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Abstract

In this paper, we propose an Attentional Generative Ad-

versarial Network (AttnGAN) that allows attention-driven,

multi-stage refinement for fine-grained text-to-image gener-

ation. With a novel attentional generative network, the At-

tnGAN can synthesize fine-grained details at different sub-

regions of the image by paying attentions to the relevant

words in the natural language description. In addition, a

deep attentional multimodal similarity model is proposed to

compute a fine-grained image-text matching loss for train-

ing the generator. The proposed AttnGAN significantly out-

performs the previous state of the art, boosting the best re-

ported inception score by 14.14% on the CUB dataset and

170.25% on the more challenging COCO dataset. A de-

tailed analysis is also performed by visualizing the atten-

tion layers of the AttnGAN. It for the first time shows that

the layered attentional GAN is able to automatically select

the condition at the word level for generating different parts

of the image.

1. Introduction

Automatically generating images according to natural

language descriptions is a fundamental problem in many

applications, such as art generation and computer-aided de-

sign. It also drives research progress in multimodal learning

and inference across vision and language, which is one of

the most active research areas in recent years [20, 18, 36,

19, 41, 4, 30, 5, 1, 31, 33, 32]

Most recently proposed text-to-image synthesis methods

are based on Generative Adversarial Networks (GANs) [6].

A commonly used approach is to encode the whole text de-

scription into a global sentence vector as the condition for

GAN-based image generation [20, 18, 36, 37]. Although

impressive results have been presented, conditioning GAN

∗work was performed when was an intern with Microsoft Research
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Figure 1. Example results of the proposed AttnGAN. The first row

gives the low-to-high resolution images generated by G0, G1 and

G2 of the AttnGAN; the second and third row shows the top-5

most attended words by F
attn
1 and F

attn
2 of the AttnGAN, re-

spectively. Here, images of G0 and G1 are bilinearly upsampled

to have the same size as that of G2 for better visualization.

only on the global sentence vector lacks important fine-

grained information at the word level, and prevents the gen-

eration of high quality images. This problem becomes even

more severe when generating complex scenes such as those

in the COCO dataset [14].

To address this issue, we propose an Attentional Genera-

tive Adversarial Network (AttnGAN) that allows attention-

driven, multi-stage refinement for fine-grained text-to-

image generation. The overall architecture of the AttnGAN

is illustrated in Figure 2. The model consists of two novel

components. The first component is an attentional gener-

ative network, in which an attention mechanism is devel-

oped for the generator to draw different sub-regions of the
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image by focusing on words that are most relevant to the

sub-region being drawn (see Figure 1). More specifically,

besides encoding the natural language description into a

global sentence vector, each word in the sentence is also

encoded into a word vector. The generative network uti-

lizes the global sentence vector to generate a low-resolution

image in the first stage. In the following stages, it uses

the image vector in each sub-region to query word vectors

by using an attention layer to form a word-context vector.

It then combines the regional image vector and the corre-

sponding word-context vector to form a multimodal context

vector, based on which the model generates new image fea-

tures in the surrounding sub-regions. This effectively yields

a higher resolution picture with more details at each stage.

The other component in the AttnGAN is a Deep Attentional

Multimodal Similarity Model (DAMSM). With an attention

mechanism, the DAMSM is able to compute the similarity

between the generated image and the sentence using both

the global sentence level information and the fine-grained

word level information. Thus, the DAMSM provides an ad-

ditional fine-grained image-text matching loss for training

the generator.

The contribution of our method is threefold. (i) An

Attentional Generative Adversarial Network is proposed

for synthesizing images from text descriptions. Specif-

ically, two novel components are proposed in the At-

tnGAN, including the attentional generative network and

the DAMSM. (ii) Comprehensive study is carried out to em-

pirically evaluate the proposed AttnGAN. Experimental re-

sults show that the AttnGAN significantly outperforms pre-

vious state-of-the-art GAN models. (iii) A detailed analysis

is performed through visualizing the attention layers of the

AttnGAN. For the first time, it is demonstrated that the lay-

ered conditional GAN is able to automatically attend to rele-

vant words to form the condition for image generation. Our

code is available at https://github.com/taoxugit/AttnGAN.

2. Related Work

Generating high resolution images from text descrip-

tions, though very challenging, is important for many prac-

tical applications such as art generation and computer-

aided design. Recently, great progress has been achieved

in this direction with the emergence of deep generative

models [12, 27, 6]. Mansimov et al. [15] built the align-

DRAW model, extending the Deep Recurrent Attention

Writer (DRAW) [7] to iteratively draw image patches while

attending to the relevant words in the caption. Nguyen

et al. [16] proposed an approximate Langevin approach

to generate images from captions. Reed et al. [21] used

conditional PixelCNN [27] to synthesize images from text

with a multi-scale model structure. Compared with other

deep generative models, Generative Adversarial Networks

(GANs) [6] have shown great performance for generating

sharper samples [17, 3, 23, 13, 10, 35, 24, 34, 39, 40]. Reed

et al. [20] first showed that the conditional GAN was capa-

ble of synthesizing plausible images from text descriptions.

Their follow-up work [18] also demonstrated that GAN was

able to generate better samples by incorporating additional

conditions (e.g., object locations). Zhang et al. [36, 37]

stacked several GANs for text-to-image synthesis and used

different GANs to generate images of different sizes. How-

ever, all of their GANs are conditioned on the global sen-

tence vector, missing fine-grained word level information

for image generation.

The attention mechanism has recently become an inte-

gral part of sequence transduction models. It has been suc-

cessfully used in modeling multi-level dependencies in im-

age captioning [30, 38], image question answering [31] and

machine translation [2]. Vaswani et al. [28] also demon-

strated that machine translation models could achieve state-

of-the-art results by solely using an attention model. In

spite of these progress, the attention mechanism has not

been explored in GANs for text-to-image synthesis yet. It is

worth mentioning that the alignDRAW [15] also used LAP-

GAN [3] to scale the image to a higher resolution. How-

ever, the GAN in their framework was only utilized as a

post-processing step without attention. To our knowledge,

the proposed AttnGAN for the first time develops an atten-

tion mechanism that enables GANs to generate fine-grained

high quality images via multi-level (e.g., word level and

sentence level) conditioning.

3. Attentional Generative Adversarial Net-
work

As shown in Figure 2, the proposed Attentional Gener-

ative Adversarial Network (AttnGAN) has two novel com-

ponents: the attentional generative network and the deep

attentional multimodal similarity model. We will elaborate

each of them in the rest of this section.

3.1. Attentional Generative Network

Current GAN-based models for text-to-image genera-

tion [20, 18, 36, 37] typically encode the whole-sentence

text description into a single vector as the condition for im-

age generation, but lack fine-grained word level informa-

tion. In this section, we propose a novel attention model

that enables the generative network to draw different sub-

regions of the image conditioned on words that are most

relevant to those sub-regions.

As shown in Figure 2, the proposed attentional genera-

tive network has m generators (G0, G1, ..., Gm−1), which

take the hidden states (h0, h1, ..., hm−1) as input and gen-

erate images of small-to-large scales (x̂0, x̂1, ..., x̂m−1).

Specifically,

h0 = F0(z, F
ca(e));

hi = Fi(hi−1, F
attn
i (e, hi−1)) for i = 1, 2, ...,m− 1;

x̂i = Gi(hi).
(1)
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Figure 2. The architecture of the proposed AttnGAN. Each attention model automatically retrieves the conditions (i.e., the most relevant

word vectors) for generating different sub-regions of the image; the DAMSM provides the fine-grained image-text matching loss for the

generative network.

Here, z is a noise vector usually sampled from a standard

normal distribution. e is a global sentence vector, and e is

the matrix of word vectors. F ca represents the Conditioning

Augmentation [36] that converts the sentence vector e to the

conditioning vector. F attn
i is the proposed attention model

at the ith stage of the AttnGAN. F ca, F attn
i , Fi, and Gi are

modeled as neural networks.

The attention model F attn(e, h) has two inputs: the

word features e ∈ R
D⇥T and the image features from the

previous hidden layer h ∈ R
D̂⇥N . The word features are

first converted into the common semantic space of the im-

age features by adding a new perceptron layer, i.e., e0 = Ue,

where U ∈ R
D̂⇥D. Then, a word-context vector is com-

puted for each sub-region of the image based on its hidden

features h (query). Each column of h is a feature vector of

a sub-region of the image. For the jth sub-region, its word-

context vector is a dynamic representation of word vectors

relevant to hj , which is calculated by

cj =
T−1
X

i=0

βj,ie
0

i, where βj,i =
exp(s0j,i)

PT−1
k=0 exp(s0j,k)

, (2)

s0j,i = hT
j e

0
i, and βj,i indicates the weight the model attends

to the ith word when generating the jth sub-region of the

image. We then donate the word-context matrix for image

feature set h by F attn(e, h) = (c0, c1, ..., cN−1) ∈ R
D̂⇥N .

Finally, image features and the corresponding word-context

features are combined to generate images at the next stage.

To generate realistic images with multiple levels (i.e.,

sentence level and word level) of conditions, the final objec-

tive function of the attentional generative network is defined

as

L = LG + λLDAMSM , where LG =

m−1
X

i=0

LGi
. (3)

Here, λ is a hyperparameter to balance the two terms of

Eq. (3). The first term is the GAN loss that jointly approx-

imates conditional and unconditional distributions [37]. At

the ith stage of the AttnGAN, the generator Gi has a cor-

responding discriminator Di. The adversarial loss for Gi is

defined as

LGi
= −

1

2
Ex̂i∼pGi

[log(Di(x̂i)]

| {z }

unconditional loss

−
1

2
Ex̂i∼pGi

[log(Di(x̂i, e)]

| {z }

conditional loss

,

(4)

where the unconditional loss determines whether the image

is real or fake while the conditional loss determines whether

the image and the sentence match or not.

Alternately to the training of Gi, each discriminator Di

is trained to classify the input into the class of real or fake

by minimizing the cross-entropy loss defined by

LDi
= −

1

2
Exi∼pdatai

[logDi(xi)] −
1

2
Ex̂i∼pGi

[log(1 − Di(x̂i)]

| {z }

unconditional loss

+

−
1

2
Exi∼pdatai

[logDi(xi, e)] −
1

2
Ex̂i∼pGi

[log(1 − Di(x̂i, e)]

| {z }

conditional loss

,

(5)

where xi is from the true image distribution pdatai
at the

ith scale, and x̂i is from the model distribution pGi
at the

same scale. Discriminators of the AttnGAN are structurally

disjoint, so they can be trained in parallel and each of them

focuses on a single image scale.

The second term of Eq. (3), LDAMSM , is a word level

fine-grained image-text matching loss computed by the

DAMSM, which will be elaborated in Subsection 3.2.

3.2. Deep Attentional Multimodal Similarity Model

The DAMSM learns two neural networks that map sub-

regions of the image and words of the sentence to a common

semantic space, thus measures the image-text similarity at
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the word level to compute a fine-grained loss for image gen-

eration.

The text encoder is a bi-directional Long Short-Term

Memory (LSTM) [25] that extracts semantic vectors from

the text description. In the bi-directional LSTM, each word

corresponds to two hidden states, one for each direction.

Thus, we concatenate its two hidden states to represent the

semantic meaning of a word. The feature matrix of all

words is indicated by e ∈ R
D⇥T . Its ith column ei is the

feature vector for the ith word. D is the dimension of the

word vector and T is the number of words. Meanwhile, the

last hidden states of the bi-directional LSTM are concate-

nated to be the global sentence vector, denoted by e ∈ R
D.

The image encoder is a Convolutional Neural Network

(CNN) that maps images to semantic vectors. The inter-

mediate layers of the CNN learn local features of different

sub-regions of the image, while the later layers learn global

features of the image. More specifically, our image en-

coder is built upon the Inception-v3 model [26] pretrained

on ImageNet [22]. We first rescale the input image to be

299×299 pixels. And then, we extract the local feature ma-

trix f ∈ R
768⇥289 (reshaped from 768×17×17) from the

“mixed 6e” layer of Inception-v3. Each column of f is the

feature vector of a sub-region of the image. 768 is the di-

mension of the local feature vector, and 289 is the number

of sub-regions in the image. Meanwhile, the global feature

vector f ∈ R
2048 is extracted from the last average pooling

layer of Inception-v3. Finally, we convert the image fea-

tures to a common semantic space of text features by adding

a perceptron layer:

v = Wf , v = W f, (6)

where v ∈ R
D⇥289 and its ith column vi is the visual fea-

ture vector for the ith sub-region of the image; and v ∈ R
D

is the global vector for the whole image. D is the dimension

of the multimodal (i.e., image and text modalities) feature

space. For efficiency, all parameters in layers built from the

Inception-v3 model are fixed, and the parameters in newly

added layers are jointly learned with the rest of the net-

work.

The attention-driven image-text matching score is

designed to measure the matching of an image-sentence pair

based on an attention model between the image and the text.

We first calculate the similarity matrix for all possible

pairs of words in the sentence and sub-regions in the image

by

s = eT v, (7)

where s ∈ R
T⇥289 and si,j is the dot-product similarity

between the ith word of the sentence and the jth sub-region

of the image. We find that it is beneficial to normalize the

similarity matrix as follows

si,j =
exp(si,j)

PT−1
k=0 exp(sk,j)

. (8)

Then, we build an attention model to compute a region-

context vector for each word (query). The region-context

vector ci is a dynamic representation of the image’s sub-

regions related to the ith word of the sentence. It is com-

puted as the weighted sum over all regional visual vectors,

i.e.,

ci =

288
X

j=0

αjvj , where αj =
exp(γ1si,j)

P288
k=0 exp(γ1si,k)

. (9)

Here, γ1 is a factor that determines how much attention is

paid to features of its relevant sub-regions when computing

the region-context vector for a word.

Finally, we define the relevance between the ith word

and the image using the cosine similarity between ci and ei,
i.e., R(ci, ei) = (cTi ei)/(||ci||||ei||). Inspired by the mini-

mum classification error formulation in speech recognition

(see, e.g., [11, 8]), the attention-driven image-text match-

ing score between the entire image (Q) and the whole text

description (D) is defined as

R(Q,D) = log
⇣

T−1
X

i=1

exp(γ2R(ci, ei))
⌘

1

γ2
, (10)

where γ2 is a factor that determines how much to mag-

nify the importance of the most relevant word-to-region-

context pair. When γ2 → ∞, R(Q,D) approximates to

maxT−1
i=1 R(ci, ei).

The DAMSM loss is designed to learn the attention

model in a semi-supervised manner, in which the only su-

pervision is the matching between entire images and whole

sentences (a sequence of words). Similar to [4, 9], for a

batch of image-sentence pairs {(Qi, Di)}Mi=1, the posterior

probability of sentence Di being matching with image Qi

is computed as

P (Di|Qi) =
exp(γ3R(Qi, Di))

PM
j=1 exp(γ3R(Qi, Dj))

, (11)

where γ3 is a smoothing factor determined by experiments.

In this batch of sentences, only Di matches the image Qi,

and treat all other M − 1 sentences as mismatching de-

scriptions. Following [4, 9], we define the loss function as

the negative log posterior probability that the images are

matched with their corresponding text descriptions (ground

truth), i.e.,

Lw
1 = −

M
X

i=1

logP (Di|Qi), (12)

where ‘w’ stands for “word”.

Symmetrically, we also minimize

Lw
2 = −

M
X

i=1

logP (Qi|Di), (13)
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where P (Qi|Di) = exp(γ3R(Qi,Di))
P

M
j=1

exp(γ3R(Qj ,Di))
is the posterior

probability that sentence Di is matched with its correspond-

ing image Qi. If we redefine Eq. (10) by R(Q,D) =
(

vT e
)

/
(

||v||||e||
)

and substitute it to Eq. (11), (12) and

(13), we can obtain loss functions Ls
1 and Ls

2 (where ‘s’

stands for “sentence”) using the sentence vector e and the

global image vector v.

Finally, the DAMSM loss is defined as

LDAMSM = Lw
1 + Lw

2 + Ls
1 + Ls

2. (14)

Based on experiments on a held-out validation set, we set

the hyperparameters in this section as: γ1 = 5, γ2 = 5,

γ3 = 10 and M = 50. Our DAMSM is pretrained 1 by

minimizing LDAMSM using real image-text pairs. Since

the size of images for pretraining DAMSM is not limited

by the size of images that can be generated, real images of

size 299×299 are utilized. In addition, the pretrained text-

encoder in the DAMSM provides visually-discriminative

word vectors learned from image-text paired data for the

attentional generative network. In comparison, conven-

tional word vectors pretrained on pure text data are often

not visually-discriminative, e.g., word vectors of different

colors, such as red, blue, yellow, etc., are often clustered

together in the vector space, due to the lack of grounding

them to the actual visual signals.

In sum, we propose two novel attention models, the at-

tentional generative network and the DAMSM, which play

different roles in the AttnGAN. (i) The attention mechanism

in the generative network (see Eq. 2) enables the AttnGAN

to automatically select word level condition for generating

different sub-regions of the image. (ii) With an attention

mechanism (see Eq. 9), the DAMSM is able to compute

the fine-grained text-image matching loss LDAMSM . It is

worth mentioning that, LDAMSM is applied only on the

output of the last generator Gm−1, because the eventual

goal of the AttnGAN is to generate large images by the last

generator. We tried to apply LDAMSM on images of all

resolutions generated by (G0, G1, ..., Gm−1). However, the

performance was not improved but the computational cost

was increased.

4. Experiments

Extensive experimentation is carried out to evaluate the

proposed AttnGAN. We first study the important compo-

nents of the AttnGAN, including the attentional genera-

tive network and the DAMSM. Then, we compare our At-

tnGAN with previous state-of-the-art GAN models for text-

to-image synthesis [36, 37, 20, 18, 16].

Datasets. Same as previous text-to-image meth-

ods [36, 37, 20, 18], our method is evaluated on CUB [29]

and COCO [14] datasets. We preprocess the CUB dataset

according to the method in [36]. Table 1 lists the statistics

of datasets.

1We also finetuned the DAMSM with the whole network, however the

performance was not improved.

Dataset
CUB [29] COCO [14]

train test train test

#samples 8,855 2,933 80k 40k

caption/image 10 10 5 5

Table 1. Statistics of datasets.

Evaluation. Following Zhang et al. [36], we use the

inception score [23] as the quantitative evaluation measure.

Since the inception score cannot reflect whether the gener-

ated image is well conditioned on the given text description,

we propose to use R-precision, a common evaluation met-

ric for ranking retrieval results, as a complementary eval-

uation metric for the text-to-image synthesis task. If there

are R relevant documents for a query, we examine the top

R ranked retrieval results of a system, and find that r are

relevant, and then by definition, the R-precision is r/R.

More specifically, we conduct a retrieval experiment, i.e.,

we use generated images to query their corresponding text

descriptions. First, the image and text encoders learned in

our pretrained DAMSM are utilized to extract global feature

vectors of the generated images and the given text descrip-

tions. And then, we compute cosine similarities between the

global image vectors and the global text vectors. Finally,

we rank candidate text descriptions for each image in de-

scending similarity and find the top r relevant descriptions

for computing the R-precision. To compute the inception

score and the R-precision, each model generates 30,000 im-

ages from randomly selected unseen text descriptions. The

candidate text descriptions for each query image consist of

one ground truth (i.e., R = 1) and 99 randomly selected

mismatching descriptions.

Besides quantitative evaluation, we also qualitatively

examine the samples generated by our models. Specifi-

cally, we visualize the intermediate results with attention

learned by the attention models F attn. As defined in

Eq. (2), weights βj,i indicates which words the model at-

tends to when generating a sub-region of the image, and
PT−1

i=0 βj,i = 1. We suppress the less-relevant words for an

image’s sub-region via

β̂j,i =

(

βj,i, if βj,i > 1/T,

0, otherwise.
(15)

For better visualization, we fix the word and compute its at-

tention weights with N different sub-regions of an image,

β̂0,i, β̂1,i, ..., β̂N−1,i. We reshape the N attention weights

to
√
N ×

√
N pixels, which are then upsampled with Gaus-

sian filters to have the same size as the generated images.

Limited by the length of the paper, we only visualize the

top-5 most attended words (i.e., words with top-5 highest
PN−1

j=0 β̂j,i values) for each attention model.

4.1. Component analysis

In this section, we first quantitatively evaluate the At-

tnGAN and its variants. The results are shown in Table 2
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Figure 3. Inception scores and R-precision rates by our AttnGAN

and its variants at different epochs on CUB (top) and COCO (bot-

tom) test sets. For the text-to-image synthesis task, R = 1.

Method inception score R-precision(%)

AttnGAN1, no attention 3.98 ± .04 10.37± 5.88

AttnGAN1, λ = 0.1 4.19 ± .06 16.55± 4.83

AttnGAN1, λ = 1 4.35 ± .05 34.96± 4.02

AttnGAN1, λ = 5 4.35 ± .04 58.65± 5.41

AttnGAN1, λ = 10 4.29 ± .05 63.87± 4.85

AttnGAN2, λ = 5 4.36 ± .03 67.82 ± 4.43

AttnGAN2, λ = 50
25.89 ± .47 85.47 ± 3.69

(COCO)

Table 2. The best inception score and the corresponding R-

precision rate of each AttnGAN model on CUB (top six rows) and

COCO (the last row) test sets. More results in Figure 3.

and Figure 3. Our “AttnGAN1” architecture has one atten-

tion model and two generators, while the “AttnGAN2” ar-

chitecture has two attention models stacked with three gen-

erators (see Figure 2). In addition, as illustrated in Figure 4,

Figure 5, Figure 6, and Figure 7, we qualitatively examine

the images generated by our AttnGAN.

The DAMSM loss. To test the proposed LDAMSM ,

we adjust the value of λ (see Eq. (3)). As shown in Fig-

ure 3, a larger λ leads to a significantly higher R-precision

rate on both CUB and COCO datasets. On the CUB dataset,

when the value of λ is increased from 0.1 to 5, the incep-

tion score of the AttnGAN1 is improved from 4.19 to 4.35

and the corresponding R-precision rate is increased from

16.55% to 58.65% (see Table 2). On the COCO dataset,

by increasing the value of λ from 0.1 to 50, the AttnGAN1

achieves both high inception score and R-precision rate (see

Figure 3). This comparison demonstrates that properly in-

creasing the weight of LDAMSM helps to generate higher

quality images that are better conditioned on given text de-

scriptions. The reason is that the proposed fine-grained

image-text matching loss LDAMSM provides additional su-

pervision (i.e., word level matching information) for train-

ing the generator. Moreover, in our experiments, we do

not observe any collapsed nonsensical mode in the visu-

alization of AttnGAN-generated images. It indicates that,

with extra supervision, the fine-grained image-text match-

ing loss also helps to stabilize the training process of the

AttnGAN. In addition, a baseline model, ‘AttnGAN1, no

attention”, with the text encoder used in [19], is trained

on the CUB dataset. Without using attention, its inception

score and R-precision drops to 3.98 and 10.37%, respec-

tively, which further demonstrates the effectiveness of the

proposed LDAMSM .

The attentional generative network. As shown in Ta-

ble 2 and Figure 3, stacking two attention models in the

generative networks not only generates images of a higher

resolution (from 128×128 to 256×256 resolution), but also

yields higher inception scores on both CUB and COCO

datasets. In order to guarantee the image quality, we find

the best value of λ for each dataset by increasing the value

of λ until the overall inception score is starting to drop on

a held-out validation set. “AttnGAN1” models are built for

searching the best λ, based on which a “AttnGAN2” model

is built to generate higher resolution images. Due to GPU

memory constraints, we did not try the AttnGAN with three

attention models. As the result, our final model for CUB

and COCO is “AttnGAN2, λ=5” and “AttnGAN2, λ=50”,

respectively. The final λ of the COCO dataset turns out to

be much larger than that of the CUB dataset, indicating that

the proposed LDAMSM is especially important for generat-

ing complex scenarios like those in the COCO dataset.

To better understand what has been learned by the At-

tnGAN, we visualize its intermediate results with attention.

As shown in Figure 4, the first stage of the AttnGAN (G0)

just sketches the primitive shape and colors of objects and

generates low resolution images. Since only the global sen-

tence vectors are utilized in this stage, the generated images

lack details described by exact words, e.g., the beak and

eyes of a bird. Based on word vectors, the following stages

(G1 and G2) learn to rectify defects in results of the previ-

ous stage and add more details to generate higher-resolution

images. Some sub-regions/pixels of G1 or G2 images can

be inferred directly from images generated by the previous

stage. For those sub-regions, the attention is equally allo-

cated to all words and shown to be black in the attention

map (see Figure 4). For other sub-regions, which usually

have semantic meaning expressed in the text description

such as the attributes of objects, the attention is allocated to

their most relevant words (bright regions in Figure 4). Thus,

those regions are inferred from both word-context features

and previous image features of those regions. As shown in

Figure 4, on the CUB dataset, the words the, this, bird are

usually attended by the F attn models for locating the ob-
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the bird has a yellow crown and a black eyering that is round this bird has a green crown black primaries and a white belly

1:bird 4:yellow 0:the 12:round 11:is 1:bird 0:this 2:has 11:belly 10:white

1:bird 4:yellow 0:the 8:black 12:round 6:black 4:green 10:white 0:this 1:bird

a photo of a homemade swirly pasta with broccoli carrots and onions a fruit stand display with bananas and kiwi

0:a 7:with 5:swirly 8:broccoli 10:and 0:a 6:and 1:fruit 7:kiwi 5:bananas

8:broccoli 6:pasta 0:a 9:carrot 5:swirly 0:a 5:bananas 1:fruit 7:kiwi 6:and

Figure 4. Intermediate results of our AttnGAN on CUB (top) and COCO (bottom) test sets. In each block, the first row gives 64×64 images

by G0, 128×128 images by G1 and 256×256 images by G2 of the AttnGAN; the second and third row shows the top-5 most attended

words by F
attn
1 and F

attn
2 of the AttnGAN, respectively. Refer to the supplementary material for more examples.

Dataset GAN-INT-CLS [20] GAWWN [18] StackGAN [36] StackGAN-v2 [37] PPGN [16] Our AttnGAN

CUB 2.88 ± .04 3.62 ± .07 3.70 ± .04 3.84 ± .06 / 4.36 ± .03

COCO 7.88 ± .07 / 8.45 ± .03 / 9.58 ± .21 25.89 ± .47

Table 3. Inception scores by state-of-the-art GAN models [20, 18, 36, 37, 16] and our AttnGAN on CUB and COCO test sets.

ject; the words describing object attributes, such as colors

and parts of birds, are also attended for correcting defects

and drawing details. On the COCO dataset, we have similar

observations. Since there are usually more than one ob-

ject in each COCO image, it is more visible that the words

describing different objects are attended by different sub-

regions of the image, e.g., bananas, kiwi in the bottom-right

block of Figure 4. Those observations demonstrate that the

AttnGAN learns to understand the detailed semantic mean-

ing expressed in the text description of an image. Another

observation is that our second attention model F attn
2 is able

to attend to some new words that were omitted by the first

attention model F attn
1 (see Figure 4). It demonstrates that,

to provide richer information for generating higher resolu-
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this bird has wings that are black and has a white belly

this bird has wings that are red and has a yellow belly

this bird has wings that are blue and has a red belly

Figure 5. Example results of our AttnGAN model trained on CUB

while changing some most attended words in the text descriptions.

a fluffy black

cat floating on

top of a lake

a red double
decker bus

is floating on

top of a lake

a stop sign

is floating on

top of a lake

a stop sign

is flying in

the blue sky

Figure 6. 256×256 images generated from descriptions of novel

scenarios using the AttnGAN model trained on COCO. (Interme-

diate results are given in the supplementary material.)

Figure 7. Novel images by our AttnGAN on the CUB test set.

tion images at latter stages of the AttnGAN, the correspond-

ing attention models learn to recover objects and attributes

omitted at previous stages.

Generalization ability. Our experimental results above

have quantitatively and qualitatively shown the generaliza-

tion ability of the AttnGAN by generating images from

unseen text descriptions. Here we further test how sensi-

tive the outputs are to changes in the input sentences by

changing some most attended words in the text descriptions.

Some examples are shown in Figure 5. It illustrates that the

generated images are modified according to the changes in

the input sentences, showing that the model can catch sub-

tle semantic differences in the text description. Moreover,

as shown in Figure 6, our AttnGAN can generate images to

reflect the semantic meaning of descriptions of novel sce-

narios that are not likely to happen in the real world, e.g.,

a stop sign is floating on top of a lake. On the other hand,

we also observe that the AttnGAN sometimes generates im-

ages which are sharp and detailed, but are not likely realis-

tic. As examples shown in Figure 7, the AttnGAN creates

birds with multiple heads, eyes or tails, which only exist in

fairy tales. This indicates that our current method is still

not perfect in capturing global coherent structures, which

leaves room to improve. To sum up, observations shown

in Figure 5, Figure 6 and Figure 7 further demonstrate the

generalization ability of the AttnGAN.

4.2. Comparison with previous methods

We compare our AttnGAN with previous state-of-the-

art GAN models for text-to-image generation on CUB and

COCO test sets. As shown in Table 3, on CUB, our At-

tnGAN achieves 4.36 inception score, which significantly

outperforms the previous best inception score of 3.82. More

impressively, our AttnGAN boosts the best reported incep-

tion score on COCO from 9.58 to 25.89, a 170.25% im-

provement relatively. The COCO dataset is known to be

much more challenging than the CUB dataset because it

consists of images with more complex scenarios. Existing

methods struggle in generating realistic high-resolution im-

ages on this dataset. Examples in Figure 4 and Figure 6 il-

lustrate that our AttnGAN succeeds in generating 256×256

images for various scenarios on the COCO dataset, although

those generated images of the COCO dataset are not as

photo-realistic as that of the CUB dataset. The experimen-

tal results show that, compared to previous state-of-the-art

approaches, the AttnGAN is more effective for generating

complex scenes due to its novel attention mechanism that

catches fine-grained word level and sub-region level infor-

mation in text-to-image generation.

Besides StackGAN-v2 [37], the proposed attention

mechanisms can also be applied to the widely used DC-

GAN framework [17]. On the CUB dataset, we build an

AttnDCGAN and a vanilla DCGAN. While the vanilla DC-

GAN conditioned only on the sentence vector (without the

proposed attention mechanisms) is shown unable to gen-

erate plausible 256×256 images, our AttnDCGAN is able

to generate realistic images. The AttnDCGAN achieves

4.12±.05 inception score and 38.45±4.26% R-precision.

The vanilla DCGAN only achieves 2.47±.01 inception

score and 3.69±1.82% R-precision because of severe mode

collapse. The comparison result further demonstrates the

effectiveness of the proposed attention mechanisms.

5. Conclusions

In this paper, an Attentional Generative Adversarial Net-

work, named AttnGAN, is proposed for fine-grained text-

to-image synthesis. We build a novel attentional genera-

tive network for the AttnGAN to generate high quality im-

age through a multi-stage process. We present a deep at-

tentional multimodal similarity model to compute the fine-

grained image-text matching loss for training the generator

of the AttnGAN. Our AttnGAN significantly outperforms

state-of-the-art GAN models, boosting the best reported in-

ception score by 14.14% on the CUB dataset and 170.25%

on the more challenging COCO dataset. Extensive experi-

mental results demonstrate the effectiveness of the proposed

attention mechanisms in the AttnGAN, which is especially

critical for text-to-image generation for complex scenes.
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