for future work.

Our PSD client prototype is implemented on an Android
phone. This client is used for verification and authentica-
tion as follows. First we copy the expected platform mea-
surement values, public part of the AIK, and the long-term
shared secret to the PSD. Communications between the PSD
and uApp are done via QR-codes. After receiving the server
nonce, the TPM server on uApp generates the TPM quote,
converts the quote data into a QR-code image and displays
the image on a browser page. The user scans the image by
the PSD. After the PSD client retrieves the quote data from
the scanned image, it attempts to verify the quote using the
stored AIK and PCR values. We use Java crypto packages
for performing crypto operations on Android. If verification
is successful, an HMAC response is generated (see Figure 2)
and displayed as a base64 response. Normally, the HMAC
response would be transmitted automatically to the uApp,
but in our prototype we manually copy the response to the
uApp TPM server. Note that ease of use is not the focus of
our prototype implementation; see below. The HMAC value
and quote are then sent to the web server, which can now
verify the platform, and authenticate the user.

Communication channels. As shown in Figures 2 and
3, we assume communication channels exist between the re-
mote server, uApp OS, and PSD. Between the remote server
and uApp OS, we secure the connection using SSL. The
server’s domain name is included in the uApp OS. The OS
does not allow any connection beyond this embedded do-
main. This prevents relay attacks. To defeat rogue or com-
promised CA attacks [29], hash of the server’s SSL certificate
may be included in the uApp OS, and checked during con-
nection establishment. Similar to current browser-initiated
SSL connections, this process remains transparent to users.

For transferring data from uApp to PSD, we use QR-code
as outlined above. This provides an intuitive and secure
channel for users without requiring any setup. For PSD-to-
computer data transfer, the PSD may communicate directly
with the computer over the network, or through a common
3rd party Internet site (such as a Twitter account or Google
Docs page). This channel need not be secure. Instead, keys
for encryption and signing are transferred from computer
to PSD via the QR-code displayed in Step 2 of Figure 1.
We are also exploring the feasibility of a reverse QR-code
channel where the PSD’s QR-coded response is scanned by
a PC webcam.

S. UNICORN APPLICATION EXAMPLES

We built two applications as examples of how the Unicorn
architecture may be realized in practice. We chose these ex-
ample uApps to be representative of different types of ap-
plications people use often. Since these are proof-of-concept
applications, we envision that commercial deployments may
have updated authentication mechanisms, incorporate bet-
ter security techniques (e.g., strict SELinux policies) and
have spent more effort in reducing the uApp image size (e.g.,
dropping unnecessary functionality).

Secure online financial transactions. Our online-banking
application represents services that would like to verify the
integrity of the user platform and authenticate users before
serving sensitive data and allowing financial transactions (re-
call Figure 2). The banking application uses both the local
TPM server and the remote bank server. After booting into
the uApp OS, the Chromium web browser is opened with the
bank server’s URL. The user requests for validation by click-
ing on a button on the page. The web server then contacts
the TPM server with a nonce, PCR indices, and requests
a quote. A pre-distributed shared secret is stored on the
PSD. The TPM server retrieves the quote from TPM (via a
Python C wrapper), and displays the QR-coded quote data
on a web page to be scanned by the PSD. If the PSD client
can verify the quote, it uses the stored shared secret to gen-
erate the HMAC response. After receiving the HMAC value
from PSD, the TPM server responds to the bank server with
this value and the quote. The user is logged into her bank
account only if verification is successful at the server. She
can then continue using her account from the browser with-
out involving her PSD again.

Secure access to encrypted data. For this case, we
built a uApp with a PDF reader application which repre-
sents environments that would want to verify the integrity
of the user platform locally before allowing access to en-
crypted data stored on the user PC or a mobile storage (re-
call Figure 3). Assume a corporate IT department where ad-
ministrators want that their users can access sensitive data
from anywhere as long as a verified environment is used.
This application does not involve a remote party. Half of
the decryption key is stored on the PSD (Kjpsq), and the
other half is sealed into the computer’s TPM (Kipm, with
PCR values dependent on the uApp binary). After booting
into this uApp, we use a custom program to get Kj,sq from
the PSD if attestation is successful, and unseal Kypn, from
the TPM if correct PCR values are initialized by the loaded
uApp; these keys then form the decryption key (Kgec, see
Section 3.2). Retrieving the decryption key implicitly indi-
cates the uApp’s correctness. We use openssl to encrypt a
PDF file, and store the encryption key parts in the PSD, and
TPM. Afterwards, when we boot into this uApp, the decryp-
tion key is formed upon a successful verification, openssl is
used to decrypt the file, and then the PDF reader displays
the content; cf. Kells [5] which enables a mobile storage sys-
tem to perform attestation to verify a host’s integrity state
before allowing access to sensitive data.

6. EVALUATION

We evaluate Unicorn along two axes. First, we qualita-
tively evaluate the security of Unicorn against a variety of
attacks. Then, we evaluate the time it takes to switch be-
tween the user OS and a uApp.



6.1 Security Evaluation

(a) Tampering with uApp before launch. As men-
tioned in Section 2, we assume the attacker can compromise
and gain complete control over the user OS. Since the uApp
image is stored on storage accessible to the user OS, the at-
tacker may arbitrarily modify the uApp image. However, the
integrity of the entire uApp image is measured and stored in
the TPM so any tampering of any component of the uApp
will necessarily alter those measurements. This will result
in a failed uApp launch as the integrity verification test by
the PSD will fail. We note that this allows an adversary to
mount a denial of service attack. Moreover, by controlling
the user OS, the adversary could encourage the user to re-
enter the setup phase when the uApp launch fails. Thus,
it is important that the setup phase be constructed to en-
sure user diligence, even at the cost of convenience, since the
setup phase should be a rare event in benign scenarios.

(b) Run time attacks. The attacker can try to mount
run time attacks against the uApp in three ways. First, she
may try to tamper with the hardware platform the uApp
will run on so that the effect of the tampering will only
be felt after the uApp is running. Second, she may try to
find a vulnerability in the uApp and exploit it while it is
running. Finally, she may try to extract information left in
the machine after the uApp has terminated.

To tamper with the platform, the attacker initiates resid-
ual commands on a device from the user OS that would be
executed after the uApp is launched (e.g., after measure-
ments have been taken and stored in the TPM). For exam-
ple, before being suspended, a sophisticated attacker might
schedule a DMA transfer to overwrite critical memory pages
in the uApp. Such attacks are not possible because the MLE
protects its content from being tampered by DMA. Also, our
uApp kernel enables DMA remapping using VT-d, which re-
stricts all DMA-capable devices to only be able to write to
regions for which they are authorized.

Another potential vector for hardware tampering is to
modify the contents of the TPM. If the attacker can learn
the TPM ownership password, she can create new AIKs and
delete existing AIKs from the TPM. However, new AIKs
are not a threat unless the attacker can convince the user
to add them to their PSD. Deleting an AIK will make the
TPM unable to attest the state of the uApp to the remote
server or the user’s PSD. This means the user will not be
able to use the uApp, but does not result in the compromise
of any user information.

The attacker may attempt to find and exploit a vulnera-
bility in the uApp while it is running (known as time of check
to time of use attacks, see, e.g., [4]). We believe that the
smaller attack surface of the uApp, achieved by constrain-
ing the network servers it communicates with, along with
the smaller TCB of the uApp, achieved through reducing
the functionality in the uApp OS, make such an attack diffi-
cult for an adversary to mount. Other hardening techniques
can also be employed to limit these attacks; see Section 4.2.

Finally, after uApp terminates and the user OS is re-
sumed, attackers can look for sensitive information on the
memory and disk. On exiting uApp, we tear down the MLE
and zero-out in-memory states. To prevent accidental stor-
age of Unicorn secrets on the disk (e.g., due to swapping),
uApps may be run without a swap partition or file; this may
however affect some applications’ functionality.

(c) Communication channel attacks. We assume the
communication channel between a trusted application and
the remote server is encrypted and integrity-checked. In ad-
dition, since the uApps have a specific use, we constrain
their network access capabilities to the bare minimum nec-
essary — thus they may only communicate with (trusted)
servers which are needed for the uApp’s operation. This
severely limits an adversary’s ability to find and exercise a
vulnerability in a uApp.

Because the PSD has a direct communication channel with
the user’s computer, we assume that an attacker cannot tam-
per or snoop on this channel. If part of this channel uses a
wireless technology, like 802.11 or bluetooth, this must be
protected via cryptographic means, depending on how this
channel is used (see Section 3.2).

(d) Attestor attacks. The attacker may attempt to fool
the attestors in two ways. First, she may try to mount a
spoofing attack by tricking the user into believing that the
uApp has started, when in fact the computer is still running
a malicious user OS. Second, she may try to use a relaying
attack [32], where she relays attestation requests to a valid
uApp running on another machine.

A spoofing attack is detected by the user’s PSD since
the spoofed uApp cannot generate a proper response to
the quote request from the PSD. A correct quote response
is signed by the AIK private key, which is only stored on
the TPM. The user may not notice the spoofed uApp and
continue to interact with it, but since she does not input
any authentication credentials, no passwords or such may
be leaked. In addition, no sensitive information the server
can be compromised.

In a relaying attack, the adversary loads a tampered uApp.
To generate a proper quote response, she can have a sec-
ond machine running a valid uApp to which she relays the
quote request, records the response and relays that back to
the attestor. However, this attack is defeated by our Uni-
corn design. If the attestor is a remote server, the authentic
uApp client will not respond to an attestation request from
the attacker because its network interface is constrained to
communicate only with authentic servers. In the case where
the attestor is the user’s PSD, then the AIK of the user’s
machines has been registered with the PSD and it will not
accept a quote request by an AIK other than the one stored
on the PSD. The quote response format for user and server
attestation requests are different so that an attacker cannot
convert one to the other without forging the AIK signature.

6.2 Performance Evaluation

Because uApps run natively on the hardware, there is no
run time overhead for applications running inside a uApp.
Therefore we focus our evaluation on the time to switch from
the user OS to a uApp and back. All measurements are per-
formed on a machine with an Intel Core 2 Quad processor
Q9550 (2.83 GHz, 12M cache), Intel DQ45CB motherboard
(Intel Q45 chipset and TPM 1.2), 4GB DDR2 memory,
and a 500GB SATA2 disk (Western Digital WD5000AAKS,
7200RPM, 16MB cache). Ubuntu 10.04 (x86_64) with ker-
nel 2.6.34 is used as user OS and uApp OS. The user OS has
been used a kernel/application development platform.

Switching from user OS to uApp. As mentioned in
Section 4, the uApp OS image is stored in a 275MB parti-
tion using the squashfs file system. The user OS is initially



uA kernel, Total with Switch Resume
loaé)e% X OS hash | Total | Suspend suspend Resume with reboot | with reboot
Run 1 3.40 7.19 3.95 14.54 11.34 25.88 24.8 48.57 45.6
Run 2 2.87 7.49 3.85 14.21 11.09 25.30 24.7 4775 45.3
Run 3 3.02 6.98 3.85 13.85 11.06 24.91 23.6 45.72 44.1
Run 4 3.76 7.30 3.83 14.89 11.32 26.21 22.5 47.83 44.8
Run 5 3.40 7.04 3.76 14.20 11.00 25.20 23.1 48.61 46.4
[ Average [ 329 | 720 | 385 | 1434 | 11.16 | 25.50 | 237 | 47.70 | 45.2

Table 1: Time distribution (in seconds) for switching user OS to uApp OS and back

configured to use 1GB of memory. To simulate an activity
on the user OS when a uApp is invoked, we run the Firefox
browser with five open tabs and play a movie using the VL.C
media player. In addition, default Ubuntu services, such as
SSH and the Gnome desktop are also running. Under this
load, the user OS had about 300MB of active memory usage.

We measure the time from when the user gives a user-level
command to switch to the uApp to the time the X server
in the uApp comes online (note that the uApp is configured
to automatically log in). We break this process into several
components and also record the intermediate times for each
component. The components are: (1) the time for the user
OS to suspend its state to disk; (2) the time from the end of
suspend to when the uApp loader (tboot) transfers control
to the uApp kernel; (3) the time from when the uApp kernel
starts booting, to when X becomes available, excluding the
uApp image’s hash measurement time; and (4) the time to
measure the hash of the uApp image. We measure the above
times using do_gettimeofday inside the kernel, and the date
and time shell commands. We do not include the time to
load the uApp loader into memory as this usually took below
one second to complete.

We switched between user OS and uApp OS for five rounds
and give the results in Table 1.* We also performed a full
reboot between each round to initiate switching from a sim-
ilar state. Without suspending the user OS, the switch time
is 14.34 seconds on average (std. deviation 0.39); in this
case, after using a uApp, the user initiates a new user OS
instance via kexec or regular reboot (as opposed to resume).
The switching time including the time to save a suspended
user OS takes an average of 25.5 seconds (std. deviation
0.53). While fairly fast, there are several parameters that
could vary depending on the implementation and usage en-
vironment of the uApp. Because our uApp loader is based
on tboot, there is a significant amount of functionality that
is performed but not needed by the uApp. We believe that
with more tuning, the uApp loader time could be reduced.

The suspend time is dependent on the amount of user OS
state that must be saved to disk, which in turn depends on
the amount of memory used by applications and the user
OS kernel, and the total amount of memory that the user
OS kernel has. To illustrate, we varied the amount of mem-
ory allocated to the user OS and found that average suspend
durations for 2GB and 4GB memory are 11.86 and 16.64 sec-
onds respectively (std. deviation 0.4 and 0.85 respectively).
However, we note that if the uApp has lower memory re-
quirements than the user OS, the suspend-to-disk code in
the user OS could be modified to only write the amount of
memory needed by the uApp to disk. Thus, with enough

4Ideally, we would have preferred more rounds for deriving
our results. However, each round requires manual opera-
tions. Also, note that standard deviations were small for
each measured item.

engineering, the suspend time of the user OS will be ulti-
mately dependent on the lesser of the memory requirements
of the uApp and the amount of active state in the user OS.

Another highly variable factor is the size of the uApp
disk image. Our measurements on the test machine show
that it takes about 1.4 seconds to hash every 100MB of
the uApp OS partition, and that this time is dominated
by the disk bandwidth, so it is unlikely to change even with
a faster CPU. By using a smaller Linux distribution instead
of Ubuntu (as used in our prototype), the uApp image size
may be further reduced.

Switching from uApp to user OS. To measure the time
to switch back to the user OS, we measure the time from
when the user initiates shutdown of the uApp to the time
the video running in the VLC player resumes in the user OS
(assuming the user chooses suspend-to-disk before switching
to uApp). Because there is no easy way to programmatically
measure when the video resumes, and the switch time takes
on the order of seconds, we measure the time to perform this
switch operation using a stop watch. We also believe this
better represents the user experience. This was measured
to be an average of 23.7 seconds over 5 runs (std. deviation
1.0); see the “Resume” column in Table 1.

Switching with regular reboot. We also measure switch
time with regular reboot, i.e., going through the BIOS and
GRUB boot loader. We run applications in the user OS,
and then suspend to disk with the reboot option. We do not
load the uApp image via kexec into memory, which causes
the suspend code in user OS kernel to initiate a regular re-
boot after suspend. We use GRUB to load the uApp loader
(from a separate disk partition as GRUB cannot read from a
squashfs partition), and continue to boot into the uApp OS.
For switch back, we use the regular reboot command, and
then initiate the resume of the user OS via GRUB. Results
are in the last two columns of Table 1. Both switching to
uApp and resume took much longer (nearly twice as long)
than the uApp switch. Thus, bypassing the BIOS and boot-
loader indeed saved us significant amount of time.

7. RELATED WORK AND COMPARISON

There have been numerous publications on establishing
trust in computers via hardware support; for a summary,
see e.g., Parno et al. [24]. We discuss only few here which
are most relevant to our work.

Secure kiosk computing. To enable users to use their
own computing environment (e.g., a VM) on a public kiosk
computer, Garriss et al. [8] designed a protocol for estab-
lishing trust on the kiosk. Unicorn is not intended for kiosk
computing; technical differences with secure kiosk comput-
ing include the following. First, kiosk computing requires
the user to notice whether the trusted PSD successfully ver-



ifies the kiosk before the user proceeds to use the kiosk.
In contrast, Unicorn relies on the PSD to make such deci-
sions on the user’s behalf. Second, kiosk computing uses
IMA [25] to measure the VMM/OS software and verifies
only what is loaded up to the point of the attestation re-
quest. In addition, variances in loading order and software
execution can result in different PCR values and the at-
testor must be aware of all valid PCR values that could be
returned in a quote response. Unicorn performs verification
on the entire uApp image, which includes all software that
could be executed while using the uApp. Finally, to switch
from the untrusted to the trusted OS, the kiosk computer
is then rebooted (i.e., shutdown, run BIOS and bootloader,
late launch, run the OSLO secure loader [14], and boot into
OS/VMM). Since uApps short circuit the process by avoid-
ing the BIOS and bootloader, switching is nearly 10 times
faster with uApps.

Lockdown. Lockdown [35] is a small hypervisor that pro-
vides one environment for regular tasks and another for all
sensitive web transactions. Lockdown uses Advanced Con-
figuration and Power Interface (ACPI) and AMD’s Nested
Page Table (NPT) features to partition system resources.
A trusted BIOS is required for installation and booting of
Lockdown. Lockdown runs at AMD SVM’s hypervisor mode
and OSs run in the guest mode. The trusted OS and appli-
cations are installed in separate disks after Lockdown is in
control. Lockdown restricts the list of Internet servers the
trusted environment can connect to, but since the trusted
environment can be changed, the list must be updated by
users as new applications are added. In contrast, uApps do
not change and adding a new uApp does not affect the re-
strictions on any existing uApps. Also, remote servers in
Lockdown receive no guarantee about user environments.
Another difference is the way the systems switch between
trusted and untrusted environments. Lockdown maintains
both environments in memory at the same time and in-
terposes on hardware requests from both environments to
enforce partitioning. Switching between environments re-
quires ACPI operations and takes slightly longer than uApp
switching (42-46 seconds vs. 25.5 seconds). However, system
resources are inefficiently used by Lockdown, e.g., memory is
exclusively partitioned between trusted and untrusted envi-
ronments. The trusted environment also suffers significant
performance degradation, with 15-55% CPU and memory
overhead, 3-6 seconds additional network latency, and four
times slower download speed. uApps have direct access to
all hardware and thus do not suffer any performance penalty.

Flicker & Bumpy. Bumpy [21] is designed to secure sensi-
tive user inputs (e.g., online passwords), by processing them
in a separate Flicker [20] module, which can be loaded on-
demand bypassing the untrusted user OS. Users must start
sensitive input with @@, and also verify that a Flicker ses-
sion has actually been initiated from the feedback received
(e.g., beeps) on a trusted PSD, and that the receiving URL
on the device is correct. For safe operation, users must also
notice the transition between protected and unprotected in-
put fields. These complexities could be attributed to using
the untrusted OS and applications for everything except sen-
sitive user input (for keeping the TCB small). A user study
of Bumpy’s input mechanisms [16] also highlights several
user interface issues. Unicorn sidesteps many of these is-
sues by taking the user out of the loop during all operations

except setup. TrustVisor [19] improves the performance of
Flicker by implementing a software-based micro-TPM mod-
ule that executes on the primary CPU instead of the slow
TPM hardware.

Root of trust installation. Immutability of uApps im-
ages is similar to the root of trust installation (ROTI [31])
system. Installers distributed by trusted parties are used for
installing all system software and system-specific data and
secrets. At the end of an installation, ROTI computes the
hash of all (static) files in the root file system, and seals a file
containing those hashes to the TPM. Sealing ensures that
this hash file can be opened only if the system is loaded
again in the same state (i.e., the same PCR values in the
TPM). ROTI enables attestation to remote parties but does
not address user authentication.

Terra: VM-based trusted computing. Terra [7] enables
users to simultaneously use open-box VMs (with a commod-
ity OS and user applications) and closed-box VMs (with a
custom OS and application) on the same computer. Terra
depends on a trusted virtual machine monitor (TVMM), and
the hardware and TVMM enable closed-box VMs to identify
their software stack to a remote party. However, user attes-
tation and secure Ul issues remain unaddressed by Terra.

Other authentication methods. A large amount of work
has gone into protecting user credentials from theft or leak-
age through social engineering. For example, split-trust mech-
anisms (e.g., Balfanz and Felten [3], and MP-Auth [18]),
and two-factor authentication mechanisms all protect user
credentials (and optionally parts of a session). However,
none protects the confidentiality of an entire user session.
To achieve a malware-free execution environment, we rely
on DRTM CPU instructions; current malware cannot evade
hardware-based protections of these instructions. Addition-
ally, Unicorn effectively enables two-factor attestation: mal-
ware cannot bypass the attestation checks either at the user-
end, or at the server-end. As the PSD links attestation with
authentication, Unicorn can guarantee both a malware-free
user session, and resistance to social engineering attacks.

8. CONCLUSION

We have presented Unicorn, which both reduces the bur-
den on the user by removing them from the attestation and
authentication process and enables fast switching between a
general-purpose user OS and a secure uApp OS using a novel
mechanism that avoids a full machine reboot. The key idea
behind Unicorn is a PSD that is able to verify the integrity
of the user’s computer and only use the user’s authentica-
tion secrets if the integrity can be verified. Combining this
with verification of the attestation by a remote server or
the local TPM via sealed-storage produces a two-factor au-
thentication, which forces the attacker to both gain physical
access to the user’s computer and compromise the PSD to
successfully gain access to Unicorn-protected user data.

In building our Unicorn prototype we found that a great
deal of standard functionality in commodity desktop sys-
tems could be repurposed to make implementing Unicorn
easy: suspend-to-disk functionality on the desktop system
was used to save the running state of the user OS to disk,
and hardware Intel TXT support for confining buggy device
drivers using DMA-remapping was used to protect against
malicious commands left on devices by the user OS. We also
found that the implementation of the Unicorn attestor on



Android was straightforward and many of the required com-
ponents, such as crypto libraries and QR code libraries are
relatively mature. While commodity code doesn’t always
meet the ideal security requirements of a small code foot-
print and strict access controls, we find it encouraging that
much of the technology to implement the components of
Unicorn already exists. This suggests that with more en-
gineering effort, a deployable version of Unicorn could be
implemented with relatively little effort.
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APPENDIX
A. BACKGROUND

In this section, we give some background on Intel Trusted
Execution Technology (TXT) and its interaction with the
Trusted Platform Module (TPM) chip. We only briefly dis-
cuss TXT here; see e.g., Grawrock [10], TXT software de-
velopment guide [12], and the tboot project [13] for details.

Trusted Platform Module. A TPM is a hardware chip
that provides the following functionality: (1) protected stor-
age for persistent secrets (NV-RAM) and for Platform Con-
figuration Registers (PCRs), which contain measurements
of the running state of the machine; (2) a protected execu-
tion environment for certain cryptographic operations (e.g.,
SHA-1 hash, RSA encryption/signature); (3) and the ability
to generate attestation quote responses with current PCR
values. TPMs implement two types of PCRs: static PCRs,
which can only be reset by a system reboot, and dynamic
PCRs, which can be reset by Dynamic Root of Trust Mea-
surement (DRTM). Each layer of software stack in the plat-
form is measured (i.e., hashed) and the measurements are
stored to a PCR using the extend operation. Extend ap-
pends the hash to a PCR by concatenating the current PCR
value with the new measurement and then computing a hash
over the combined value. This new hash value is then stored
in the PCR. Thus, PCRs contain a hash chain describing all
software that was loaded on the system since the PCR was
reset. Remote parties can request attestations of the PCR
values using the quote operation. To perform a quote op-
eration, the TPM must be initialized with an Attestation
Identity Key (AIK) pair. This AIK pair is generated by a
TPM and the private part of the key pair never leaves the
TPM chip. The public part of the key pair is certified by
a trusted Privacy Certificate Authority (CA) and should be
distributed to the attestor prior to the attestation request.
A quote request contains a specification of which PCR values
need to be retrieved as well as a nonce used for freshness. In

response, the TPM computes a hash of the nonce and PCR
values, signs the hash with the AIK private key, and returns
the signature with the PCR values. The TPM 1.2 specifica-
tion also defines localities, which restrict how the dynamic
PCRs can be modified. By default, all untrusted code ex-
ecutes in locality zero, the lowest privilege level. By exe-
cuting code in more privileged localities, software gains the
ability to extend/reset certain PCRs. TPMs also support
sealing and unsealing operations which bind data (e.g., a se-
cret key) to the current platform configuration, as specified
by the chosen PCRs. Sealing takes a set of PCRs and data as
input, and encrypts the given data using the TPM’s Storage
Root Key (SRK), which never leaves the TPM. Unsealing
of the sealed data can be done only when the pre-specified
PCRs have the same values as during sealing.

Intel TXT. On their own, TPMs implement Static Root
of Trust Measurements (SRTM), where static PCRs can

only be reset by a full reboot of the machine. Intel TXT,
formally known as LaGrande Technology (LT), is a set of
hardware extensions available on recent Intel CPUs and
chipsets that implements Dynamic Root of Trust Measure-
ment (DRTM), also known as late launch. DRTM allows
the dynamic PCRs (PCRs 17-23) to be reset at any time by
entering a measured launch environment (MLE). The CPU
enters into and exits from the MLE via GETSEC[SENTER]
and GETSEC[SEXIT] instructions respectively. Before ex-
ecuting SENTER, an authenticated code (AC) module is
loaded into the processor’s internal memory (which is out of
reach of DMA devices or the external processor bus). The
CPU initially protects an MLE from DMA modifications by
loading it into one of two memory regions: (i) the DMA
protected range (DPR), a contiguous region (currently 3MB
in size) in the physical memory which is protected from all
DMA accesses; or (ii) the Intel VT-d protected memory re-
gions (PMRs), two ranges of physical memory addresses (one
in the lower 4GB and the other in the upper 4GB) which
are also DMA protected. The AC module is chipset-specific,
distributed in a binary form by Intel, and is authenticated
through a digital signature check (signed by Intel) by the
processor. SENTER proceeds only if the AC module can be
authenticated, and the MLE is loaded into the DPR or in a
PMR. The AC module checks several chipset and processor
configurations, and if successful, it then executes the MLE.
After an MLE has been established, it can facilitate trusted
boot into an OS kernel or hypervisor.
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