
Group Equivariant Capsule Networks

Jan Eric Lenssen Matthias Fey Pascal Libuschewski

TU Dortmund University - Computer Graphics Group
44227 Dortmund, Germany

{janeric.lenssen, matthias.fey, pascal.libuschewski}@udo.edu

Abstract

We present group equivariant capsule networks, a framework to introduce guar-
anteed equivariance and invariance properties to the capsule network idea. Our
work can be divided into two contributions. First, we present a generic routing by
agreement algorithm defined on elements of a group and prove that equivariance
of output pose vectors, as well as invariance of output activations, hold under
certain conditions. Second, we connect the resulting equivariant capsule networks
with work from the field of group convolutional networks. Through this connec-
tion, we provide intuitions of how both methods relate and are able to combine
the strengths of both approaches in one deep neural network architecture. The
resulting framework allows sparse evaluation of the group convolution operator,
provides control over specific equivariance and invariance properties, and can
use routing by agreement instead of pooling operations. In addition, it is able to
provide interpretable and equivariant representation vectors as output capsules,
which disentangle evidence of object existence from its pose.

1 Introduction

Convolutional neural networks heavily rely on equivariance of the convolution operator under
translation. Weights are shared between different spatial positions, which reduces the number
of parameters and pairs well with the often occurring underlying translational transformations in
image data. It naturally follows that a large amount of research is done to exploit other underlying
transformations and symmetries and provide deep neural network models with equivariance or
invariance under those transformations (cf. Figure 1). Further, equivariance and invariance are useful
properties when aiming to produce data representations that disentangle factors of variation: when
transforming a given input example by varying one factor, we usually aim for equivariance in one
representation entry and invariance in the others. One recent line of methods that aim to provide a
relaxed version of such a setting are capsule networks.

Our work focuses on obtaining a formalized version of capsule networks that guarantees those
properties as well as bringing them together with group equivariant convolutions by Cohen and
Welling [2016], which also provide provable equivariance properties under transformations within a
group. In the following, we will shortly introduce capsule networks, as proposed by Hinton et al. and
Sabour et al., before we outline our contribution in detail.

1.1 Capsule networks

Capsule networks [Hinton et al., 2011] and the recently proposed routing by agreement algo-
rithm [Sabour et al., 2017] represent a different paradigm for deep neural networks for vision
tasks. They aim to hard-wire the ability to disentangle the pose of an object from the evidence of
its existence, also called viewpoint equi- and invariance in the context of vision tasks. This is done
by encoding the output of one layer as a tuple of a pose vector and an activation. Further, they are

Preprint. Work in progress.

ar
X

iv
:1

80
6.

05
08

6v
2 

 [
cs

.C
V

] 
 2

4 
O

ct
 2

01
8



R
ou

tin
g

Lp(·) La(·)

g

R
ou

tin
g

gg
Lp(·) La(·)

Equivariance of pose vectors: Lp(g ◦P,a) = g ◦ Lp(P,a); Invariance of agreements: La(g ◦P,a) = La(P,a)

Original Transformed

Figure 1: The task of dynamic routing for capsules with concepts of equivariant pose vectors
and invariant agreements. Layers with those properties can be used to build viewpoint invariant
architectures, which disentangle factors of variation.

inspired by human vision and detect linear, hierarchical relationships occurring in the data. Recent
advances describe the dynamic routing by agreement method that iteratively computes how to route
data from one layer to the next. One capsule layer receives n pose matrices Mi, which are then
transformed by a trainable linear transformation Wi,j to cast n votes for the pose of the jth output
capsule:

Vi,j = Mi ·Wi,j .

The votes are used to compute a proposal for an output pose by a variant of weighted averaging.
The weights are then iteratively refined using distances between votes and the proposal. Last, an
agreement value is computed as output activation, which encodes how strong the votes agree on the
output pose. The capsule layer outputs a set of tuples (M, a), each containing the pose matrix and
the agreement (as activation) of one output capsule.

1.2 Motivation and contribution

General capsule networks do not come with guaranteed equivariances or invariances which are
essential to guarantee disentangled representations and viewpoint invariance. We identified two issues
that prevent exact equivariance in current capsule architectures: First, the averaging of votes takes
place in a vector space, while the underlying space of poses is a manifold. The vote averaging of
vector space representations does not produce equivariant mean estimates on the manifold. Second,
capsule layers use trainable transformation kernels defined over a local receptive field in the spatial
vector field domain, where the receptive field coordinates are agnostic to the pose. They lead to
non-equivariant votes and consequently, non-equivariant output poses. In this work, we propose
possible solutions for these issues.

Our contribution can be divided into the following parts. First, we present group equivariant capsule
layers, a specialized kind of capsule layer whose pose vectors are elements of a group (G, ◦)
(cf. Section 2). Given this restriction, we provide a general scheme for dynamic routing by agreement
algorithms and show that, under certain conditions, equivariance and invariance properties under
transformations from G are mathematically guaranteed. Second, we tackle the issue of aggregating
over local receptive fields in group capsule networks (cf. Section 3). Third, we bring together capsule
networks with group convolutions and show how the group capsule layers can be leveraged to build
convolutional neural networks that inherit the guaranteed equi- and invariances, as well as producing
disentangled representations (cf. Section 4). Last, we apply this combined architecture as proof of
concept application of our framework to MNIST datasets and verify the properties experimentally.

2 Group equivariant capsules

We begin with essential definitions for group capsule layers and the properties we aim to guarantee.
Given a Lie group (G, ◦), we formally describe a group capsule layer with m output capsules by a
set of function tuples

{(Lj
p(P,a), Lj

a(P,a)) | j ∈ {1, . . . ,m}}. (1)

Here, the functionsLp compute the output pose vectors while functionsLa compute output activations,
given input pose vectors P = (p1, ...,pn) ∈ Gn and input activations a ∈ Rn. Since our goal

2



is to achieve global invariance and local equivariance under the group law ◦, we define those two
properties for one single group capsule layer (cf. Figure 1). First, the function computing the output
pose vectors of one layer is left-equivariant regarding applications of the group law if

Lp(g ◦P,a) = g ◦ Lp(P,a), ∀g ∈ G. (2)

Second, the function computing activations of one layer is invariant under applications of the group
law ◦ if

La(g ◦P,a) = La(P,a), ∀g ∈ G. (3)

Since equivariance is transitive, it can be deducted that stacking layers that fulfill these properties
preserves both properties for the combined operation. Therefore, if we apply a transformation from G
on the input of a sequence of those layers (e.g. a whole deep network), we do not change the resulting
output activations but produce output pose vectors which are transformed by the same transformation.
This sums up to fulfilling the vision of locally equivariant and globally invariant capsule networks.

2.1 Group capsule layer

We define the group capsule layer functions as the output of an iterative routing by agreement, similar
to the approach proposed by Sabour et al. [2017]. The whole algorithm, given a generic weighted
average operationM and a distance measure δ, is shown in Algorithm 1.

Algorithm 1 Group capsule layer

Input: poses P = (p1, . . . ,pn) ∈ Gn, activations a = (a1, . . . , an) ∈ Rn

Trainable parameters: transformations ti,j
Output: poses P̂ = (p̂1, . . . , p̂m) ∈ Gm, activations â = (â1, . . . , âm) ∈ Rm

——————————————————————————————————————–
vi,j ← pi ◦ ti,j for all input capsules i and output capsules j
p̂j ←M((v1,j , . . . ,vn,j),a) ∀j
for r iterations do
wi,j ← σ(−δ(p̂j ,vi,j)) · ai ∀i, j
p̂j ←M((v1,j , . . . ,vn,j),w:,j) ∀j

end for
âj ← σ(− 1

n

∑n
i=1 δ(p̂j ,vi,j)) ∀j

Return p̂1, . . . , p̂m, â

Generally, votes are cast by applying trainable group elements ti,j to the input pose vectors pi (using
the group law ◦), where i and j are the indices for input and output capsules, respectively. Then, the
agreement is iteratively computed: First, new pose candidates are obtained by using the weighted
average operatorM. Second, the negative, shifted δ-distance between votes pose candidates are used
for the weight update. Last, the agreement is computed by averaging negative distances between
votes and the new pose. The functions σ can be chosen to be some scaling and shifting non-linearity,
for example σ(x) = sigmoid(α · x + β) with trainable α and β, or as softmax over the output
capsule dimension.

Properties ofM and δ For the following theorems we need to define specific properties ofM and
δ. The mean operationM : Gn × Rn → G should map n elements of the group (G, ◦), weighted
by values x = (x1, ..., xn) ∈ Rn, to some kind of weighted mean of those values in G. Besides the
closure,M should be left-equivariant under the group law, formally:

M(g ◦P,x) = g ◦M(P,x), ∀g ∈ G, (4)

as well as invariant under permutations of the inputs. Further, the distance measure δ needs to be
chosen so that transformations g ∈ G are δ-distance preserving:

δ(g ◦ g1,g ◦ g2) = δ(g1,g2),x), ∀g ∈ G. (5)

Given these preliminaries, we can formulate the following two theorems.

3



Theorem 1. LetM be a weighted averaging operation that is equivariant under left-applications
of g ∈ G and let G be closed under applications ofM. Further, let δ be chosen so that all g ∈ G
are δ-distance preserving. Then, the function Lp(P,a) = (p̂1, . . . , p̂m), defined by Algorithm 1, is
equivariant under left-applications of g ∈ G on input pose vectors P ∈ Gn:

Lp(g ◦P,a) = g ◦ Lp(P,a), ∀g ∈ G. (6)

Proof. The theorem follows by induction over the inner loop of the algorithm, using the equivariance
ofM, δ-preservation and group properties. The full proof is provided in the appendix.

Theorem 2. Given the same conditions as in Theorem 1. Then, the functionLa(P,a) = (â1, . . . , âm)
defined by Algorithm 1 is invariant under joint left-applications of g ∈ G on input pose vectors
P ∈ Gn:

La(g ◦P,a) = La(P,a), ∀g ∈ G. (7)

Proof. The result follows by applying Theorem 1 and the δ-distance preservation. The full proof is
provided in the appendix.

Given these two theorems (and the method proposed in Section 3), we are able to build a deep
group capsule network, by a composition of those layers, that guarantees global invariance in output
activations and equivariance in pose vectors.

2.2 Examples of useful groups

Given the proposed algorithm,M and δ have to be chosen based on the chosen group and element
representations. A canonical application of the proposed framework on images is achieved by
using the two-dimensional rotation group SO(2). We chose to represent the elements of G as two-
dimensional unit vectors,M as the renormalized, Euclidean, weighted mean, and δ as the negative
scalar product. Further higher dimensional groups include the three-dimensional rotation group
SO(3) as well as GL(n,R), the group of general invertible matrices. Other potentially interesting
applications of group capsules are translation groups. Further discussion about them, as well as other
groups, can be found in the appendix.

Group products It should be noted that using the direct product of groups allows us to apply our
framework for group combinations. Given two groups (G, ◦G) and (H, ◦H), we can construct the
direct product group (G, ◦G)×(H, ◦H) = (G×H, ◦), with (g1,h1)◦(g2,h2) = (g1◦Gg2,h1◦Hh2).
Thus, for example, the product SO(2)× (R2,+) is again a group. Therefore, Theorem 1 and 2 also
apply for those combinations. As a result, the pose vectors contain independent poses for each group,
keeping information disentangled between the individual ones.

3 Spatial aggregation with group capsules

This section describes our proposed spatial aggregation method for group capsule networks. As
previously mentioned, current capsule networks perform spatial aggregation of capsules, which does
not result in equivariant poses. When the input of a capsule network is transformed, not only the
deeper pose vectors change accordingly. Since vector fields of poses are computed, the positions
of those pose vectors in Rn might also change based on the transformation, formally modeled
using the concept of induced representations [Cohen et al., 2018]. The trainable transformations
t however, are defined for fixed positions of the local receptive field, which is agnostic to those
translations. Therefore, the composition of pose vectors and trainable transformations to compute the
votes depends on the input transformation, which prevents equivariance and invariance.

Formally, the votes vi computed in a capsule layer over a local receptive field can be described by

vi = g ◦ p(g−1(xi)) ◦ t(xi), (8)

where xi is a receptive field position, p(xi) the input pose at position xi, t(xi) the trainable transfor-
mation at position xi, and g the input transformation. It can be seen that we do not receive a set of
equivariant votes vi since the matching of p(·) and t(·) varies depending on g. A visual example of
the described issue (and a counterexample for equivariance) for an aggregation over a 2× 2 block
and G = SO(2) can be found in Figures 2a and 2b.

4



r−1

◦

p(xi) ◦ t(xi)

(a) Non-rotated input and poses

r r−1

◦

r ◦ p(r−1(xi)) ◦ t(xi)

(b) Rotated input, false matching

r r

◦

r ◦ p(r−1(xi)) ◦ t(r−1(xi))

(c) Pose-aligned t-kernels

Figure 2: Example for the spatial aggregation of a 2×2 block of SO(2) capsules. Figure (a) shows the
behavior for non-rotated inputs. The resulting votes have full agreement, pointing to the top. Figure
(b) shows the behavior when rotating the input by π/2, where we obtain a different element-wise
matching of pose vectors p(·) and transformations t(·), depending on the input rotation. Figure (c)
shows the behavior with the proposed kernel alignment. It can be seen that p and t match again and
the result is the same full pose agreement as in (a) with equivariant mean pose, pointing to the left.

Pose-aligning transformation kernels As a solution, we propose to align the constant positions
xi based on the pose before using them as input for a trainable transformation generator t(·). We
can compute p̄ =M(p1, . . . ,pn,1), a mean pose vector for the current receptive field, given local
pose vectors p1, . . . ,pn. The mean poses of transformed and non-transformed inputs differ by
the transformation g: p̄ = g ◦ q̄. This follows from equivariance ofM, invariance ofM under
permutation, and from the equivariance property of previous layers, meaning that the rotation applied
to the input directly translates to the pose vectors in deeper layers. Therefore, we can apply the
inverse mean pose p̄−1 = q̄−1 ◦ g−1 to the constant input positions x of t and calculate the votes as

vi = g ◦ p(g−1(xi)) ◦ t((q̄−1 ◦ g−1)(xi)) = g ◦ p(x̂i) ◦ t(q̄−1(x̂i)), (9)

as shown as an example in Figure 2c. Using this construction, we use the induced representation as
inputs for p(·) and t(·) equally, leading to a combination of p(·) and t(·) that is independent from g.
Note that q̄−1 ∈ G is constant for all input transformations and therefore does not lead to further
issues. In practice, we use a two-layer MLP to calculate t(·), which maps the normalized position to
n ·m transformations (for n input capsules per position andm output capsules). The proposed method
can also be understood as pose-aligning a trainable, continuous kernel window, which generates
transformations from G. It is similar to techniques applied for sparse data aggregation in irregular
domains [Gilmer et al., 2017]. Since commutativity is not required, it also works for non-abelian
groups (e.g. SO(3)). As an additional benefit, we observed significantly faster convergence during
training when using the MLP generator instead of directly optimizing the transformations t.

4 Group capsules and group convolutions

The newly won properties of pose vectors and activations allow us to combine our group equivariant
capsule networks with methods from the field of group equivariant convolutional networks. We show
that we can build sparse group convolutional networks that inherit invariance of activations under the
group law from the capsule part of the network. Instead of using a regular discretization of the group,
those networks evaluate the convolution for a fixed set of arbitrary group elements. The proposed
method leads to improved theoretical efficiency for group convolutions, improves the qualitative
performance of our capsule networks and is still able to provide disentangled information. In the
following, we shortly introduce group convolutions before presenting the combined architecture.

Group convolution Group convolutions (G-convs) are a generalized convolution/correlation oper-
ator defined for elements of a group (G, ◦) (here for Lie groups with underlying manifold):

[f ? ψ] (g) =

∫
h∈G

K∑
k=1

fk(h)ψ(g−1h) dh, (10)

for K input feature signals, which behaves equivariant under applications of the group law ◦ [Cohen
and Welling, 2016, Cohen et al., 2018]. The authors showed that they can be used to build group
equivariant convolutional neural networks that apply a stack of those layers to obtain an equivariant
architecture. However, compared to capsule networks, they do not directly compute disentangled
representations, which we aim to achieve through the combination with capsule networks.

5



R
o
u
tin

g

p

a

x G-Conv � x

(a) Sparse group convolution.

Lp

ψ

(b) Handling of local receptive fields with different poses.

Figure 3: (a) Scheme for the combination of capsules and group convolutions. Poses computed by
dynamic routing are used to evaluate group convolutions. The output is weighted by the computed
agreement. The invariance property of capsule activations is inherited to the output feature maps of
the group convolutions. (b) Realization of the sparse group convolution. The local receptive fields are
transformed using the calculated poses Lp before aggregated using a continuous kernel function ψ.

4.1 Sparse group convolution

An intuition for the proposed method is to interpret our group capsule network as a sparse tree
representation of a group equivariant network. The output feature map of a group convolution layer
[f ? ψ] (g) over group G is defined for each element g ∈ G. In contrast, the output of our group
capsule layer is a set of tuples (g, a) with group element g (pose vector) and activation a, which can
be interpreted as a sparse index/value representation of the output of a G-conv layer. In this context,
the pose g, computed using routing by agreement from poses of layer l, serves as the hypothesis for
the relevance of the feature map content of layer l + 1 at position g. We can now sparsely evaluate
the feature map output of the group convolution and can use the agreement values from capsules
to dampen or amplify the resulting feature map contents, bringing captured pose covariances into
consideration. Figure 3a shows a scheme of this idea.

We show that when using the pose vector outputs to evaluate a G-conv layer for group element g we
inherit the invariance property from the capsule activations, by proving the following theorem:

Theorem 3. Given pose vector outputs Lp(p,a) of a group capsule layer for group G, input signal
f : G → R, and filter ψ : G → R. Then, the group convolution [f ? ψ] is invariant under joint
left-applications of g ∈ G on capsule input pose vectors P ∈ Gn and signal f :

[(g ◦ f) ? ψ] (Lp(g ◦P,a)) = [f ? ψ] (Lp(P,a)). (11)

Proof. The invariance follows from Theorem 1, the definition of group law application on the feature
map, and the group properties. The full proof is provided in the appendix.

The result tells us that when we pair each capsule in the network with an operator that performs pose-
normalized convolution on a feature map, we get activations that are invariant under transformations
from G. We can go one step further: given a group convolution layer for a product group, we can use
the capsule output poses as an index for one group and densely evaluate the convolution for the other,
leading to equivariance in the dense dimension (follows from equivariance of group convolution)
and invariance in the capsule-indexed dimension. This leads to our proof of concept application
with two-dimensional rotation and translation. We provide further formal details and a proof in the
appendix.

Calculation of the convolutions can be performed by applying the inverse transformation to the local
input using the capsule’s pose vector, as it is shown in Figure 3b. In practice, it can be achieved, e.g.,
by using the grid warping approach proposed by Henriques and Vedaldi [2017] or by using spatial
graph-based convolution operators, e.g. from Fey et al. [2018]. Further, we can use the iteratively
computed weights from the routing algorithm to perform pooling by agreement on the feature maps:
instead of using max or average operators for spatial aggregation, the feature map content can be
dynamically aggregated by weighting it with the routing weights before combining it.

6



5 Related work

Different ways to provide deep neural networks with specific equivariance properties have been
introduced. One way is to share weights over differently rotated filters or augment the input heavily
by transformations [Yanzhao et al., 2017, Weiler et al., 2018]. A related but more general set of
methods are the group convolutional networks [Cohen and Welling, 2016, Dieleman et al., 2016] and
its applications like Spherical CNNs in SO(3) [Cohen et al., 2018] and Steerable CNNs in SO(2)
[Cohen and Welling, 2017], which both result in special convolution realizations.

Capsule networks were introduced by Hinton et al. [2011]. Lately, dynamic routing algorithms for
capsule networks have been proposed [Sabour et al., 2017, Hinton et al., 2018]. Our work builds
upon their methods and vision for capsule networks, as well as connect those to the group equivariant
networks.

Further methods include harmonic networks [Worrall et al., 2017], which use circular harmonics
as a basis for filter sets, and vector field networks [Marcos et al., 2017]. These methods focus on
two-dimensional rotational equivariance. While we chose an experiment which is similar to their
approaches, our work aims to build a more general framework for different groups and disentangled
representations.

6 Experiments

We provide proof of concept experiments to verify and visualize the theoretic properties shown in
the previous sections. As an instance of our framework, we chose an architecture for rotational
equivariant classification on different MNIST datasets [LeCun et al., 1998].

6.1 Implementation and training details

Initial pose extraction An important subject which we did not tackle yet is the first pose extraction
of a group capsule network. We need to extract pose vectors p ∈ G with activations a out of the raw
input of the network without eliminating the equi- and invariance properties of Equations 12 and 13.
Our solution for images is to simply compute local gradients using a Sobel operator and taking the
length of the gradient as activation. For the case of a zero gradient, we need to ensure that capsules
with only zero inputs also produce a zero agreement and an undefined pose vector.

Convolution operator As convolution implementation we chose the spline-based convolution
operator proposed by Fey et al. [2018]. Although the discrete two- or three-dimensional convolution
operator is also applicable, this variant allows us to omit the resampling of grids after applying group
transformations on the signal f . The reason for this is the continuous definition range of the B-spline
kernel functions. Due to the representation of images as grid graphs, these kernels allow us to easily
transform local neighborhoods by transforming the relative positions given on the edges.

Dynamic routing In contrast to the method from Sabour et al. [2017], we do not use softmax over
the output capsule dimension but the sigmoid function for each weight individually. The sigmoid
function makes it possible for the network to route information to more than one output capsule as
well as to no output capsule at all. Further, we use two iterations of computing pose proposals.

Architecture and parameters Our canonical architecture consists of five capsule layers where
each layer aggregates capsules from 2× 2 spatial blocks with stride 2. The learned transformations
are shared over the spatial positions. We use the routing procedure described in Section 2 and the
spatial aggregation method described in Section 3. We also pair each capsule with a pose-indexed
convolution as described in Section 4 with ReLU non-linearities after each layer, leading to a CNN
architecture that is guided by pose vectors to become a sparse group CNN. The numbers of output
capsules are 16, 32, 32, 64, and 10 per spatial position for each of the five capsule layers, respectively.
In total, the architecture contains 235k trainable parameters (145k for the capsules and 90k for the
CNN). The architecture results in two sets of classification outputs: the agreement values of the
last capsule layer as well as the softmax outputs from the convolutional part. We use the spread
loss as proposed by Hinton et al. [2018] for the capsule part and standard cross entropy loss for the
convolutional part and add them up. We trained our models for 45 epochs. For further details, we
refer to our implementation, which is available on Github1.

1Implementation at: https://github.com/mrjel/group_equivariant_capsules_pytorch

7

https://github.com/mrjel/group_equivariant_capsules_pytorch


MNIST AffNist MNIST
rot. (50k) rot. (10k)

CNN(*) 92.30% 81.64% 90.19%
Capsules 94.68% 71.86% 91.87%
Whole 98.42% 89.10% 97.40%

(a) Ablation experiment results

Average pose
error [degree]

Naive average poses 70.92
Capsules w/o recon. loss 28.32
Capsules with recon. loss 16.21

(b) Avg. pose errors for different configurations

Table 1: (a) Ablation experiments for the individual parts of our architecture including the CNN
without induced pose vectors, the equivariant capsule network and the combined architecture. All
MNIST experiments are conducted using randomly rotated training and testing data. (b) Average
pose extraction error for three scenarios: simple averaging of initial pose vectors as baseline, our
capsule architecture without reconstruction loss, and the same model with reconstruction loss.

6.2 Results

Equivariance properties and accuracy We confirm equivariance and invariance properties of our
architecture by training our network on non-rotated MNIST images and test it on images, which are
randomly rotated by multiples of π/2. We can confirm that we achieve exactly the same accuracies,
as if we evaluate on the non-rotated test set, which is 99.02%. We also obtain the same output
activations and equivariant pose vectors with occasional small numerical errors < 0.0001, which
confirms equi- and invariance. This is true for capsule and convolutional outputs. When we consider
arbitrary rotations for testing, the accuracy of a network trained on non-rotated images is 89.12%,
which is a decent generalization result, compared to standard CNNs.

For fully randomly rotated training and test sets we performed an ablation study using three datasets.
Those include standard MNIST dataset with 50k training examples and the dedicated MNIST-rot
dataset with the 10k/50k train/test split [Larochelle et al., 2007]. In addition, we replicated the
experiment of Sabour et al. [2017] on the affNIST dataset2, a modification of MNIST where small,
random affine transformations are applied to the images. We trained on padded and translated (not
rotated) MNIST and tested on affNIST. All results are shown in Table 1a. We chose our CNN
architecture without information from the capsule part as our baseline (*). Without the induced poses,
the network is equivalent to a traditional CNN, similar to the grid experiment presented by Fey et al.
[2018]. When trained on a non-rotated MNIST, it achieves 99.13% test accuracy and generalizes
weakly to a rotated test set with only 58.79% test accuracy. For training on rotated data, results are
summarized in the table.

The results show that combining capsules with convolutions significantly outperforms both parts
alone. The pose vectors provided by the capsule network guide the CNN, which significantly boosts
the CNN for rotation invariant classification. We do not reach the state-of-the-art of 99.29% in rotated
MNIST classification obtained by Weiler et al. [2018]. In the affNIST experiment we surpass the
result of 79% from Sabour et al. [2017] with much less parameters (235k vs. 6.8M) by a large margin.

Representations We provide a quantitative and a qualitative analysis of generated representations
of our MNIST trained model in Table 1b and Figure 4, respectively. We measured the average pose
error by rotating each MNIST test example by a random angle and calculated the distance between the
predicted and expected poses. The results of our capsule networks with and without a reconstruction
loss (cf. next paragraph) are compared to the naive approach of hierarchically averaging local pose
vectors. The capsule poses are far more accurate, since they do not depend equally on all local poses
but mostly on those which can be explained by the existence of the detected object. It should be noted
that the pose extraction was not directly supervised—the networks were trained using discriminative
class annotations (and reconstruction loss) only. Similar to Sabour et al. [2017], we observe that
using an additional reconstruction loss improves the extracted representations. In Figure 4a we show
output poses for eleven random test samples, each rotated in π/4 steps. It can be seen that equivariant
output poses are produced in most cases. The bottom row shows an error case, where an ambiguous
pattern creates false poses. We provide a more detailed analysis for different MNIST classes in the
appendix. Figure 4b shows poses after the first (top) and the second (bottom) capsule layer.

2affNIST: http://www.cs.toronto.edu/~tijmen/affNIST/

8

http://www.cs.toronto.edu/~tijmen/affNIST/


(a) Output pose vectors for rotated inputs

(b) Poses after first and second capsule layer

(c) Reconstruction with transformed poses

Figure 4: Visualization of output poses (a), internal poses (b), and reconstructions (c). (a) It can be
seen that the network produces equivariant output pose vectors. The bottom row shows a rare error
case, where symmetries lead to false poses. (b) Internal poses behave nearly equivariant, we can
see differences due to changing discretization and image resampling. (c) The original test sample is
on the left. Then, reconstructions after rotating the representation pose vector are shown. For the
reconstruction, we selected visually correct reconstructed samples, which was not always the case.

Reconstruction For further verification of disentanglement, we also replicated the autoencoder
experiment of Sabour et al. [2017] by appending a three-layer MLP to convolution outputs, agreement
outputs, and poses and train it to reconstruct the input image. Example reconstructions can be seen in
Figure 4c. To verify the disentanglement of rotation, we provide reconstructions of the images after
we applied π/4 rotations to the output pose vectors. It can be seen that we have fine-grained control
over the orientation of the resulting image. However, not all representations were reconstructed
correctly. We chose visually correct ones for display.

7 Limitations
Limitations of our method arise from the restriction of capsule poses to be elements of a group for
which we have properM and δ. Therefore, in contrast to the original capsule networks, arbitrary
pose vectors can no longer be extracted. Through product groups though, it is possible to combine
several groups and achieve more general pose vectors with internally disentangled information if we
can findM and δ for this group. For Lie groups, an implementation of an equivariant Karcher mean
would be a sufficient operator forM. It is defined as the point on the manifold that minimizes the
sum of all weighted geodesic distances [Nielsen and Bhatia, 2012]. However, for each group there
is a different number of possible realizations from which only few are applicable in a deep neural
network architecture. Finding appropriate candidates and evaluating them is part of our future work.

8 Conclusion
We proposed group equivariant capsule networks that provide provable equivariance and invariance
properties. They include a scheme for routing by agreement algorithms, a spatial aggregation method,
and the ability to integrate group convolutions. We proved the relevant properties and confirmed
them through proof of concept experiments while showing that our architecture provides disentangled
pose vectors. In addition, we provided an example of how sparse group equivariant CNNs can be
constructed using guiding poses. Future work will include applying the proposed framework to other,
higher-dimensional groups, to come closer to the expressiveness of original capsule networks while
preserving the guarantees.

Acknowledgments
Part of the work on this paper has been supported by Deutsche Forschungsgemeinschaft (DFG)
within the Collaborative Research Center SFB 876 Providing Information by Resource-Constrained
Analysis, projects B2 and A6.

9



References
T. S. Cohen and M. Welling. Group equivariant convolutional networks. In Proceedings of the 33rd International

Conference on International Conference on Machine Learning (ICML), pages 2990–2999, 2016.

T. S. Cohen and M. Welling. Steerable CNNs. In International Conference on Learning Representations (ICLR),
2017.

T. S. Cohen, M. Geiger, J. Köhler, and M. Welling. Spherical CNNs. In International Conference on Learning
Representations (ICLR), 2018.

T. S. Cohen, M. Geiger, and M. Weiler. Intertwiners between Induced Representations (with Applications to the
Theory of Equivariant Neural Networks). ArXiv e-prints, 2018.

S. Dieleman, J. De Fauw, and K. Kavukcuoglu. Exploiting cyclic symmetry in convolutional neural networks. In
Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML),
pages 1889–1898, 2016.

M. Fey, J. E. Lenssen, F. Weichert, and H. Müller. SplineCNN: Fast geometric deep learning with continuous
B-spline kernels. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum
chemistry. In Proceedings of the 34th International Conference on Machine Learning (ICML), pages
1263–1272, 2017.

J. F. Henriques and A. Vedaldi. Warped convolutions: Efficient invariance to spatial transformations. In
Proceedings of the 34th International Conference on Machine Learning (ICML), pages 1461–1469, 2017.

G. E. Hinton, A. Krizhevsky, and S. D. Wang. Transforming auto-encoders. In Artificial Neural Networks and
Machine Learning - 21st International Conference on Artificial Neural Networks (ICANN), pages 44–51,
2011.

G. E. Hinton, S. Sabour, and N. Frosst. Matrix capsules with EM routing. In International Conference on
Learning Representations (ICLR), 2018.

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep architectures
on problems with many factors of variation. In Proceedings of the 24th International Conference on Machine
Learning, pages 473–480, 2007.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. In
Proceedings of the IEEE, pages 2278–2324, 1998.

D. Marcos, M. Volpi, N. Komodakis, and D. Tuia. Rotation equivariant vector field networks. In IEEE
International Conference on Computer Vision (ICCV), pages 5058–5067, 2017.

M. Moakher. Means and averaging in the group of rotations. SIAM Journal on Matrix Analysis and Applications
(SIMAX), 24(1):1–16, 2002.

F. Nielsen and R. Bhatia. Matrix Information Geometry. Springer Publishing Company, 2012.

S. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing between capsules. In Advances in Neural Information
Processing Systems (NIPS), pages 3859–3869, 2017.

M. Weiler, F. A. Hamprecht, and M. Storath. Learning steerable filters for rotation equivariant CNNs. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow. Harmonic networks: Deep translation and
rotation equivariance. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Z. Yanzhao, Y. Qixiang, Q. Qiang, and J. Jianbin. Oriented response networks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4961–4970, 2017.

10



Appendix

In the following, we provide the detailed proofs for Theorems 1, 2, and 3 in Section A, further information about
applicable groups in Section B, a formal presentation of capsule convolution with product groups in Section C,
and a quantitative analysis of pose vectors in Section D.

A Proofs for theorems

Because the theorems and proofs refer to Algorithm 1, we present it again:

Algorithm 1 Group capsule layer

Input: poses P = (p1, . . . ,pn) ∈ Gn, activations a = (a1, . . . , an) ∈ Rn

Trainable parameters: transformations ti,j
Output: poses P̂ = (p̂1, . . . , p̂m) ∈ Gm, activations â = (â1, . . . , âm) ∈ Rm

——————————————————————————————————————–
vi,j ← pi ◦ ti,j for all input capsules i and output capsules j
p̂j ←M((v1,j , . . . ,vn,j),a) ∀j
for r iterations do
wi,j ← σ(−δ(p̂j ,vi,j)) · ai ∀i, j
p̂j ←M((v1,j , . . . ,vn,j),w:,j) ∀j

end for
âj ← σ(− 1

n

∑n
i=1 δ(p̂j ,vi,j)) ∀j

Return p̂1, . . . , p̂m, â

Theorem 1. LetM be a weighted averaging operation that is equivariant under left-applications of g ∈ G and
let G be closed under applications ofM. Further, let δ be chosen so that all g ∈ G are δ-distance preserving.
Then, the function Lp(P,a) = (p̂1, . . . , p̂m) defined by Algorithm 1 is equivariant under left-applications of
all g ∈ G on input pose vectors P ∈ Gn:

Lp(g ◦P,a) = g ◦ Lp(P,a), ∀g ∈ G. (12)

Proof. The theorem is shown by induction over the inner loop of the algorithm, using the equivariance ofM,
preservation of δ and group properties. The initial step is to show equivariance of the pose vectors before the
loop. After that we show that, given equivariant first pose vectors we receive invariant routing weights w, which
again leads to equivariant pose vectors in the next iteration.

Induction Basis. Let p̂0, p̂g
0 be the first computed pose vectors (before the loop) for non-transformed and

transformed inputs, respectively. The equivariance of those poses can be shown given associativity of group
law, the equivariance ofM and the invariance of activations coming from a previous layer (input activations
a are equal for transformed and non transformed inputs). Note that we show the result for one output capsule.
Therefore, index j is constant and omitted.

p̂g
0 =M(((g ◦ p1) ◦ t1, . . . , (g ◦ pn) ◦ tn),ag)

=M((g ◦ (p1 ◦ t1)), . . . ,g ◦ (pn ◦ tn)),a)
= g ◦M((p1 ◦ t1, . . . ,pn ◦ tn),a)
= g ◦ p̂0

In addition, it is clear to see that the computed votes also are equivariant.

Induction Step. Assuming equivariance of old pose vectors (g ◦ p̂m = p̂g
m), we show equivariance of new pose

vectors (g ◦ p̂m+1 = p̂g
m+1) after the next routing iteration. First we show that calculated weights w behave

again invariant under input transformation g. This follows directly from the induction assumption, δ-distance
preservation, equivariance of the votes and the invariance of a:

wg
i = σ(−δ(p̂g

m,v
g
i )) · ai

= σ(−δ(g ◦ p̂m,g ◦ vi)) · ai
= σ(−δ(p̂m,vi)) · ai
= wi

11



Now we show equivariance of p̂m+1, similarly to the induction basis, but using invariance of w:
p̂g
m+1 =M(((g ◦ p1) ◦ t1, . . . , (g ◦ pn) ◦ tn),wg)

=M((g ◦ (p1 ◦ t1)), . . . ,g ◦ (pn ◦ tn)),w)

= g ◦M((p1 ◦ t1, . . . ,pn ◦ tn),w)

= g ◦ p̂m+1

Theorem 2. Given the same conditions as in Theorem 1. Then, the function La(P,a) = (â1, . . . , âm) defined
by Algorithm 1 is invariant under joint left-applications of g ∈ G on input pose vectors P ∈ Gn:

La(g ◦P,a) = La(P,a), ∀g ∈ G. (13)

Proof. The result follows by applying Theorem 1 and the δ-distance preservation. Equality of a and ag is shown
using Theorem 1 and the δ-distance preservation of G. Again, wie show the result for one output capsule. The σ
is constant and therefore omitted for simplicity.

ag =

n∑
i=1

δ(Lp(gl ◦P,a),gl ◦ pi ◦ gi)

=

n∑
i=1

δ(gl ◦ Lp(P,a),gl ◦ pi ◦ gi)

=

n∑
i=1

δ(Lp(P,a),pi ◦ gi)

= a

Theorem 3. Given pose vector outputs Lp(p,a) of a group capsule layer for group G, input signal f : G→ R
and filter ψ : G→ R. Then, the group convolution [f ? ψ] is invariant under joint left-applications of g ∈ G
on capsule input pose vectors P ∈ Gn and signal f :

[(g ◦ f) ? ψ] (Lp(g ◦P,a)) = [f ? ψ] (Lp(p,a)) (14)

Proof. The result is shown by applying Theorem 1, the definition of group law application on the feature map
(g ◦ f)(h) = f(g−1 ◦ h), a substitution h→ g · h and the group property (g1 ◦ g2)

−1 = g−1
2 ◦ g

−1
1 (using

existence of inverse and neutral element properties of groups):
[(g ◦ f) ? ψ] (Lp(g ◦P,a)) = [(g ◦ f) ? ψ] (g ◦ Lp(P,a))

=

∫
h∈G

∑
i

fi(g
−1 ◦ h)ψi((g ◦ Lp(P,a))

−1 ◦ h) dh

=

∫
h∈G

∑
i

fi(h)ψi((g ◦ Lp(P,a))
−1 ◦ g ◦ h) dh

=

∫
h∈G

∑
i

fi(h)ψi((Lp(P,a)
−1 ◦ g−1 ◦ g ◦ h) dh

=

∫
h∈G

∑
i

fi(h)ψi((Lp(P,a)
−1 ◦ h) dh

= [f ? ψ] (Lp(p,a))

B Examples for useful groups

Given the proposed algorithm,M and δ have to be chosen based on the chosen group and element representations.
Here we provide more information about Lie groups which provide useful equivariances and can potentially be
used in our framework.

The two-dimensional rotation group SO(2) The canonical application of the proposed framework on
images is achieved by using the two-dimensional rotation group SO(2). We chose to represent the elements
of G as two-dimensional unit vectors, choseM as the renormalized Euclidean weighted mean and δ as the
negative scalar product. Then, δ is distance preserving andM is left-equivariant, assuming given poses do not
add up to zero, which can be guaranteed through practical measures.

12



Translation group (Rn,+) An potentially interesting application of group capsules are translation groups.
Essentially, a layer in the network is no longer evaluated for each spatial position, but rather predict which
positions will be of special interest and may sparsely evaluate a feature map at those points. Therefore, the
number of evaluations is heavily reduced, from number of output capsules times number of pixels in the feature
map to only the number of output capsules. However, in our current architectures we would not expect that this
construction would work, because the capsule network would not be able to receive gradients which point in the
direction of good transformations t. It would rather be a random search, until good translational dependencies
between hierarchical parts of objects are found. Also, due to usually local filters in convolutions and sparse
evaluations, the outputs would often be zero at points of interest. ChoosingM and δ however is straight-forward:
the Euclidean weighted average and the l2-distance fulfill all requirements.

Higher dimensional groups Further interesting groups include the three-dimensional rotation group SO(3)
as well as GL(n,R), the group of general invertible matrices. For SO(3), a sufficient averaging operatorM
would be the weighted, element-wise mean of rotation matrices, orthogonally projected onto the SO(3), as was
shown by Moakher [2002] (it is not trivial to compute this operator in a differentiable neural network module,
though). Distance δ can be chosen as the Frobenius distance, as rotation matrices are (Euclidean-)distance
preserving.

C Product group convolutions

Using the direct product of groups allows to apply our framework for group combinations. For example, the
product SO(2) × (R2,+) is again a group. Therefore, Theorem 1 and 2 also apply for those combinations.
Acknowledging that, we can go further and only use capsule routing for a subset of groups in the product: Given
a product group (G, ◦) = (G1, ◦1)× (G2, ◦2) (note that both can again be product groups), we can use routing
by agreement with sparse convolution evaluation over the group (G1, ◦1) and dense convolution evaluation
without routing over the group (G2, ◦2). Evaluation of the convolution operator changes to

[f ? ψ] (r̂, t) =

∫
(g1,g2)∈G

∑
i

fi(g1,g2)ψi(r̂
−1 ◦ g1, t

−1 ◦ g2) dg1dg2. (15)

We preserve equi- and invariance results for the group with routing and equivariance for the one without, which
we show by proving the following theorem. For the given example SO(2)× (R2,+), it leads to evaluating the
feature maps densely for spatial translations while sparsely evaluating different rotations at each position and
routing between them from a layer l to layer l + 1. Activations would still be invariant under application of the
group that is indexed by the capsule poses.

Theorem 4. Let (G, ◦) = (R, ◦1)× (T, ◦2) be a direct product group andM and δ be given like in Theorem 1.
Further, let e be the neutral element of group T . Then, the group convolution [f ? ψ] is invariant under joint
left-applications of r ∈ R on capsule input pose vectors P ∈ Rn and signal f , for all t ∈ T :

[(r, e) ◦ f ? ψ] (Lp(r ◦P,a), t) = [f ? ψ] (Lp(P,a), t) (16)

Proof. The proof is given for one output capsule j and one input feature map i (omitting the sum in the process).
We show the equality analogously to Theorem 3 by applying the result of Theorem 1, the definition of group law
application on the feature map ((g1,g2) ◦ f)(h1,h2) = f(g−1

1 ◦ h1,g
−1
1 ◦ h2), a substitution g1 → r · g1

and the group property (g1 ◦ g2)
−1 = g−1

2 ◦ g
−1
1 ,using the existence of inverse and neutral element properties

of groups (omitting dg’s):

[(r, e) ◦ f ? ψ] (Lp(r ◦P,a), t)
= [(r, e) ◦ f ? ψ] (r ◦ Lp(P,a), t)

=

∫
(g1,g2)∈G

f(r−1 ◦ g1, e ◦ g2)ψ((r ◦ Lp(P,a))
−1 ◦ g1, t

−1 ◦ g2)

=

∫
(g1,g2)∈G

f(g1,g2)ψ((r ◦ Lp(P,a))
−1 ◦ r ◦ g1, t

−1 ◦ g2)

=

∫
(g1,g2)∈G

f(g1,g2)ψ((Lp(P,a)
−1
1 ◦ r

−1 ◦ r ◦ g1, t
−1 ◦ g2)

=

∫
(g1,g2)∈G

f(g1,g2)ψ((Lp(P,a)
−1
1 ◦ g1, t

−1 ◦ g2)

= [f ? ψ] (Lp(P,a), t)

13



0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4P
er
ce
n
ta
ge
s

Degrees

0 1 2 3 4

5 6 7 8 9

Figure 5: Angle error histograms for rotated inputs that require resampling. The plots are given for
each MNIST class individually. The x axis shows bins for the angle errors in degree. The y axis
represents the fraction of test examples falling in each bin.

The theorem allows us to create several types of capsule modules which precisely allow to choose equivariances
and invariances over a set of groups. Looking again at the example SO(2)× (R2,+), Theorem 4 also shows us
a convenient procedure: The convolution for each spatial position t and sparse rotation r can be computed by
rotating a local window of the input feature map by r before applying the convolution. Therefore, we obtain a
straight-forward way to implement CNNs with guaranteed rotational invariance (which also outputs pose vectors
with guaranteed equivariance).

It should be noted that we do not use the roto-translation group SE(2) here, which is a group over entangled
rotation and translation. Though we expect that modeling with this group is also possible, the proofs and the
concepts are simpler, when using a direct product. The reason for this is that we aim to use both parts in different
ways and to keep information disentangled.

D Quantitative analysis of pose vectors

In the main paper we showed that the exact equivariance of pose vectors can be confirmed when only considering
rotations by multiples of π/2. However, when rotating by different angles, the image gets resampled. This leads
to an error in pose vectors for arbitrary rotations, which was evaluated quantitatively in the paper.. We plotted
this error for each MNIST class individually in Figure 5. It can be seen that, for all classes, far away predictions
are rarer than those near the correct pose. We can also observe variances between the classes. The classes with
the largest errors are 1, 4 and 8 while pose vectors from classes 3, 6 and 9 are most accurate. We suspect that
inherent symmetries of the symbols cause a larger pose error.

14


	1 Introduction
	1.1 Capsule networks
	1.2 Motivation and contribution

	2 Group equivariant capsules
	2.1 Group capsule layer
	2.2 Examples of useful groups

	3 Spatial aggregation with group capsules
	4 Group capsules and group convolutions
	4.1 Sparse group convolution

	5 Related work
	6 Experiments
	6.1 Implementation and training details
	6.2 Results

	7 Limitations
	8 Conclusion
	A Proofs for theorems
	B Examples for useful groups
	C Product group convolutions
	D Quantitative analysis of pose vectors

