
University of Toronto Mississauga
CSC 324 - Principles of Programming Languages, Fall 2016

Assignment 2
Due Tuesday November 15 at 11pm.

No late assignments will be accepted.

The questions below require you to write ML functions. Some of the problems in this
assignment require a mix of functional and non-functional programming, and specifically,
the use of references, assignment statements and iteration. However, unless a question
explicitly requires the use of such imperative programming features, your programs should
be purely functional and should use recursion. Pattern matching should also be used
whenever possible, unless it complicates the code significantly. In general, simple solutions
are preferred and will receive the most marks. Feel free to use helper functions wherever
appropriate. Unless otherwise specified, you may assume that the input to your functions
is correct, so that no error checking is required. Finally, by properly raising exceptions,
your functions in this assignment should not produce any warnings of the form match
non-exhaustive. You may have to detect illegal inputs in order to avoid such warnings, and
in such cases, you should print out an error message.

Unless specified otherwise, do not use any built-in functions that would require recursion
if you defined them yourself. You may, of course, use any function you like if you define it
yourself (in terms of allowed functions). The point here is that you should not scour the
user manual or the web for functions that will solve most of a problem for you. You may
use the append operator, @.

You should hand in four files: the source code of all your ML functions, a sample terminal
session with the ML interpreter, the answers to pencil-and-paper problems, and a signed
and completed cover sheet. The source code should be well commented, and the terminal
session should be short and should demonstrate that your functions work correctly. These
files should be submitted electronically using the submission web page.

Note: The marker has a limited amount of time for each assignment, so it is your re-
sponsibility to provide documentation and testing that allows him to quickly evaluate your
work. As with all work in this course, 20% of the grade is for quality of presentation.

No more questions will be added

1



1. Basic Recursion and Pattern Matching (20 points total)

Using recursion, define an ML function listSum(A,X,Y) of type
real*(real list)*(real list) -> (real list). If xi is the ith element of list X,
and yi is the ith element of list Y, then A+xi ∗ yi is the ith element of the output list.
For example,

listSum(7.3, [3.1, 4.2, 5.7], [2.7, 4.1, 1.5])

=> [7.3 + 3.1 * 2.7, 7.3 + 4.2 * 4.1, 7.3 + 5.7 * 1.5]

=> [15.67, 24.52, 15.85]

If lists X and Y do not have the same length, then raise an exception. Your function
should traverse the lists only once. Do not use any map functions in your solution.
Define the function in two ways: (a) without pattern matching (10 points), and (b)
with pattern matching (10 points). These two versions of the function should be
called listSum1 and listSum2, respectively.

2. Record Types and Exceptions (56 points total)

(a) (3 points)
Using type, define student to be a named type for student recorda, where
each record has three fields: id, name and gpa, of type int, string and real,
respectively. For example, {id=1234, name=‘‘Spock’’, gpa=97.1} is a record
of type student. This record means that the student with id=1234 has name
Spock and a gpa of 97.1.

(b) (3 points)
Likewise, define taken to be a record with three fields: course, student and
grade, of type string, int and real, respectively. For example,
{course=‘‘csc324’’, student=1234, grade=87.2} is a record of type taken.
This record means that the student with id=1234 has taken course csc324 and
received a grade of 87.2.

(c) (5 points)
Define an ML function updateGPA(G,S) of type real*student -> student

that changes the gpa of student S to G. i.e., the function returns a copy of S
with the gpa field changed. Raise an exception if G is negative.

In the questions below, Slist is list of student records, and Tlist is list of
taken records. For each value of id, Slist should contain only one student

record. Likewise, for each pair of values for course and student, Tlist should
contain only one taken record. Other than this, the lists are arbitrary.

(d) (10 points)
Define an ML function updateGrade(T,Tlist) of type
taken*(taken list) -> (taken list). This function updates the grade a
student received in a given course. Specifically, if T = {course=C, student=N,

grade=G}, then the function searches Tlist for a record with course=C and
student=N. It then changes the grade in this record to G. That is, the function
returns a copy of Tlist in which the grade has been changed in the appropriate

2



record. If Tlist does not contain such a record, then an exception should be
raised.

(e) (20 points)
Define an ML function names(C,Slist,Tlist) of type
string*(student list)*(taken list) -> (string list). This function re-
turns the names of all students who have taken course C, according to the data
in Slist and Tlist. Raise an exception if a student who has taken the course
is not listed in Slist.

(f) (15 points)
Define an ML function computeGPA(I,Tlist) of type
int*(taken list) -> real. This function computes the gpa of the student
with id=I from the courses he has taken, as given in Tlist. If the student has
not taken any courses, then an exception is raised.

3. Exception Handling (20 points)
This question builds on the previous one. Define an ML function updateAllGPAs(Slist,Tlist)

of type (student list)*(taken list) -> (student list)*(student list). This
function uses computeGPA from the previous question to compute the gpa of each
student in Slist. If computeGPA raises an exception, then updateAllGPAs catches
and handles it by putting the student on a list of exceptional students. Otherwise,
updateAllGPAs uses updateGPA to produce an updated student record containing
the computed gpa, and puts this record onto a list of updated student records. Fi-
nally, updateAllGPAs returns both the list of updated student records and the list of
exceptional records, in that order. Every student in the input list should appear in
one of the two output lists. updateAllGPAs should be purely functional and should
not use any references or assignment statements.

4. Variant Types (30 points total)
We would like to extend the integers to include infinity and negative infinity. We
also want to extend arithmetic operators to them. For example, we would like 1/0 =
infinity, 1 + infinity = infinity, −4 ∗ infinity = −infinity, 3/infinity = 0,
infinity ∗ infinity = infinity, etc. Unfortunately, this cannot always be done. For
example, the values of 0/0, infinity − infinity, infinity/infinity and 0 ∗ infinity
are all undefined. In such cases, your functions below should raise an exception.
Of course, your functions should reduce to ordinary integer arithmetic when the
arguments are ordinary (finite) integers.

Note that if you define a datatype for extended integers naively, then functions defin-
ing extended integer arithmetic will have to handle many cases involving positives
and negatives. For instance, infinity/3 = infinity, infinity/(−3) = −infinity,
−infinity/3 = −infinity, −infinity/(−3) = infinity. You should define your
datatype for extended integers in a way that reduces the number of cases that your
functions must consider. Your functions should also make maximal use of pattern
matching.

(a) (5 points) Define a variant datatype called eInt for extended integers.

(b) (5 points) Define a function called eAdd of type eInt*eInt -> eInt that per-
forms addition on extended integers.

3



(c) (5 points) Define a function called eSub of type eInt*eInt -> eInt that per-
forms subtraction on extended integers.

(d) (5 points) Define a function called eMult of type eInt*eInt -> eInt that per-
forms multiplication on extended integers.

(e) (5 points) Define a function called eDiv of type eInt*eInt -> eInt that per-
forms division on extended integers. (Recall that div, not /, is the ML operator
for integer division.)

(f) (5 points) Use your functions to evaluate the arithmetic expressions below.
That is, write each expression in terms of eAdd, eMult, eSub nd eDiv, and then
evaluate them using ML.

i. 13− (6/0)

ii. 3 ∗ (1/0)

iii. (−2/0) ∗ (−6/0)

iv. (5/0) + (−3/0)

v. (7/0)/(3/(2− 2))

vi. 3/(−4/(5/0))

vii. 3/(−4/(5/(−6/0)))

viii. 4 + (7 ∗ (9/(8− 5)))

ix. (4− (3 + 1)) ∗ (3/(4 + (−4)))

x. (4− 4)/(6− (3 + 3))

5. Recursive Types (50 points total).
Your functions in this question should traverse a tree at most once.

(a) (5 points) Define an ML datatype called ’a tree for representing trees. The
internal nodes of a tree store a value of any type and may have 1, 2 or 3 children.
The leaves of a tree may store a real number or a list of strings.

(b) (5 points) Draw a tree and show how it is represented in ML using your datatype.
The tree should have at least two levels of internal nodes, at least one node with
one child, at least one with two children and at least one with three children. It
should also have at least one leaf storing a real number and at least one storing
a list of strings.

(c) (10 points) Define a function list12(T) of type ’a tree -> ’a list that
returns of list of all the values stored at nodes having 1 or 2 children in tree T.

(d) (10 points) Define a function countNodes(T) of type ’a tree -> int*int*int

that returns a tuple (N1,N2,N3) where N1 is the number of nodes in tree T

having 1 child, N2 is the number having 2 children, and N3 is the number having
3 children.

(e) (10 points) Define a function treeApply(F,T) of type (real->real)*(’a tree)

-> real that applies function F to every real number stored in the leaves of tree
T and sums the results.

4



(f) (10 points) define a function leafAppend(L,T) of type (string list)*(’a

tree) -> (’a tree) that appends list L to the front of every list stored in the
leaves of tree T. leafAppend should be purely functional and should not actually
modify T, but should return a modified copy.

6. References and Iteration (45 points total)
This question asks you to implement the same program in three different ways:
as a purely functional program, as a purely procedural program, and as a mixed
functional/procedural program. Each of your programs should traverse a list at
most once. In parts (b) and (c), you will have to be careful in your use of brackets.
For example, !f(x) should be written as !(f(x)), for otherwise it will be parsed as
(!f)(x).

(a) (10 points) Functional.
We shall use the following datatype to represent lists of integers:

datatype list1 = nil1 | cons1 of int*list1

For example, the expression cons1(4,cons1(5,cons1(6,nil1))) represents
the list [4,5,6]. Define a function remList1(N,L) of type
int*list1 -> list1 that returns a copy of L with the Nth element removed.
If L has fewer than N elements, then raise an exception NoSuchElement. The
function should be purely functional (and have no side effects). For example, if

L => cons1(4,cons1(5,cons1(6,nil1)))

then here is a sequence of ML expressions and their values:

remlist1(1,L) => cons1(5,cons1(6,nil1))

L => cons1(4,cons1(5,cons1(6,nil1)))

remlist1(2,L) => cons1(4,cons1(6,nil1))

L => cons1(4,cons1(5,cons1(6,nil1)))

remlist1(3,L) => cons1(4,cons1(5,nil1))

L => cons1(4,cons1(5,cons1(6,nil1)))

remlist1(4,L) => exception NoSuchElement

L => cons1(4,cons1(5,cons1(6,nil1)))

Notice that the value of L does not not change.

(b) (15 points) Functional/Procedural.
We shall now use the following datatype to represent lists of integers:

datatype list2 = nil2 | cons2 of int*(list2 ref)

For example, the list [4,5,6] is represented by the expression

cons2(4,ref(cons2(5,ref(cons2(6,ref(nil2))))))

Using recursion (not iteration), define a function remList2(N,RL) of type
int*(list2 ref) -> unit that removes the Nth element from the list refer-
enced by RL. If the list has fewer than N elements, then raise an exception
NoSuchElement. Unlike remList1, remList2 is not purely functional but has
side effects. That is, it does not return a new list; instead, it changes the existing
list. For example, if

5



RL => ref(cons2(4,ref(cons2(5,ref(cons2(6,ref(nil2)))))))

then here is a sequence of ML expressions and their values:

remList2(2,RL) => ()

RL => ref(cons2(4,ref(cons2(6,ref(nil2)))))

remList2(2,RL) => ()

RL => ref(cons2(4,ref(nil2)))

remList2(2,RL) => exception NoSuchElement

RL => ref(cons2(4,ref(nil2)))

remList2(1,RL) => ()

RL => ref(nil2)

remList2(1,RL) => exception NoSuchElement

RL => ref(nil2)

Notice that the value of RL does change.

Hint: Define a function cdr2(L) of type list2 -> (list2 ref). If L =>

cons(N,RL), then cdr2(L) => RL. Otherwise, if L => nil2, then cdr2(L) raises
an exception.

(c) (20 points) Procedural.
Define a function remList3(N,RL) of type int*(list2 ref) -> unit that be-
haves just like remList2, but which is defined using while loops instead of
recursion.

No more questions will be added

6



University of Toronto Mississauga
CSC 324 - Principles of Programming Languages

Cover sheet for Assignment 2

Complete this page and submit it with your assignment.

Name:
(Underline your last name)

Student number:

I declare that this assignment is solely my own work, and is in accordance
with the University of Toronto Code of Behaviour on Academic Matters.

Signature:

7


