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ABSTRACT

Despite the effectiveness of dynamic routing procedure recently proposed in
(Sabour et al., 2017), we still lack a standard formalization of the heuristic and its
implications. In this paper, we partially formulate the routing strategy proposed
in Sabour et al. (2017) as an optimization problem that minimizes a combination
of clustering-like loss and a KL regularization term between the current coupling
distribution and its last states. We then introduce another simple routing approach,
which enjoys few interesting properties. In an unsupervised perceptual grouping
task, we show experimentally that our routing algorithm outperforms the dynamic
routing method proposed in Sabour et al. (2017).

1 INTRODUCTION

A capsule is a group of neurons (Hinton et al., 2011; Sabour et al., 2017; Hinton et al., 2018), which
represents the instantiation parameters of a specific type of an object or an object part. A major
advantage of capsules is that they provide a simple way to recognize wholes by recognizing their
parts in a way similar to our human perceptual system. In order to get such a part-whole hierarchy
off the ground, a dynamic routing mechanism (Sabour et al., 2017) is used to send lower-level (layer
`) capsule predictions to higher-lever (layer (`+ 1)) capsules that agrees with the input.

Given a collection of prediction vectors {µ̂j|i = Tijµi} from lower-level capsules, where µi denotes
the output of a lower-level capsule i and Tij is a transformation matrix that relates the lower-level
capsule i to a higher-level capsule j. We denote by S = {s1, · · · , sk} the representations of the
higher-level capsules, where sj is in the same feature space as the lower-level capsules predictions µ̂j|i.
Let wj to represent the activation probability of a higher-level capsule j and we assume the weight
of each lower-level capsules has been absorbed into µi for simplicity. Let C = [cij ]i,j the coupling
probability between capsule i and capsule j. Sabour et al. (2017) proposed the following iterative
routing procedures to decide how to assign each lower-level capsule predictions to higher-level
capsules, as shown in Algorithm 1.

2 AN OPTIMIZATION VIEW ON DYNAMIC ROUTING

We observe that the routing procedure proposed in Algorithm 1 could be partially formulated as
minimizing a clustering loss function with a KL divergence regularization, defined as follows,

min
C,S

L(C, S) := −∑
i,j

wjcij〈µ̂j|i, sj〉+ αKL(C||Cold)


s.t. cij > 0,

∑
j

cij = 1, ||sj || ≤ 1.

(1)

where 〈·, ·〉 represents the inner product, and Cold = [coldij ]i,j is the coupling probability of the last
step. A typical way of solving (1) is to use coordinate descent which optimizes C and S alternatively.
Consider the case when α = 1, then it is easy to show that update of S := {sj} in Algorithm 1 (Line
4) is equivalent to the coordinate descent on S with C fixed, and the update of C := {cij} (Line 3 &
5) is the coordinate descent on C with S fixed. The caveat of this explanation, however, is that it does
not explain the update rule of wj := ||ŝj ||2/(1 + ||ŝj ||2). In the sequel, we propose a new variant
of routing procedure which addresses this problem and makes a number of other improvements
compared with the original routing algorithm.
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Algorithm 1 The Routing Procedure in Sabour et al. (2017)
1: for all capsule i in layer ` and capsule j in layer (`+ 1): bij = 0
2: for iteration t do
3: for all capsule i in layer `: cij =

exp(bij)∑
k exp(bik)

4: for all capsule j in layer (`+ 1): ŝj =
∑
i cij µ̂j|i, sj = ŝj/||ŝj ||.

5: for all capsule i in layer ` and j in layer (`+1): bij = bij+wj〈µ̂j|i, sj〉, where wj =
||ŝj ||2

1+||ŝj ||2 .
6: end for
7: Return wjsj

Algorithm 2 Our Routing Algorithm
1: for iteration t do
2: for all capsule i in layer ` and capsule j in layer (`+ 1): bij = 1

α 〈oj|i, sj〉 cij =
exp(bij)∑
k exp(bik)

.
3: for all capsule j in layer (`+ 1): ŝj =

∑
i cijoj|i, sj = ŝj/||ŝj ||.

4: end for
5: for all capsule j in layer (`+ 1): wj =

||
∑

i cijoj|i||
1+maxk ||

∑
i cikok|i||

6: Return wjsj

3 OUR APPROACH

Our algorithm is summarized in Algorithm 2. It is motivated as solving the following clustering-like
objective function:

min
C,S

L(C, S) := −∑
i

∑
j

cij〈oj|i, sj〉+ α
∑
i

∑
j

cij log cij

 ,

s.t.
∑
j

cij = 1, cij > 0, ||sj || ≤ 1

(2)

where oj|i = 1
||Tij ||F Tijµi and ||Tij ||F represents the Frobenius norm of Tij . Our objective is similar

to agglomerative fuzzy K-Means algorithm (Li et al., 2008). Deriving the coordinate descent updates
of C and S, we obtain the updates in Algorithm 2.

Update of wj Compared with (1), we remove the dependency of activation probability wj from
the objective (2), and set the wj at the end of the routing procedure instead. In this way, we formulate
our routing algorithm as a more formal optimization problem. In addition, setting wj only at the end
of the procedure may prevent w to become highly unbalanced as the iteration number increases.

Scale-invariant Another modification we made is to normalize the transformation matrix Tij before
inputting it into the procedure, that is, we use oj|i := 1

||Tij ||F Tijµi as the input. Note µ̂j|i = Tijµi,
assume ||µi|| ≤ 1, in order to stabilize the whole training process, one need to regularize on
transformation matrix Tij , This prevents the LHS of Eq. (1) goes to infinite negative by as we learn
the values of Tij during trained. The objective in (1) does not prevent the problem by itself, instead,
Sabour et al. (2017) addressed this problem by using an interesting margin loss. Specifically, if an
entity is present by capsule j, then a loss of max(0,m+ − wj)2 is applied. Otherwise, the loss is
taken to be max(0, wj −m−)2, where m+ = 0.9, m− = 0.1 respectively. This is equivalent to force

m−

1−m−
≤ ||

∑
i

cijTijµi||2 ≤
m+

1−m+
. (3)

In this paper, we propose a more general way to do regularization. For each routing iteration, we
re-scale the weight matrix Tij , and the scale of inner product between 〈 1

||Tij ||F Tijµi, sj〉 is restricted
to a value below 1. And the activation weight wj doesn’t depend on the scale of Tij either.
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Annealing the Regularization Term Note that Sabour et al. (2017) used a KL(C||Cold) regular-
ization with a fixed coefficient α = 1. We propose to replace the KL divergence with an entropy
regularization, which enforces cij to close to uniform, instead of its previous value; this makes the
output of routing depends on the input in a more smooth way and hence stablizes the algorithm.
We also gradually decrease the value of α during the iterations. Intuitively, In the early phase, the
predictions of lower-level capsules are not reliable and we need to update the network parameters
to obtain more discriminative representations for the subsequent routing processes. Therefore, we
should set a large α and to make the entropy play a more important role, so that the routing process
will try to assign each lower-level capsules to more higher-level capsules in a more uniform way; In
the late stage of training, we should set a small α, so that the routing process will try to maximize
the agreements between lower-level capsules and higher-level capsules, so that cij need to be more
deterministic. This is similar to assign each lower-level capsule to its nearest higher-level capsule.
We find that the value of α is crucial for the performance in lots of unsupervised tasks, we leave a
thorough discussion to our future work.

4 EXPERIMENTAL RESULTS

In section, we evaluate the performance of our agglomerative routing approach on a simple un-
supervised perceptual grouping task that involves grouping three randomly chosen regular shapes
(4,5,�) located in random positions of 28 × 28 images. Following the settings in Greff et al.
(2017), Each input image can be thought as a spatial mixture of k components parametric by represen-
tations {s1, · · · , sk}. A neural network fθ is trained to transform these capsule {sj} into pixel-wise
predictions. The desired goal is to train a Capsule-network that produces coherent explanations,
which could be further used to decode each object in the inputs respectively.

In our experiments, we use the same Capsule-network structure as the one used in (Sabour et al.,
2017). The representations {sk} is real-valued 16 dimensional vectors generated by the capsule
networks, we fix k = 4. Let mk be the group assignment probabilities and zk = fθ(sk) be the
expected prediction pixel value for that group. Both mk and zk has the same dimension as the input
image x. In this way, the final reconstruction loss is defined as the difference between the original
inputs x and the averaged summation over all predictions

L =

√∑
i

(xi −
∑
k

mk,izk,i)2, s.t. mk,i ≥ 0,
∑
k

mk,i = 1.

We evaluate the quality of the learned groupings with respect to the ground truth while ignoring the
background and overlap regions in a way similar to Greff et al. (2017). We can see from table 4 that
our routing approach achieves better performance than other baselines.

Routing =3 Routing = 5 Routing =10 Routing =15
(Sabour et al., 2017) 0.647 0.830 0.862 0.879

Our Approach 0.816 0.901 0.911 0.914
N-EM (Greff et al., 2017)* 0.475

RNN-EM (Greff et al., 2017)* 0.826

Table 1: Adjusted Mutual Information (AMI) score ([0, 1]) (Vinh et al., 2010), the higher the better.
* as reported in (Greff et al., 2017).

5 CONCLUSION

We show that the routing mechanism proposed in (Sabour et al., 2017) is similar to minimize a
standard clustering loss with a KL regularization on the coupling probabilities. We discuss few
possible ways to improve the performance of capsule networks. Future work includes clear discussions
and experiments on larger datasets.
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