
Vision-as-Inverse-Graphics:

Obtaining a Rich 3D Explanation of a Scene from a Single Image

Lukasz Romaszko1 Christopher K.I. Williams1,2 Pol Moreno1 Pushmeet Kohli3,*

1School of Informatics, University of Edinburgh, UK 2The Alan Turing Institute, UK 3DeepMind

lukasz.romaszko@gmail.com, c.k.i.williams@ed.ac.uk

p.moreno-comellas@sms.ed.ac.uk, pushmeet@google.com

Abstract

We develop an inverse graphics approach to the problem

of scene understanding, obtaining a rich representation that

includes descriptions of the objects in the scene and their

spatial layout, as well as global latent variables like the

camera parameters and lighting. The framework’s stages

include object detection, the prediction of the camera and

lighting variables, and prediction of object-specific variables

(shape, appearance and pose). This acts like the encoder

of an autoencoder, with graphics rendering as the decoder.

Importantly the scene representation is interpretable and

is of variable dimension to match the detected number of

objects plus the global variables. For the prediction of the

camera latent variables we introduce a novel architecture

termed Probabilistic HoughNets (PHNs), which provides a

principled approach to combining information from multiple

detections. We demonstrate the quality of the reconstructions

obtained quantitatively on synthetic data, and qualitatively

on real scenes.

1. Introduction

Our goal in this paper is the classic computer vision task

of scene understanding, by which we mean obtaining a rep-

resentation that includes descriptions of the objects in the

scene (shape, appearance and pose) and their spatial layout,

as well as global factors like the camera parameters and light-

ing. This work is carried out in a vision-as-inverse-graphics

(VIG) or analysis-by-synthesis framework, where we seek

to reconstruct the input image by using a graphics engine

to render the scene description output by the analysis stage.

Analysis-by-synthesis is an old idea (see e.g. [8, 9]) but it

can be reinvigorated using recent advances in deep learning

for the analysis stages.

Our work is summarised in Fig. 1. Object detectors (stage

A) are run over the input image, producing a set of detections.

* This work was carried out when PK was at Microsoft Research.

We then predict the scene latent variables, consisting of the

camera parameters (stage B), object descriptions (stage C)

and global parameters (stage D), and back-project objects

into the scene given the predicted camera (stage E). To solve

the problem of inferring the camera parameters we introduce

a novel Probabilistic HoughNets (PHNs) architecture, which

carries out a principled integration of information from mul-

tiple object detections. The scene latent variables can then be

rendered by a graphics engine to produce a predicted image,

and by optimizing them the match to the input image can be

refined iteratively.

One highly attractive aspect of the VIG framework is that

it produces a compact and interpretable representation of

the scene in terms of an arbitrary number of objects. Such a

representation can be useful e.g. if we wish to edit/modify ob-

jects in the scene. Much recent work on unsupervised learn-

ing of images such as the variational autoencoder [13, 20]

or the generative adversarial network (GAN) [7] use a fixed

dimensional representation of the image in the latent code.

This is reasonable for encoding a single object, although it

is also helpful to disentangle factors of variation like shape,

appearance and pose. However, such fixed dimensional rep-

resentations are much more problematic for a whole scene.

Our target representation is a scene graph (see e.g. [2, sec.

9.8]) as used in computer graphics for describing a scene

in terms of objects as well as lighting and cameras etc. (for

instance X3D1 is a modern format for scene graphs). The

stages in Fig. 1 act like the encoder of an autoencoder, with

the decoder being graphics rendering.

Our contributions are as follows: (i) we develop a VIG-

based framework to the problem of scene understanding in

3D from a single image, i.e. predicting the camera and illu-

mination as well as the 3D pose of each object—this is to be

contrasted with methods that simply predict 2D image-based

bounding boxes or pixel labelling; (ii) we develop accurate

recognition models trained on latent variables of realistic

synthetic images in a way that they transfer to work with

1https://en.wikipedia.org/wiki/X3D

851

anthonybonner
Highlight

Figure 1. Overview: (A) Objects are detected in the image (green dots: contact points), which jointly predict the camera parameters (B)

using PHNs. Then (C) object latent variables and (D) global parameters (e.g. lighting) are predicted. These allow back-projection of the

objects into the scene (E), and iterative refinement.

real images; (iii) we consider the camera estimation problem

in a novel manner, where given a set of object detections

in an image, we seek to estimate the camera parameters by

combining information from all of the detections – previ-

ous VIG camera-estimation approaches for multiple objects

considered only a restricted problem with fixed camera ele-

vation and distance relative to the ground plane; (iv) we in-

troduce PHNs—a coherent and robust probabilistic method

for combining predictions from multiple voting elements

which represent the predictions using a mixture of Gaussians

(not bins), and make these predictions with a deep neural

network.

2. Methods

We first introduce Probabilistic HoughNets and their use

for estimating the camera parameters in sec. 2.1, as per

label B in Fig. 1. In sec. 2.2 we describe the networks

used for object detection (label A) and the prediction of

object-specific (label C) and global (label D) latent variables.

Eventually, we present how we obtain the final 3D scene

representation (label E).

2.1. Probabilistic HoughNets

We introduce Probabilistic HoughNets (PHNs) in order

to combine information from a number of voting elements2.

Our primary example below is the estimation of the camera

parameters z based on detections of multiple objects {xi}
in a scene. Each voting element i has a local descriptor

xi, and provides evidence via a mixture of Gaussians in the

Hough space for the instantiation parameters z. With Hough

transforms, the predictions of a voting element can lie (in the

2We use the terminology from [4].

noise-free case) on a low-dimensional manifold in Hough

space. When noise is present the manifold is “fuzzed out” in

the remaining dimensions. In our case a 1D manifold arises

from the trade-off between the distance of an object from the

camera and the camera’s focal length (or zoom) in creating

an object image of a given size. Each detection provides one

such manifold and by intersecting them (probabilistically)

we reduce the uncertainty on the camera parameters.

The Hough transform (HT) is a classic computer vision

algorithm dating back to 1962 [10]. It was originally pro-

posed for detecting lines, but was then generalized [3] to

arbitrary templates. Let the set of voting elements {xi} be

denoted by X . Stephens [23] pointed out how the HT can

be made probabilistic by writing

p(z|X) =
p(z)p(X|z)

p(X)
=

p(z)

p(X)

n
∏

i=1

p(xi|z), (1)

assuming that the xi’s are conditionally independent given

z. By taking logs of this equation Stephens shows how

terms involving log p(xi|z) can be added up, mirroring the

standard Hough space accumulator. If x is high dimensional

(e.g. an image patch) and z is low dimensional it makes more

sense to model p(z|xi) rather than p(xi|z). Applying Bayes’

theorem again to eq. 1 we obtain

p(z|X) ∝

∏n

i=1
p(z|xi)

p(z)n−1
, (2)

ignoring terms involving p(X) or p(xi) which are fixed

given the image evidence. This argument in eq. 2 was given

in [1, §3.5] and [4]. An important aspect of the Hough

transform is the ability to deal with outliers; in the frame-

work above this can be handled by robustification, replacing

852

y

z

(0, h, 0)

(x1, 0, z1) (x2, 0, z2)

α

αω

(A) (B) (C)

Figure 2. Camera parameters and PHNs: (A) camera set-up where z = (α, h, ω); (B) Probabilistic HoughNets framework. A CNN is given

the detected patch for each object, the input to a PHN is its last dense layer plus position (x, y) of the image patch and size s (projection

scale) of the object. Here the density plots represent predictions in (α, h)-space conditioned on ω; the dots are Gaussian means, ellipses

show standard deviations; (C) combining multiple PHNs.

p(z|xi) in eq. 2 with γp(z|xi) + (1− γ)p(z) for γ ∈ [0, 1],
where p(z) is a broad prior over z-space.

The Probabilistic HoughNet represents p(z|xi) using a

mixture of Gaussians with the means {µj} arranged in a

grid in Hough space:

p(z|xi) =
∑

j

βj(xi)N (z|µj ,Σ), (3)

where j is an index over the grid, and the βj(xi)’s are x-

dependent mixing coefficients. These are implemented by

using a softmax layer at the output of a deep neural network,

as in a mixture of experts [11], but where only the mixing

proportions but not the µj’s or Σ depend on x. We train

the neural network by maximising the log-likelihood of the

ground-truth instantiation parameters given a voting element.

If the Hough space dimension d is high and there are N
components per dimension in the grid, then the softmax layer

will have Nd outputs parameterized by a large number of

weights, which could lead to overfitting. In this case one can

make use of the chain rule, e.g. splitting z into z1 ∪ z2 and

then writing p(z|xi) = p(z1|xi)p(z2|z1,xi). In this fashion

the exponential scaling of the softmax outputs with d can be

mitigated.

The outputs from eq. 3 are combined as per eq. 2, and

inference is carried out by seeking the mode of log p(z|X)
by using BFGS hill-climbing search from each Gaussian

centre that has a mixing coefficient larger than a threshold.

Instead of using a grid in Hough space as in eq. 2 it would be

possible to use a more general mixture of experts framework

where the µj’s and respective covariance matrices depend on

the input; this would likely require fewer experts but would

make the PHN more complex and difficult to train.

Our setup is as shown in Fig. 2. Panel (A) shows the

camera with unknown parameters z. Panel (B) illustrates

how each of the detections is fed to a PHN in order to make

predictions in the Hough space, represented as a mixture of

Gaussians; these predictions are then combined (panel C) to

give a final predictive distribution for z.

Computation of the Joint Posterior: The density p(z|X)
in eq. 2 is a product of several densities that include a Gaus-

sian Mixture Model (GMM). Although a product of two

GMMs is still a GMM, the resulting product cannot be com-

puted directly (even for only a few observations) due to the

exponential scaling of the number of components. In the

PHNs framework the whole computation given the terms

obtained from single PHNs is exact. We maintain the func-

tions p(z|xi) and p(z), and do not create the mixture with

O(Ndn) components explicitly. For each observation i we

obtain p(z|xi) from a PHN and we store associated GMM co-

efficients. We can then evaluate the function at any point and

obtain the gradient using Automatic-Differentiation (AD).

The derivative is with respect to only d variables, so it is

quick to compute by AD. The gradient may be also used for

efficient sampling, such as Hamiltonian Monte Carlo [18].

Related work for Hough transforms: We have already

described several works related to Hough transforms above.

In addition, [6] used random forests to predict (in our no-

tation) p(z|xi), and were able to obtain good results for

problems of object detection, tracking and action detection.

Their method makes predictions in Hough space for each

xi as a set of Gaussians at xi-dependent locations, and then

uses a probabilistically incorrect method of summing the

predictive densities (rather than their logs); as explained

in [1, §3.5] this can be seen as an approximation due to

robustification.

Camera parameterization: We use PHNs as per eq. 2 to

find the most likely camera configuration. The camera model

has both intrinsic and extrinsic parameters. The extrinsics

are the translation and rotation of the camera; we assume

that the objects lie on the (x, z) plane, and that the camera

is at height y = h above the origin. This is valid as we wish

to estimate object poses relative to the camera. The camera

rotation is as shown in Fig. 2A, with the camera looking at

853

the ground plane at angle of elevation α. For the intrinsics,

we assume that the camera coordinate frame is centred on

the principal point, and the scaling factors m1 and m2 in

pixels/m on the detector are known, so the parameter to be

determined is the focal length f , or equivalently the angle

of view (AoV) ω, which are related by f = a0/(2 tanω/2),
where a0 is the known sensor size. Thus z = (α, h, ω).

2.2. Scene Explanation

Detector: We use a sliding window approach to pro-

duce candidate detections which are sparsified using non-

maximum suppression (NMS). The detector is trained to

predict whether a particular object class is present at a given

location. A positive patch is centered on the projection of

the contact point of the object on the plane. The detector

is also trained to predict the object projection scale (how

large an object is in the image frame). It was crucial to train

the detector so it does not activate for other object classes

or noisy background in real images, therefore a half of the

training dataset consists of random negative patches from

real images. The training dataset also contains negative

patches where an object is actually present but its contact

point is above some distance from the centre. In this way we

force the detector to have a local maximum where the object

is centered. The output probability map of the detector is

thresholded, and finally, NMS is carried out to produce a set

of object detections.

Object and global predictor networks: These models

predict the scene latent variables (LVs). The global variables

are illumination parameters and base plane colour. The

plane colour predictor takes the whole image as input. The

object LVs are the shape (1-of-K), azimuthal rotation and

colour (albedo). The object predictor networks are applied

individually to each detected object patch.

We use softmax output for classification and sigmoid for

regression as all our latent variables are bounded. For rota-

tions we predict the sine and cosine of the angle. Illumination

is predicted by making lighting predictions for each detected

object, and then combining these by taking medians across

the detections. This worked better than providing whole im-

ages as input; we believe that providing the detections allows

cues from shadows and shading to be used more effectively.

Scene graph, back-projection and iterative refinement:

The outputs of the above stages are assembled into a scene

graph. As the scenes we study contain only certain types of

object and lighting etc, the output of our analysis can be ex-

pressed in terms of a domain specific scene graph language.

The detected objects are back-projected into a 3D scene

given the predicted camera to obtain the 3D positions of

objects. Using the object appearances, the plane appearance

and the illumination LVs we can then render the scene, and

refine the fit iteratively. To do so we use a renderer3 based

on OpenDR: Differentiable Renderer [16], extended to sim-

plify rendering multiple textured objects and to use modern

OpenGL functionality (i.e. shaders) when rendering. We

compute the match between the actual and rendered images

using a robustified Gaussian likelihood model, as in [17, eq.

3]. The derivatives of the likelihood computed by OpenDR

are fed to a nonlinear conjugate gradient optimizer4.

3. Related Work for Scene Understanding

As discussed above, VIG is an old idea which can be

reinvigorated using recent advances in deep learning in the

analysis stages. Below we describe some recent work and

how it relates to our paper. Perhaps the most closely re-

lated work to ours is that on Neural Scene De-rendering

(NSD [24]). The authors consider scenes comprised of ei-

ther 2D sprite type objects, or simplified 3D objects (from

the Minecraft game) with 12 object types with fixed shapes

and appearances. However, note that their background scene

(green grass and blue sky) is fixed, as are the camera param-

eters and the lighting. Also their predictions are made only

for the cartoon scenes, not real images.

Another related work is the Attend, Infer, Repeat (AIR)

network of Eslami et al [5], which describes the scene in

terms of a number of attentional fixations. One issue with

the AIR network is that it uses a LSTM-based recurrent net-

work to direct the fixations, but this means that a sequential

framework is used to select an unordered set of object de-

tections. Most of the AIR work is on 2D scenes, but the

authors do provide a demonstration of the AIR network on

a simple “tabletop” scene, where different object types and

the background have fixed and unique colours, the width of

input image is only 32 pixels, where the camera is always

at fixed distance and elevation relative the ground plane.

Recent work by Ren and Zemel [19] also makes use of a

LSTM-based recurrent network to direct fixations, and ad-

ditionally includes a segmentation network for determining

segmentation masks of the detected objects. However, they

are operating in a “2.1D” setting (layered occlusions of flat

leaves), and so do not face the issues of inferring the camera

or dealing with 3D geometry. Other related work in the VIG

space includes Picture [14], the deep convolutional inverse

graphics network (DC-IGN) [15], and [25, 17]. These meth-

ods incorporate “recognition network” type components for

predicting latent variables given an image, but these papers

only study inference for a single object rather than a scene

containing multiple objects.

3https://github.com/polmorenoc/inversegraphics
4http://learning.eng.cam.ac.uk/carl/code/minimize/

854

4. Experimental setup

Stochastic Scene Generator: We create realistic syn-

thetic scenes to train our recognition models. The train-

ing dataset consists of 35k objects in 7k images. For each

image we sample the global parameters and a number of

objects from the mug object class which lie on a table-top

type plane. These are rendered using Blender at 256 × 256

resolution. Background images are taken from the NYU

Depth V2 dataset [21]. We sample the camera AoV and then

height and elevation uniformly in the appropriate ranges:

ω ∈ [20◦, 60◦], α ∈ [0◦, 90◦], h ∈ [0, 150] cm. Illumination

is represented as uniform lighting plus a directional source,

with the strength of the uniform light ∈ [0, 1], the strength

of the directional light ∈ [0, 3], and the azimuth ∈ [0◦, 360◦]
and elevation ∈ [0◦, 90◦] of the rotation of the directional

light. Object colours are sampled uniformly in RGB space.

To sample a scene we first select a target number of ob-

jects (up to 7). We then sample the camera parameters and

the plane colour. Objects are added sequentially to the scene,

and a new object is accepted if at least a half of it is present

in the image, it does not intersect other objects, and is not

occluded by more than 50%. If is is not possible to place

the target number of objects in the scene (e.g. when a cam-

era is pointing downwards from a low height) we reject the

scene. For each object we sample its shape (one of 15 mug

shapes from ShapeNet5), size (diameter chosen randomly

in [8.0, 10.4]cm), colour and rotation, and also a random

texture in such a way that it creates a pattern but the colour

is maintained. Some examples are given in Figure 5 and

Figure 7.

Once the object detector network is trained, we obtain a

derived dataset of the true positive detected patches, which

incorporates translation errors made during the detection

step. For each detection the closest object within a fixed

range is assigned, along with the corresponding object LVs.

This range is set to 24 pixels; the average size of an object’s

bounding box is 42×45 pixels, so this is about half the spatial

size of the object. We then use this dataset for training the

PHNs and predictor models.

PHNs: The size of the grid where GMM means are located

that represent (α, h, ω)-space is NαNhNω = 9× 15× 10,

a total of 1350 components. The space between components

are (∆α,∆h,∆ω) = (10◦, 10cm, 4◦). The parameter γ of

the robust model was set to 0.50 and the prior is uniform in

the Hough space.

We represent the camera LVs as mixture of Gaussians

in 3D space, which allows us to illustrate how PHNs can

handle complex or multimodal distributions. In our case

we decompose the PHN using the chain rule (see sec. 2.1)

into two PHNs: H1 predicts p(α, h|xi, ω), as a GMM with

5https://www.shapenet.org/

means located in the grid of centres of size NαNh, and H2

predicts p(ω|xi) with a grid of size Nω. The covariance

matrix of the Gaussians for H1 is Σ1 = β2diag(∆2

α,∆
2

h),
and Σ2 = β2∆2

ω for H2, with β = 0.6.

Evaluation using Re-Projection Error: In addition to

average log-likelihood, we evaluate our camera calibration

using the re-projection error at the MAP prediction. This

task is carried out by placing a known object (often a checker-

board) with a set of K 3D points in the scene at a known

location, and comparing the actual locations of these points

in the image to those predicted by the estimated projection

matrix. Since we know the projection matrix of both ground-

truth camera, Pgt, and of the predicted camera, P, we can

place a checkerboard (virtually) in the scene, namely in the

front of the view of a maximum size that fits the ground-truth

image. Thus we know the exact positions of the grid-points

in the world coordinates, W. We also know the projection

of the grid-points in the image frame using the ground-truth

camera, wgt = P
gt
W and the ones obtained using the

camera predicted by PHNs, w = PW. The re-projection

error is simply the RMSE of a deviation of the checkerboard

grid-points in both images where w
gt and W are fixed, i.e.:

E(P) =

√

√

√

√

1

K

K
∑

k=1

|wk −w
gt
k |2. (4)

Core details of the networks: All CNNs are based on the

VGG-16 network [22] except for those that predict colour,

which are a standard 3-layer CNN. Our main recognition

networks are based on VGG-16 network and were optimised

on a validation dataset. The networks use all 13 convolu-

tional layers of VGG for 128 × 128 input, but without the

last two max-pooling layers in order to be more spatially

accurate, resulting in an output of size 512 × 16 × 16. We

then train three convolutional layers with 50 filters each of

a size 512/50/50 × 6 × 6. We found this configuration to

work the best amongst different CNN architectures. This

leads to a CNN output with a feature map with a single entry

per feature map. Then we use this representation as an input

to fully connected layers. Since the predictor and PHNs

networks take as input the detections, we also concatenate

this representation with (x, y, s) of a patch (see Figure 2B).

We train all the layers on top of the VGG; this decreases sig-

nificantly the number of trainable weights to approximately

1 million for each of the main networks (detector and PHNs

networks, object shape predictor), and 0.4 million for the

rest of VGG-based predictor networks. Networks are trained

by SGD with Adam optimisation algorithm [12]. We found

the tanh activation in all the layers on top of VGG to be

superior to other activations for all the recognition models.

The supplement presents more details.

855

Case Evaluation metric Baseline CNN Single-PHNs Multi-PHNs Multi better

2D
Log-likelihood −9.51 −8.36 −7.65 −6.18 94%

Re-projection error 9.62 4.95 3.85 2.41 91%

3D
Log-likelihood −13.20 −12.79 −11.33 −10.18 77%

Re-projection error 9.62 5.64 4.91 3.30 86%

Table 1. Results: average log-likelihood and re-projection error for Baseline, CNN, single-PHNs and Multi-PHNs. Re-projection error is

given in % of the image width. The last column shows for each evaluation metric the percentage of images where PHNs predictions after

observing multiple detections are better than the average of single PHN predictions.

5. Results

Figure 3. Input image, reconstructed 3D scene and a different view

of it. Due to the interpretable representation, one could easily edit

the scene, e.g. change object positions or their colors.

We perform a quantitative evaluation of all components

on a synthetic test set of two hundred images containing 1k

objects for which we know all latent variables. Note we

evaluate camera pose, accuracy in object detection and each

object latent variable separately, so each aspect of the scene

reconstruction is assessed, as we are interested in the correct

underlying scene interpretation. We first perform an in-depth

evaluation of PHNs for two cases, when either the AoV is

known (‘2D case’) or unknown (‘3D case’). Next we eval-

uate the predictions of the global and object-specific latent

variables. Finally, we evaluate the prediction qualitatively

for real images, showing that all modules are able to transfer

to real images. Figure 3 shows an example of an inferred

scene representation.

Camera: A single PHN predicts z as a mixture of Gaus-

sians: to make a point prediction we find the maximum a

posteriori (MAP) value. The MAP z-value obtained from

combining multiple detections (Multi-PHNs) is found simi-

larly (see sec. 2.1).

We evaluate the quality via the average predictive log-

likelihood, and through the average re-projection error. Ta-

ble 1 shows the results; for log likelihood a higher value is

better, while for re-projection error lower is better. For the

Single-PHNs column the result is averaged over all detec-

tions in a scene, as well as over scenes. As a simple baseline

(‘Baseline’) we use the prior density p(z), and the mean of

z on the training set as a point estimate.

Standard approaches for camera pose estimation use ei-

ther known objects (e.g. checkerboards) or exploit structure

Figure 4. Examples of prediction for the 3D case (α, h, ω). The left

plot in each pair shows a randomly selected example of a prediction

for a single observation, the right plot shows the joint density with

multiple observations. The ground-truth is denoted by a green ball

located at the intersection of green guiding-lines. The magenta

ball is the MAP. The density is represented as a 3D Hinton plot:

the space is divided into voxels and each cube lies in the centre of

a given voxel. The cube volume and color-coding represents the

amount of the density mass within a single voxel.

like the vanishing points of lines in the scene, but these are

not available in our scenes. To prove that object-based PHNs

are superior to standard CNNs, as a non-trivial comparison

we use a CNN predictor which takes the whole image as in-

put and predicts z. This is based on the VGG-16 architecture

using the same configuration of all the hidden layers as the

PHN network, where there are sigmoid outputs (scaled to

match the Hough space size) for each camera LV. We use

the predicted values to evaluate the Re-projection error. To

evaluate the log-likelihood, for this CNN p(z|X) is mod-

elled as a full covariance Gaussian in 2D/3D, robustified by

including a term (1− γ)p(z) (as in sec. 2.1) to avoid paying

856

Figure 5. Four examples of PHNs prediction; the density sub-plots are in the (camera elevation, camera height)-space. Each density sub-plot

is the prediction for a single observation, apart from the bottom-right sub-plot, which shows the joint density of the multiple observations.

The ground-truth is denoted by a green circle, the MAP by a magenta circle. In the bottom-left example note that the outlying prediction

‘Single 1’ (due to a false positive detection of an object) does not corrupt the final result, due to the outlier model.

Figure 6. Histograms of the errors in the latent variables.

a high penalty for outliers.

For both the 2D and 3D cases PHNs clearly make bet-

ter predictions after observing multiple detections. Even a

Single-PHN that processes a single detection outperforms

the CNN method that takes as input the whole image. The

re-projection error (3D) is 4.91 (Single-PHN) vs 5.64 (CNN),

and is significantly lower given all the detections (3.30).

Figure 5 shows four example scenes, single object predic-

tions in the 2D Hough space, and the Multi-PHNs prediction

(bottom right in each panel). Notice that in the Multi-PHNs

plots the uncertainty has significantly decreased compared

to single observation plots, so the model works as desired.

The same happens for the 3D case as density plots in Figure

4 show. Even in the cases of lower likelihood, the MAP is

very close to the ground-truth, which is confirmed by the

Multi-PHNs re-projection error that is on average a third

lower than Single-PHNs.

Detector: Our detector has 98% precision at 93% recall,

using a radius of 24 pixels for detections (as described above).

The inclusion of real image patches in the training dataset

significantly decreased false positive detections in the back-

ground by around one order of magnitude. Our detector

is very precise, giving an average translation error of the

objects of only 1.2% of the image width in x and 1.5% in y

direction, this is several times less than the usual size of a

mug (see Figures 1A and 5).

Global LVs: The error metric of the ground plane colour

(albedo) is the mean square error (MSE) of colour (a, b)
components in the Lab space.6 The baseline is the mean

intensity of each colour channel in the training set. The light-

ing is projected onto a sphere, scaled so that the difference

between maximal and no illumination is unity, and errors

are computed by MSE. For illumination we use a baseline

that minimizes the error containing both uniform illumina-

tion and directional illumination from the top, at optimal

strengths.

Object LVs: For azimuthal rotation we measure the abso-

lute angular difference between the prediction and ground

truth, but with wrap-around, so the maximum error is 180◦.

The baseline is a fixed rotation angle chosen to mimimize

the error. We evaluate the object colour in the same way as

for global LVs above. For object shape prediction we make

a 1-of-K classification (K = 15).

Results are given for the global LVs and object LVs in

Table 2 and Table 3. Figure 6 shows histograms of the errors

6https://en.wikipedia.org/wiki/Lab color space

857

Input image Predicted scene After refinement Input image Predicted scene After refinement

a) b)

c) d)

e) f)

Figure 7. Results on synthetic (top row) and real scenes (middle, bottom). For each example the input image, predicted 3D scene, and result

after iterative refinement are shown (left to right).

Global LVs Baseline CNN

Illumination 0.084 0.025

Colour 0.054 0.005

Table 2. Global latent variables: median errors.

Object LVs Baseline CNN

Azimuthal rotation 91◦ 22◦

Colour 0.049 0.005

Table 3. Object latent variables: median errors.

in the latent variables for both the baseline (red) and CNN

(green predictors). For illumination and object azimuth the

median results are more than 3 times better than the baseline,

and for the plane and object colours almost 10× better. For

object shape classification the accuracy is 31.6%, compared

to 6.7% of a random choice. This is a good result as often it

is difficult to distinguish particular shapes, e.g. when a mug

is viewed from the top, or is far away.

Scene understanding – qualitative results: In Fig. 7 we

show results on both synthetic (top row) and real scenes

(middle and bottom rows). We note that our methods work

well on real images, despite not having been trained on them.

The mugs are generally predicted well in location, azimuth

and colour, and the camera parameters and lighting are in

good agreement with the input image. The iterative refine-

ment (rightmost panels of each example) mainly improves

the colours of the objects. In (e) the directional light source

is detected properly. In the cluttered scene (f) all mugs are

detected properly except one. More examples are in the

supplement.

6. Discussion

Above we have shown how to successfully put all of

the components together to create an interpretable scene-

graph representation of a 3D scene from a single image, by

accurately predicting the camera parameters using PHNs,

and global and object-based latent variables using CNNs.

Our results show the advantages of the PHNs formulation

using object detections over a deep VGG-16 based CNN that

takes the whole image as input. The framework has been

shown to work on both real and synthetic images.

There are a wide variety of extensions that we are cur-

rently exploring, including the use of more object classes,

and richer models of shape and appearance for each object

class. In this case PHNs can easily be extended to take the

predicted class variable as input.

Acknowledgements

LR was supported by Microsoft Research through its PhD

Scholarship Programme. The work of CW was supported

in part by The Alan Turing Institute under the EPSRC grant

EP/N510129/1.

858

References

[1] M. Allan and C. K. I. Williams. Object Localization using

the Generative Template of Features. Computer Vision and

Image Understanding, 113:824–838, 2009. 2, 3

[2] E. Angel. Interactive Computer Graphics. Addison Wesley,

third edition, 2003. 1

[3] D. H. Ballard. Generalizing the Hough transform to detect

arbitrary shapes. Pattern Recognition, 13(2):111–122, 1981.

2

[4] O. Barinova, V. Lempitsky, and P. Kohli. On detection of

multiple object instances using Hough transforms. IEEE

Trans. Pattern Analysis and Machine Intelligence, 34(9):1773–

1784, 2012. 2

[5] S. M. A. Esalmi, N. Heess, T. Weber, Y. Tassa,

K. Kavukcuoglu, and G. E. Hinton. Attend, Infer, Repeat:

Fast Scene Understanding with Generative Models. In Ad-

vances in Neural Information Processing Systems 29, pages

3225–3233, 2016. 4

[6] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky.

Hough forests for object detection, tracking, and action recog-

nition. IEEE Trans. PAMI, 33(11):2188–2202, 2011. 3

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio. Generative

adversarial nets. In Advances in Neural Information Process-

ing Systems 27, pages 2672–2680. 2014. 1

[8] U. Grenander. Lectures in Pattern Theory: Vol. 1 Pattern

Synthesis. Springer-Verlag, 1976. 1

[9] U. Grenander. Lectures in Pattern Theory: Vol. 2 Pattern

Analysis. Springer-Verlag, 1978. 1

[10] P. V. C. Hough. Method and means for recognizing complex

patterns. U.S. Patent 3069654, 1962. 2

[11] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton.

Adaptive Mixtures of Local Experts. Neural Computation,

3:79–87, 1991. 3

[12] D. P. Kingma and J. Ba. Adam: A Method for Stochastic

Optimization. CoRR, 2014. 5

[13] D. P. Kingma and M. Welling. Auto-Encoding Variational

Bayes. In ICLR, 2014. 1

[14] T. D. Kulkarni, P. Kohli, J. B. Tenenbaum, and V. Mansinghka.

Picture: A probabilistic programming language for scene

perception. In Proc CVPR, pages 4390–4399, 2015. 4

[15] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. B. Tenenbaum.

Deep convolutional inverse graphics network. In Advances in

Neural Information Processing Systems 28, 2015. 4

[16] M. M. Loper and M. J. Black. OpenDR: An Approximate

Differentiable Renderer. In Computer Vision–ECCV 2014,

pages 154–169. Springer, 2014. 4

[17] P. Moreno, C. K. I. Williams, C. Nash, and P. Kohli. Over-

coming Occlusion with Inverse Graphics. In Computer Vision-

ECCV 2016 Workshops Proceedings Part III, pages 170–185.

Springer, 2016. LNCS 9915. 4

[18] R. M. Neal. MCMC using Hamiltonian dynamics. Handbook

of Markov Chain Monte Carlo, 54:113–162, 2010. 3

[19] M. Ren and R. S. Zemel. End-to-End Instance Segmenta-

tion and Counting with Recurrent Attention. arXiv preprint

arXiv:1605.09410, 2016. 4

[20] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic

Backpropagation and Approximate Inference in Deep Gener-

ative Models. In ICML, 2014. 1

[21] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

Segmentation and Support Inference from RGBD Images. In

ECCV, 2012. 5

[22] K. Simonyan and A. Zisserman. Very Deep Convolutional

Networks for Large-Scale Image Recognition. In Interna-

tional Conference on Learning Representations (ICLR), 2015.

5

[23] R. S. Stephens. A probabilistic approach to the Hough Trans-

form. In Proceedings of the British Machine Vision Confer-

ence, (BMVC), pages 1–6, 1990. 2

[24] J. Wu, J. B. Tenenbaum, and P. Kohli. Neural Scene De-

rendering. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017. 4

[25] I. Yildirim, T. D. Kulkarni, W. A. Freiwald, and J. B. Tenen-

baum. Efficient analysis-by-synthesis in vision: A compu-

tational framework, behavioral tests, and comparison with

neural representations. In Thirty-Seventh Annual Conference

of the Cognitive Science Society, 2015. 4

859

