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Abstract

Traditional computer graphics rendering pipelines are designed for procedu-
rally generating 2D images from 3D shapes with high performance. The non-
differentiability due to discrete operations (such as visibility computation) makes it
hard to explicitly correlate rendering parameters and the resulting image, posing
a significant challenge for inverse rendering tasks. Recent work on differentiable
rendering achieves differentiability either by designing surrogate gradients for
non-differentiable operations or via an approximate but differentiable renderer.
These methods, however, are still limited when it comes to handling occlusion, and
restricted to particular rendering effects. We present RenderNet, a differentiable
rendering convolutional network with a novel projection unit that can render 2D im-
ages from 3D shapes. Spatial occlusion and shading calculation are automatically
encoded in the network. Our experiments show that RenderNet can successfully
learn to implement different shaders, and can be used in inverse rendering tasks to
estimate shape, pose, lighting and texture from a single image.

1 Introduction

Rendering refers to the process of forming a realistic or stylized image from a description of the 3D
virtual object (e.g., shape, pose, material, texture), and the illumination condition of the surrounding
scene (e.g., light position, distribution, intensity). On the other hand, inverse rendering (graphics)
aims at estimating these properties from a single image. The two most popular rendering methods,
rasterization-based rendering and ray tracing, are designed to achieve fast performance and realism
respectively, but not for inverse graphics. These two methods rely on discrete operations, such
as z-buffering and ray-object intersection, to identify point visibility in a rendering scene, which
makes these techniques non-differentiable. Although it is possible to treat them as non-differentiable
renderers in computer vision tasks [1], inferring parameters, such as shapes or poses, from the
rendered images using traditional graphics pipelines is still a challenging task. A differentiable
renderer that can correlate the change in a rendered image with the change in rendering parameters
therefore will facilitate a range of applications, such as vision-as-inverse-graphics tasks or image-
based 3D modelling and editing.

Recent work in differentiable rendering achieves differentiability in various ways. Loper and Black
[2] propose an approximate renderer which is differentiable. Kato et al. [3] achieve differentiability
by proposing an approximate gradient for the rasterization operation. Recent work on image-based
reconstruction uses differentiable projections of 3D objects onto silhouette masks as a surrogate for a
rendered image of the objects [4, 5]. Wu et al. [6] and Tulsiani et al. [7] derive differentiable projective
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functions from normal, depth, and silhouette maps, but respectively can only handle orthographic
projection, or needs multiple input images. These projections can then be used to construct an error
signal for the reconstruction process. All of these approaches, however, are restricted to specific
rendering styles (rasterization) [2, 3, 8], input geometry types [9, 10], or limiting output formats such
as depth or silhouette maps [4, 5, 6, 7, 11, 12]. Moreover, none of these approaches try to solve the
problem from the network architecture design point of view. Recent progress in machine learning
shows that network architecture plays an important role for improving the performance of many
tasks. For example, in classification, ResNet [13] and DenseNet [14] have contributed significant
performance gains. In segmentation tasks, U-Net [15] proves that having short-cut connections can
greatly improve the detail level of the segmentation masks. In this paper, we therefore focus on
designing a neural network architecture suitable for the task of rendering and inverse rendering.

We propose RenderNet, a convolutional neural network (CNN) architecture that can be trained end-
to-end for rendering 3D objects, including object visibility computation and pixel color calculation
(shading). Our method explores the novel idea of combining the ability of CNNs with inductive
biases about the 3D world for geometry-based image synthesis. This is different from recent image-
generating CNNs driven by object attributes [16], noise [17], semantic maps [18], or pixel attributes
[19], which make very few assumption about the 3D world and the image formation process. Inspired
by the literature from computer graphics, we propose the projection unit that incorporates prior
knowledge about the 3D world, and how it is rendered, into RenderNet. The projection unit, through
learning, is a differentiable approximation of the non-differentiable visibility computation step,
making RenderNet an end-to-end system. Unlike non-learnt approaches in previous work, a learnt
projection unit uses deep features instead of low-level primitives, making RenderNet generalize well
to a variety of input geometries, robust to erroneous or low-resolution input, as well as enabling
learning multi-style rendering with the same network architecture. RenderNet is differentiable and
can be easily integrated to other neural networks, benefiting various inverse rendering tasks, such
as novel-view synthesis, pose prediction, or image-based 3D shape reconstruction, unlike previous
image-based inverse rendering work that can recover only part of the full 3D shapes [20, 21].

We choose the voxel presentation of 3D shapes for its regularity and flexibility, and its application in
visualizing volumetric data such as medical images. Although voxel grids are traditionally memory
inefficient, computers are becoming more powerful, and recent work also addresses this inefficiency
using octrees [22, 23], enabling high-resolution voxel grids. In this paper, we focus on voxel data,
and leave other data formats such as polygon meshes and unstructured point clouds as possible future
extensions. We demonstrate that RenderNet can generate renderings of high quality, even from
low-resolution and noisy voxel grids. This is a significant advantage compared to mesh renderers,
including more recent work in differentiable rendering, which do not handle erroneous inputs well.

By framing the rendering process as a feed-forward CNN, RenderNet has the ability to learn to
express different shaders with the same network architecture. We demonstrate a number of rendering
styles ranging from simple shaders such as Phong shading [24], suggestive contour shading [25], to
more complex shaders such as a composite of contour shading and cartoon shading [26] or ambient
occlusion [27], some of which are time-consuming and computationally expensive. RenderNet also
has the potential to be combined with neural style transfer to improve the synthesized results, or other
complex shaders that are hard to define explicitly.

In summary, the proposed RenderNet can benefit both rendering and inverse rendering: RenderNet can
learn to generate images with different appearance, and can also be used for vision-as-inverse-graphics
tasks. Our main contributions are threefold.

• A novel convolutional neural network architecture that learns to render in different styles
from a 3D voxel grid input. To our knowledge, we are the first to propose a neural renderer
for 3D shapes with the projection unit that enables both rendering and inverse rendering.

• We show that RenderNet generalizes well to objects of unseen category and more complex
scene geometry. RenderNet can also produce textured images from textured voxel grids,
where the input textures can be RGB colors or deep features computed from semantic inputs.
• We show that our model can be integrated into other modules for applications, such as

texturing or image-based reconstruction.
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2 Related work

Our work is related to three categories of learning-based works: image-based rendering, geometry-
based rendering and image-based shape reconstruction. In this section, we review some landmark
methods that are closely related to our work. In particular, we focus on neural-network-based
methods.

Image-based rendering There is a rich literature of CNN-based rendering by learning from images.
Dosovitskiy et al. [16] create 2D images from low-dimensional vectors and attributes of 3D objects.
Cascaded refinement networks [18], and Pix2Pix [28] additionally condition on semantic maps or
sketches as inputs. Using a model that is more deeply grounded in computer graphics, DeepShading
[19] learns to create images with high fidelity and complex visual effects from per-pixel attributes.
DC-IGN [29] learns disentangled representation of images with respect to transformations, such as
out-of-plane rotations and lighting variations, and thus is able to edit images with respect to these
factors. Relevant works on novel 3D view synthesis [30] leverage category-specific shape priors and
optical flow to deal with occlusion/disocclusion. While these methods yield impressive results, we
argue that geometry-based methods, which make stronger assumptions about the 3D world and how
it produces 2D images, will be able to perform better in certain tasks, such as out-of-plane rotation,
image relighting, and shape texturing. This also coincides with Rematas et al. [31], Yang et al. [32]
and Su et al. [33] who use strong 3D priors to assist the novel-view synthesis task.

Geometry-based rendering Despite the rich literature in rendering in computer graphics, there is
a lot less work using differentiable rendering techniques. OpenDR [2] has been a popular framework
for differentiable rendering. However, being a more general method, it is more strenuous to be
integrated into other neural networks and machine learning frameworks. Kato et al. [3] approximate
the gradient of the rasterization operation to make the rendering differentiable. However, this method
is limited to rasterization-based rendering, making it difficult to represent more complex effects that
are usually achieved by ray tracing such as global illumination, reflection, or refraction.

Image-based 3D shape reconstruction Reconstructing 3D shape from 2D image can be treated
as estimating the posterior of the 3D shape conditioned on the 2D information. The prior of the shape
could be a simple smoothness prior or a prior learned from 3D shape datasets. The likelihood term,
on the other hand, requires estimating the distribution of 2D images given the 3D shape. Recent
work has been using 2D silhouette maps of the images [4, 5]. While this proves effective, silhouette
images contain little information about the shape. Hence a large number of images or views of the
object is required for the reconstruction task. For normal maps and depth maps of the shape, Wu et al.
[6] derive differentiable projective functions assuming orthographic projection. Similarly, Tulsiani
et al. [7] propose a differentiable formulation that enables computing gradients of the 3D shape given
multiple observations of depth, normal or pixel color maps from arbitrary views. In our work, we
propose RenderNet as a powerful model for the likelihood term. To reconstruct 3D shapes from 2D
images, we do MAP estimation using our trained rendering network as the likelihood function, in
addition to a shape prior that is learned from a 3D shape dataset. We show that we can recover not
only the pose and shape, but also lighting and texture from a single image.

3 Model

The traditional computer graphics pipeline renders images from the viewpoint of a virtual pin-hole
camera using a common perspective projection. The viewing direction is assumed to be along
the negative z-axis in the camera coordinate system. Therefore, the 3D content defined in the
world coordinate system needs to be transformed into the camera coordinate system before being
rendered. The two currently popular rendering methods, rasterization-based rendering and ray tracing,
procedurally compute the color of each pixel in the image with two major steps: testing visibility in
the scene, and computing shaded color value under an illumination model.

RenderNet jointly learns both steps of the rendering process from training data, which can be
generated using either rasterization or ray tracing. Inspired by the traditional rendering pipeline, we
also adopt the world-space-to-camera-space coordinate transformation strategy, and assume that the
camera is axis-aligned and looks along the negative z-axis of the volumetric grid that discretizes
the input shape. Instead of having the network learn operations which are differentiable and easy
to implement, such as rigid-body coordinate transformation or the interaction of light with surface
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Figure 1: Network architecture. See Section 2 in the supplementary document for details.

normals (e.g. assuming a Phong illumination model [24]), we provide most of them explicitly to the
network. This allows RenderNet to focus its capacity on more complex aspects of the rendering task,
such as recognizing visibility and producing shaded color.

RenderNet receives a voxel grid as input, and applies a rigid-body transformation to convert from
the world coordinate system to the camera coordinate system. The tranformed input, after being
trilinearly sampled, is then fed to a CNN with a projection unit to produce a rendered 2D image.
RenderNet consists of 3D convolutions, a projection unit that computes visibility of objects in the
scene and projects them onto 2D feature maps, followed by 2D convolutions to compute shading.

We train RenderNet using a pixel-space loss between the target image and the output. Optionally,
the network can produce normal maps of the 3D input which can be combined with light sources to
illuminate the scene. While the projection unit can easily incorporate orthographic projections, the
3D convolutions can morph the scene and allows for perspective camera views. In future versions of
RenderNet, perspective transformation may also be explicitly incorporated into the network.

3.1 Rotation and resampling

The transformed input via rigid body motion ensures that the camera is always in the same canonical
pose relative to the voxel grid being rendered. The transformation is parameterized by the rotation
around the y-axis and z-axis, which corresponds to the azimuth and elevation, and a distance R that
determines the scaling factor, i.e., how close the object is to the camera. We embedded the input voxel
grid into a larger grid to make sure the object is not cut off after rotation. The total transformation
therefore includes scaling, rotation, translation, and trilinear resampling.

3.2 Projection unit

The input of RenderNet is a voxel grid V of dimension HV×WV×DV×CV (corresponding to height,
width, depth, and channel), and the output is an image I of dimension HI×WI×CI (corresponding
to height, width and channel). To bridge the disparity between the 3D input and 2D output, we devise
a novel projection unit. The design of this unit is straightforward: it consists of a reshaping layer, and
a multilayer perceptron (MLP). Max pooling is often used to flatten the 3D input across the depth
dimension [4, 5], but this can only create the silhouette map of the 3D shape. The projection unit, on
the other hand, learns not only to perform projection, but also to determine visibility of different parts
of the 3D input along the depth dimension after projection.

For the reshaping step of the unit, we collapse the depth dimension with the feature maps to map the
incoming 4D tensor to a 3D squeezed tensor V ′ with dimension W×H×(D ·C). This is immediately
followed by an MLP, which is capable of learning more complex structure within the local receptive
field than a conventional linear filter [13]. We apply the MLP on each (D · C) vector, which we
implement using a 1×1 convolution in this project. The reshaping step allows each unit of the MLP
to access the features across different channels and the depth dimension of the input, enabling the
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network to learn the projection operation and visibility computation along the depth axis. Given
the squeezed 3D tensor V ′ with (D · C) channels, the projection unit produces a 3D tensor with K
channels as follows:

Ii,j,k = f

(∑
dc

wk,dc · V ′
i,j,dc + bk

)
(1)

where i, j are pixel coordinates, k is the image channel, dc is the squeezed depth channel, where
d and c are the depth and channel dimension of the original 4D tensor respectively, and f is some
non-linear function (parametric ReLU in our experiments).

3.3 Extending RenderNet

We can combine RenderNet with other networks to handle more rendering parameters and perform
more complex tasks such as shadow rendering or texture mapping. We model a conditional renderer
p(I | V, h) where h can be extra rendering parameter such as lights, or spatially-varying parameters
such as texture.

Here we demonstrate the extensibility of RenderNet using the example of the Phong illumination
model [24]. The per-pixel shaded color for the images is calculated by S = max(0,~l · ~n+ a), where
~l is the unit light direction vector, ~n is the normal vector, whose components are encoded by the RGB
channels of the normal map, and a is an ambient constant. Shading S and albedo map A are further
combined to create the final image I based on I = A � S [34]. This is illustrated in Section 4.1,
where we combine the albedo map and normal map rendered by the combination of a texture-mapping
network and RenderNet to render shaded images of faces.

4 Experiments

To explore the generality of RenderNet, we test our method on both computer graphics and vision
tasks. First, we experiment with different rendering tasks with varying degree of complexity, including
challenging cases such as texture mapping and surface relighting. Second, we experiment with vision
applications such as image-based pose and shape reconstruction.

Datasets We use the chair dataset from ShapeNet Core [35]. Apart from being one of the categories
with the largest number of data points (6778 objects), the chair category also has large intra-class
variation. We convert the ShapeNet Dataset to 64×64×64 voxel grids using volumetric convolution
[36]. We randomly sampled 120 views of each object to render training images at 512×512 resolution.
The elevation and azimuth are uniformly sampled between [10, 170] degrees and [0, 359] degrees,
respectively. Camera radius are set at 3 to 6.3 units from the origin, with the object’s axis-aligned
bounding box normalized to 1 unit length. For the texture mapping tasks, we generate 100,000 faces
from the Basel Face Dataset [37], and render them with different azimuths between [220, 320] degrees
and elevations between [70, 110] degrees. We use Blender3D to generate the Ambient Occlusion (AO)
dataset, and VTK for the other datasets. For the contour dataset, we implemented the pixel-based
suggestive contour [25] algorithm in VTK.

Training We adopt the patch training strategy to speed up the training process in our model. We
train the network using random spatially cropped samples (along the width and height dimensions)
from the training voxel grids, while keeping the depth and channel dimensions intact. We only use
the full-sized voxel grid input during inference. The patch size starts as small as 1/8 of the full-sized
grid, and progressively increases towards 1/2 of the full-sized grid at the end of the training.

We train RenderNet using a pixel-space regression loss. We use mean squared error loss for colored
images, and binary cross entropy for grayscale images. We use the Adam optimizer [38], with a
learning rate of 0.00001.

Code, data and trained models will be available at: https://github.com/thunguyenphuoc/
RenderNet.

4.1 Learning to render and apply texture

Figure 2 shows that RenderNet is able to learn different types of shaders, including Phong shading,
contour line shading, complex multi-pass shading (cartoon shading), and a ray-tracing effect (Ambient
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Figure 2: Left: Different types of shaders generated by RenderNet (intput at the top). Right:
Comparing Phong shading between RenderNet, a standard OpenGL mesh renderer, and a standard
Marching Cubes algorithm. RenderNet produces competitive results with the OpenGL mesh renderer
without suffering from mesh artefacts (notice the seating pad of chair (c) or the leg of chair (d) in
Mesh renderer), and does not suffer from low-resolution input like Marching cubes.

Occlusion) with the same network architecture. RenderNet was trained on datasets for each of these
shaders, and the figure shows outputs generated for unseen test 3D shapes. We report the PSNR score
for each shader in Figure 5.

RenderNet generalizes well to shapes of unseen categories. While it was trained on chairs, it can also
render non-man-made objects such as the Stanford Bunny and Monkey (Figure 3). The method also
works very well when there are multiple objects in the scene, suggesting the network recognizes the
visibility of the objects in the scene.

RenderNet can also handle corrupted or low-resolution volumetric data. For example, Figure 3 shows
that the network is able to produce plausible renderings for the Bunny when the input model was
artificially corrupted by adding 50% random noise. When the input model is downsampled (here we
linearly downsampled the input by 50%), RenderNet can still render a high-resolution image with
smooth details. This is advantageous compared to the traditional computer graphics mesh rendering,
which requires a clean and high-quality mesh in order to achieve good rendered results.

It is also straightforward to combine RenderNet with other modules for tasks such as mapping and
rendering texture (Figure 4). We create a texture-mapping network to map a 1D texture vector
representation (these are the PCA coefficients for generating albedo texture using the BaselFace
dataset) to a 3D representation of the texture that has the same width, height and depth as the shape
input. This output is concatenated along the channel dimension with the input 3D shape before
given RenderNet to render the albedo map. This is equivalent to assigning a texture value to the
corresponding voxel in the binary shape voxel grid. We also add another output branch of 2D
convolutions to RenderNet to render the normal map. The albedo map and the normal map produced
by RenderNet are then combined to create shaded renderings of faces as described in Section 3.3.
See Section 2.3 in the supplementary document for network architecture details.

4.2 Architecture comparison

In this section, we compare RenderNet with two baseline encoder-decoder architectures to render
Phong-shaded images. Similar to RenderNet, the networks receive the 3D shape, pose, light position
and light intensity as input. In contrast to RenderNet, the 3D shape given to the alternative network is
in the canonical pose, and the networks have to learn to transform the 3D input to the given pose.
The first network follows the network architecture by Dosovitskiy et al. [16], which consists of a
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Figure 4: Rendering texture and manipulating rendering inputs. Best viewed in color.

series of fully-connected layers and up-convolution layers. The second network is similar but has a
deeper decoder than the first one by adding residual blocks. For the 3D shape, we use an encoding
network to map the input to a latent shape vector (refer to Section 2.2 in the supplementary document
for details). We call these two networks EC and EC-Deep, respectively. These networks are trained
directly on shaded images with a binary cross-entropy loss, using the chair category from ShapeNet.
RenderNet, on the other hand, first renders the normal map, and combines this with the lighting input
to create the shaded image using the shading equation in Section 3.3.

As shown in Figure 5, the alternative model (here we show the EC model) fails to produce important
details of the objects and achieves lower PSNR score on the Phong-shaded chair dataset. More
importantly, this architecture “remembers” the global structure of the objects and fails to generalize
to objects of unseen category due to the use of the fully connected layers. In contrast, our model is
better for rendering tasks as it generalizes well to different categories of shapes and scenes.

4.3 Shape reconstruction from images

Here we demonstrate that RenderNet can be used for single-image reconstruction. It achieves this
goal via an iterative optimization that minimizes the following reconstruction loss:

minimize
z,θ,φ,η

‖I − f(z, θ, φ, η)‖2 (2)

where I is the observed image and f is our pre-trained RenderNet. z is the shape to reconstruct, θ
and η are the pose and lighting parameters, and φ is the texture variable. In essence, this process
maximizes the likelihood of observing the image I given the shape z.
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However, directly minimizing this loss often leads to noisy, unstable results (shown in Figure 2
in the supplementary document). In order to improve the reconstruction, we use a shape prior for
regularizing the process – a pre-trained 3D auto-encoder similar to the TL-embedding network [39]
with 80000 shapes. Instead of optimizing z, we optimize its latent representation z′:

minimize
z′,θ,φ′,η

‖I − f(g(z′), θ, h(φ′), η)‖2 (3)

where g is the decoder of the 3D auto-encoder. It regularizes the reconstructed shape g(z′) by using
the prior shape knowledge (weights in the decoder) for shape generation. Similarly, we use the
decoder h that was trained with RenderNet for the texture rendering task in Section 4.1 to regularize
the texture variable φ′. This corresponds to MAP estimation, where the prior term is the shape
decoder and the likelihood term is given by RenderNet. Note that it is straightforward to extend this
method to the multi-view reconstruction task by summing over multiple per-image losses with shared
shape and appearance.

We compare RenderNet with DC-IGN by Kulkarni et al. [29] in Figure 6. DC-IGN learns to
decompose images into a graphics code Z, which is a disentangled representation containing a set of
latent variables for shape, pose and lighting, allowing them to manipulate these properties to generate
novel views or perform image relighting. In contrast to their work, we explicitly reconstruct the 3D
geometry, pose, lighting and texture, which greatly improves tasks such as out-of-plane rotation,
and allows us to do re-texturing. We also generate results with much higher resolution (512×512)
compared to DC-IGN (150×150). Our results show that having an explicit reconstruction not only
creates sharper images with higher level of details in the task of novel-view prediction, but also
gives us more control in the relighting task such as light color, brightness, or light position (here we
manipulate the elevation and azimuth of the light position), and especially, the re-texturing task.

For the face dataset, we report the Intersection-over-Union (IOU) between the ground truth and
reconstructed voxel grid of 42.99 ± 0.64 for 95% confidence interval. We also perform the same
experiment for the chair dataset – refer to Section 1 in the supplementary material for implementation
details and additional results.
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5 Discussion and conclusion

In this paper, we presented RenderNet, a convolutional differentiable rendering network that can
be trained end-to-end with a pixel-space regression loss. Despite the simplicity in the design of the
network architecture and the projection unit, our experiments demonstrate that RenderNet successfully
performs rendering and inverse rendering. Moreover, as shown in Section 4.1, there is the potential to
combine different shaders in one network that shares the same 3D convolutions and projection unit,
instead of training different networks for different shaders. This opens up room for improvement
and exploration, such as extending RenderNet to work with unlabelled data, using other losses
like adversarial losses or perceptual losses, or combining RenderNet with other architectures, such
as U-Net or a multi-scale architecture where the projection unit is used at different resolutions.
Another interesting possibility is to combine RenderNet with a style-transfer loss for stylization of
3D renderings.

The real world is three-dimensional, yet the majority of current image synthesis CNNs, such as
GAN [17] or DC-IGN [29], only operates in 2D feature space and makes almost no assumptions
about the 3D world. Although these methods yield impressive results, we believe that having a
more geometrically grounded approach can greatly improve the performance and the fidelity of the
generated images, especially for tasks such as novel-view synthesis, or more fine-grained editing
tasks such as texture editing. For example, instead of having a GAN generate images from a noise
vector via 2D convolutions, a GAN using RenderNet could first generate a 3D shape, which is then
rendered to create the final image. We hope that RenderNet can bring more attention to the computer
graphics literature, especially geometry-grounded approaches, to inspire future developments in
computer vision.
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Appendices
In this document, we provide more details for the image-based reconstruction task, and additional results for
the chair dataset (Section A). We also provide more details for different network architectures (Section B). In
Section C, we comment on the current limitations of RenderNet.

A Image-based reconstruction

A.1 Details on the optimization process

We optimize for the loss function:

minimize
z′,θ,φ′,η

||I − f(g(z′), θ, h(φ′), η)||2 (4)

where I is the observed image, z′ is a latent vector representation of the 3D shape, g is the decoder of an
autoencoder used to learn prior information about shapes (See Section A.3), θ is the pose parameter, η is the
lighting parameter, φ′ is the texture vector and h is the texture decoder. z′ is a 200-dimensional vector in this
experiment.

For the pose parameter θ, since we only observe faces from the frontal hemisphere, we subdivide the pose space
of [0–180] degrees for azimuth, [0–180] degrees for elevation into a grid and use the grid points for initialization.
The grid is later further subdivided around current best pose parameters. To avoid local minima, we initialize
multiples of (z′i, θi, φ

′
i, ηi) (i ∈ {1, 2, . . . , 5} in our experiment) and use gradient descent for optimizing all of

the variables. We re-initialise the parameters with the current best ones after every 200 steps, and continue with
the optimization until convergence, which takes around 1800 steps.

A.2 Chair reconstruction from a single image

We optimize for the loss function:

minimize
z,θ

α||I − f(g(z′), θ)||2 + β(z − µ)TΣ−1(z − µ) (5)

where I is the observed image, z′ is a latent vector representation of the 3D shape, g is the decoder of an
autoencoder used to learn prior information about shapes, θ is the pose parameter, µ and Σ are the mean and
covariance of z′ estimated from the training set respectively, and α and β are the weights of the loss terms (we
use α = 5, β = 1). z′ is a 250-dimensional vector in this experiment. We also compare with DC-IGN [29],
however, we could not download the same dataset [40] that was used for DC-IGN due to broken download links.
Therefore, we use the chair category from ShapeNet, which is very similar and greatly overlaps with the dataset
used in DC-IGN, as a substitute in this experiment. We use these chair models to create greyscale shaded images
used as inputs for the reconstruction task.

We adopt the same optimisation strategy as with the face reconstruction (grid subdivision and gradient descent
for the pose and shape vector). The optimisation converges after 2000 steps. The results are shown in Figure
7. Reconstructing chairs is a much more challenging task than reconstructing faces, due to the larger search
space for the pose parameter ([0–360] for azimuth, [0–180] for elevation), as well as the larger variance in the
geometry of different chairs, especially those containing very thin parts, that might not be fully captured by the
shape prior. However, for a task as challenging as simultaneous shape and pose estimation, the results show
great potential of our method, instead of using a feed-forward network similar to the work of Tulsiani et al. [41].
Further work is needed to improve the speed and performance of this method.

A.3 3D shape autoencoder for learning shape prior

We train an antoencoder to learn a prior of 3D shapes. The encoder is a series of 3D convolutions with channels
{64, 128, 256, 512}, kernel sizes {5, 5, 2, 2}, and strides {2, 2, 2, 2} respectively. The fully-connected layer
in the middle maps the output of the last convolution layer to a 200-dimensional vector. This is followed by
a sigmoid activation function and another fully-connected layer that maps the 200-dimensional vector to a
(4 · 4 · 512)-dimensional vector. This vector is then reshaped to a tensor of size 4×4×512 before being fed to a
series of 3D up-convolutions with channels {256, 128, 64, 32, 1}, kernel sizes {4, 4, 4, 4, 4}, and strides {2, 2, 2,
2, 1}. Here we use ELU activation functions for all layers, apart from the last convolution layer in the encoder
and decoder, which uses sigmoid functions.
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Figure 7: Reconstructing chairs from a single image, compared to DC-IGN [29]. The crosses
indicate factors not learnt by the network. We were able to recover both the pose and shape of the
chairs, which can be used to achieve sharper results in the task of novel-view synthesis, as well as
enabling image relighting.

A.4 Reconstruction without prior

To show the importance of using the shape prior g(z′), here we compare the reconstruction results between
those with the shape prior and those without, i.e., we directly optimize for the shape z without using the prior
g(z′). Figure 8 shows that the reconstruction without using the shape prior fails to generate good results.

B Network Architecture

All of our layers use parametric Relu (PReLU) [42], apart from the last layer, which uses a sigmoid function.
We also use dropouts with the probability of 0.5 during training after every convolution, except those used in the
residual blocks.

Each 3D residual block consists of a 3×3×3 3D convolution, a PReLU activation function, and another 3×3×3
3D convolution. The input to the block is then added to the output of the second convolution (shortcut connection).
Each 2D residual block is similar to the 3D one, but we replace 3D convolutions with 2D convolutions.

B.1 RenderNet

The 3D input encoder consists of an encoder made up of 3D convolutions with channels {8, 16, 16}, kernel
sizes {5, 3, 3}, and strides {2, 2, 1} respectively. We add ten 3D residual blocks, before feeding the result of
the last block to the projection unit. The unit resizes the tensor from W×H×32×16 to W×H×(32·16) before
feeding it to a 1×1 convolution with the same number of channels. This is followed by ten 2D residual blocks,
a 4×4 convolution with (32 · 8) channels, and another five 2D residual blocks. To produce the final rendered
image, we use a series of 2D convolutions with channels {32 · 4, 32 · 2, 32, 16, 3 (or 1 for greyscale image)},
kernel sizes {4, 4, 4, 4, 4} and strides {1, 2, 2, 2, 1}, respectively. To generate other modalities of the output
(for example, in Section 4.1 where we render both the albedo map and normal map), we simply create another
branch of 2D convolutions layers starting at the first strided up-convolution layer, and train it jointly with the rest
of the network. This allows different modalities to share high-level information, such as object visibility, and
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Figure 8: Comparison between the reconstruction results with/without prior.

only differ in the pixel appearance (shading). This shows the potential to combine training different shading
styles into training one model that shares high-level information and separates low-level convolution layers for
different shading styles.

B.2 Alternative architecture

Here we describe the architecture of the two alternative models EC and EC-deep that are used to compare against
RenderNet (see Section 4.2 in the main paper).

The 3D input encoder consists of an encoder made up of 3D convolutions with channels {64, 128, 256, 512},
kernel sizes {4, 4, 4, 4}, and strides {2, 2, 2, 2} respectively. All of these convolutions use parametric ReLU. This
is followed by a fully-connected layer to map the tensors to a 200-dimensional vector and a sigmoid activation
function.

For EC, we directly concatenate the lighting and pose parameters to the shape latent vector. For EC-deep,
we feed each of them through a fully-connected layer to map each to a 512-dimensional vector. These two
vectors are then concatenated to the shape latent vector. The final concatenated vector is then fed through 2
fully-connected layers to map to a 1024-dimensional vector, and another fully-connected layer to map to a
(8 · 8 · 512)-dimensional vector. The output of this layer is reshaped into a tensor of size 8×8×512 before being
fed to the decoder.

For EC, the decoder consists of 2D convolutions with 4×4 kernels with channels {512, 512, 256, 256, 128, 128,
64, 64, 32, 32, 16, 1} and strides {2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1}. For EC-deep, we replace each non-strided
convolution in EC with two 2D residual blocks.

B.3 Texture decoder

The texture decoder consists of a fully-connected layer to map the 199-dimensional vector input to a vector of
size (32 · 32 · 32 · 4), which is then reshaped into a tensor of size 32×32×32×4. This is followed by a series of
3D convolutions with channels {4, 8, 4}, kernel sizes {4, 4, 4}, and strides {1, 2, 1} respectively. The output is a
tensor of size 64×64×64×4.

C Limitations

RenderNet was trained using mean squared error loss (or binary cross-entropy loss for greyscale images), which
tends to create blurry results. The effect is more obvious in certain shaders, such as the Ambient Occlusion. This
can potentially be solved by adding an adversarial loss, but we consider this to be future work.
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Another potential limitation of our method is the input voxel grid resolution. We mitigate this limitation by
training RenderNet on smaller, cropped voxel grids and running inference on larger voxel grids. This is made
possible by the fully convolutional design of our architecture. Note that the output size is not limited. In the
future, we could leverage data structures such as octrees or different data formats such as unstructured point
clouds to further improve the scalability of our model.

As shown in Figure 9, RenderNet has a tendency to over-smoothen sharp diagonal shapes. RenderNet also fails
to render extremely thin features, which can easily be handled with the mesh renderer. However, this can be
considered to be the limitation of the voxelizing tool, as the input voxel grid fails to capture very thin features,
and not of RenderNet itself.
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