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Abstract
Highly expressive directed latent variable mod-
els, such as sigmoid belief networks, are diffi-
cult to train on large datasets because exact in-
ference in them is intractable and none of the
approximate inference methods that have been
applied to them scale well. We propose a fast
non-iterative approximate inference method that
uses a feedforward network to implement effi-
cient exact sampling from the variational poste-
rior. The model and this inference network are
trained jointly by maximizing a variational lower
bound on the log-likelihood. Although the naive
estimator of the inference network gradient is too
high-variance to be useful, we make it practi-
cal by applying several straightforward model-
independent variance reduction techniques. Ap-
plying our approach to training sigmoid belief
networks and deep autoregressive networks, we
show that it outperforms the wake-sleep algo-
rithm on MNIST and achieves state-of-the-art re-
sults on the Reuters RCV1 document dataset.

1. Introduction
Compared to powerful globally-normalized latent variable
models, such as deep belief networks (Hinton et al., 2006)
and deep Boltzmann machines (Salakhutdinov & Hinton,
2009a), which can now be trained on fairly large datasets,
their purely directed counterparts have been left behind due
to the lack of efficient learning algorithms. This is unfor-
tunate, because their modularity and ability to generate ob-
servations efficiently make them better suited for integra-
tion into larger systems.

Training highly expressive directed latent variable mod-
els on large datasets is a challenging problem due to the
difficulties posed by inference. Although the generality
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of Markov Chain Monte Carlo (MCMC) methods makes
them straightforward to apply to models of this type (Neal,
1992), they tend to suffer from slow mixing and are usually
too computationally expensive to be practical in all but the
simplest models. Such methods are also difficult to scale to
large datasets because they need to store the current state of
the latent variables for all the training observations between
parameter updates.

Variational methods (Jordan et al., 1999) provide an
optimization-based alternative to the sampling-based
Monte Carlo methods, and tend to be more efficient. They
involve approximating the exact posterior using a distribu-
tion from a more tractable family, often a fully factored
one, by maximizing a variational lower bound on the log-
likelihood w.r.t. the parameters of the distribution. For a
small class of models, using such variational posteriors al-
lows the expectations that specify the parameter updates to
be computed analytically. However, for highly expressive
models such as the ones we are interested in, these expecta-
tions are intractable even with the simplest variational pos-
teriors. This difficulty is usually dealt with by lower bound-
ing the intractable expectations with tractable one by intro-
ducing more variational parameters, as was done for sig-
moid belief nets by Saul et al. (1996). However, this tech-
nique increases the gap between the bound being optimized
and the log-likelihood, potentially resulting in a poorer fit
to the data. In general, variational methods tend to be more
model-dependent than sampling-based methods, often re-
quiring non-trivial model-specific derivations.

We propose a new approach to training directed graphi-
cal models that combines the advantages of the sampling-
based and variational methods. Its central idea is using a
feedforward network to implement efficient exact sampling
from the variational posterior for the given observation. We
train this inference network jointly with the model by max-
imizing the variational lower bound on the log-likelihood,
estimating all the required gradients using samples from
the inference network. Although naive estimate of the gra-
dient for the inference network parameters is unusable due
to its high variance, we make the approach practical by ap-
plying several straightforward and general variance reduc-
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tion techniques. The resulting training procedure for the
inference network can be seen as an instance of the RE-
INFORCE algorithm (Williams, 1992). Due to our use
of stochastic feedforward networks for performing infer-
ence we call our approach Neural Variational Inference and
Learning (NVIL).

Compared to MCMC methods, where many iterations over
the latent variables are required to generate a sample from
the exact posterior and successive samples tend to be highly
correlated, NVIL does not suffer from mixing issues as
each forward pass through the inference network generates
an independent exact sample from the variational posterior.
In addition to being much faster than MCMC, our approach
has the additional advantage of not needing to store the
latent variables for each observation and thus is not only
more memory efficient but also applicable to the pure on-
line learning setting, where each training case is seen once
before being discarded.

In contrast to other work on scaling up variational infer-
ence, NVIL can handle both discrete and continuous latent
variables (unlike Kingma & Welling (2013); Rezende et al.
(2014)) as well variational posteriors with complex depen-
dency structures (unlike Ranganath et al. (2013)). More-
over, the variance reduction methods we employ are sim-
ple and model-independent, unlike the more sophisticated
model-specific control variates of Paisley et al. (2012).

Though the idea of training an inference model by follow-
ing the gradient of the variational bound has been con-
sidered before, it was dismissed as infeasible (Dayan &
Hinton, 1996). Our primary contribution is to show how
to reduce the variance of the naive gradient estimator to
make it practical without narrowing its range of applica-
bility. We also show that the resulting method trains sig-
moid belief networks better than the wake-sleep algorithm
(Hinton et al., 1995), which is the only algorithm we are
aware of that is capable of training the same range of mod-
els efficiently. Finally, we demonstrate the effectiveness
and scalability of NVIL by using it to achieve state-of-the-
art results on the Reuters RCV1 document dataset.

2. Neural variational inference and learning
2.1. Variational objective

Suppose we are interested in training a latent variable
model P

✓

(x, h) with parameters ✓. We assume that ex-
act inference in the model is intractable and thus maximum
likelihood learning is not an option. For simplicity, we will
also assume that all the latent variables in the model are dis-
crete, though essentially the same approach applies if some
or all of the variables are continuous.

We will train the model by maximizing a variational

lower bound on the marginal log-likelihood. Following
the standard variational inference approach (Jordan et al.,
1999), given an observation x, we introduce a distribution
Q

�

(h|x) with parameters �, which will serve as an approx-
imation to its exact posterior P

✓

(h|x). The variational pos-
terior Q will have a simpler form than the exact posterior
and thus will be easier to work with.

The contribution of x to the log-likelihood can then be
lower-bounded as follows (Jordan et al., 1999):

logP

✓

(x) = log

X

h

P

✓

(x, h)

�
X

h

Q

�

(h|x) log P

✓

(x, h)

Q

�

(h|x)

= E

Q

[logP

✓

(x, h)� logQ

�

(h|x)] (1)
= L(x, ✓,�).

By rewriting the bound as

L(x, ✓,�) = logP

✓

(x)�KL(Q

�

(h|x), P
✓

(h|x)), (2)

we see that its tightness is determined by the Kullback-
Leibler (KL) divergence between the variational distribu-
tion and the exact posterior. Maximizing the bound with
respect to the parameters � of the variational distribution
makes the distribution a better approximation to the poste-
rior (w.r.t. the KL-divergence) and tightens the bound.

In contrast to most applications of variational inference
where the variational posterior for each observation is de-
fined using its own set of variational parameters, our ap-
proach does not use any local variational parameters. In-
stead, we use a flexible feedforward model to compute the
variational distribution from the observation. We call the
model mapping x to Q

�

(h|x) the inference network. The
architecture of the inference network is constrained only by
the requirement that Q

�

(h|x) it defines has to be efficient
to evaluate and sample from. Using samples from the infer-
ence network we will be able to compute gradient estimates
for the model and inference network parameters for a large
class of highly expressive architectures, without having to
deal with architecture-specific approximations.

Given a training set D, consisting of observations
x1, ..., xD

, we train the model by (locally) maximizing
L(D, ✓,�) =

P
i

L(x
i

, ✓,�) using gradient ascent w.r.t. to
the model and inference network parameters. To ensure
scalability to large datasets, we will perform stochastic op-
timization by estimating gradients on small minibatches of
randomly sampled training cases.

2.2. Parameter gradients

The gradient of the variational bound for a single observa-
tion x w.r.t. to the model parameters is straightforward to
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derive and has the form

r
✓

L(x) = E

Q

[r
✓

logP

✓

(x, h)] , (3)

where we left ✓ and � off the list of the arguments of L to
simplify the notation. The corresponding gradient w.r.t. to
the inference network parameters is somewhat more in-
volved:

r
�

L(x) = E

Q

[(logP

✓

(x, h)� logQ

�

(h|x))
⇥r

�

logQ

�

(h|x)], (4)

We give its derivation in the supplementary material.

As both gradients involve expectations which are in-
tractable in all but a handful of special cases, we will es-
timate them with Monte Carlo integration, using samples
from the inference network. Having generated n samples
h

(1)
, ..., h

(n) from Q

�

(h|x), we compute

r
✓

L(x) ⇡ 1

n

nX

i=1

r
✓

logP

✓

(x, h

(i)
) (5)

and

r
�

L(x) ⇡ 1

n

nX

i=1

(logP

✓

(x, h

(i)
)� logQ

�

(h

(i)|x))

⇥r
�

logQ

�

(h

(i)|x). (6)

The above gradient estimators are unbiased and thus can be
used to perform stochastic maximization of the variational
objective using a suitable learning rate annealing schedule.
The speed of convergence of this procedure, however, de-
pends heavily on the variance of the estimators used, as we
will see in Section 4.2.

The model gradient estimator (5) is well-behaved and does
not pose a problem. The variance of the inference network
gradient estimator (6), however, can be very high due to
the scaling of the gradient inside the expectation by a po-
tentially large term. As a result, learning variational pa-
rameters with updates based on this estimator can be un-
acceptably slow. In fact, it is widely believed that learn-
ing variational parameters using gradient estimators of the
form (6) is infeasible (Hinton & Zemel, 1994; Dayan &
Hinton, 1996; Kingma & Welling, 2013). In the next sec-
tion we will show how to make this approach practical by
applying variance reduction techniques.

2.3. Variance reduction techniques

Though gradient estimates computed using Eq. 6 are usu-
ally too noisy to be useful in practice, it is easy to reduce
their variance to a manageable level with the following
model-independent techniques.

2.3.1. CENTERING THE LEARNING SIGNAL

Inspecting Eq. 4, we see that we are using

l

�

(x, h) = logP

✓

(x, h)� logQ

�

(h|x) (7)

as the learning signal for the inference network parameters,
and thus are effectively fitting logQ

�

(h|x) to logP

✓

(x, h).
This might seem surprising, given that we want the in-
ference network Q

�

(h|x) to approximate the posterior
distribution P

✓

(x|h), as opposed to the joint distribution
P

✓

(x, h). It turns out however that using the joint instead of
the posterior distribution in Eq. 4 does not affect the value
of the expectation. To see that we start by noting that

E

Q

[r
�

logQ

�

(h|x)] = E

Q


r
�

Q

�

(h|x)
Q

�

(h|x)

�

= r
�

E

Q

[1] = 0. (8)

Therefore we can subtract any c that does not depend on h

from the learning signal in Eq. 4 without affecting the value
of the expectation:

E

Q

[(l

�

(x, h)� c)r
�

logQ

�

(h|x)]
= E

Q

[l

�

(x, h)r
�

logQ

�

(h|x)]� cE

Q

[r
�

logQ

�

(h|x)]
= E

Q

[l

�

(x, h)r
�

logQ

�

(h|x)]. (9)

And as logP

✓

(x, h) = logP

✓

(h|x) + logP

✓

(x) and
logP

✓

(x) does not depend on h, using P

✓

(h|x) in Eq. 4
in place of P

✓

(x, h) does not affect the value of the expec-
tation.

This equivalence allows us to compute the learning sig-
nal efficiently, without having to evaluate the intractable
P

✓

(h|x) term. The price we pay for this tractability is
the much higher variance of the estimates computed us-
ing Eq. 6. Fortunately, Eq. 9 suggests that we can reduce
the variance by subtracting a carefully chosen c from the
learning signal. The simplest option is to make c a pa-
rameter and adapt it as learning progresses. However, c
will not be able capture the systematic differences in the
learning signal for different observations x, which arise in
part due to the presence of the logP

✓

(x) term. Thus we
can reduce the gradient variance further by subtracting an
observation-dependent term C

 

(x) to minimize those dif-
ferences. Doing this does not affect the expected value of
the gradient estimator because C

 

(x) does not depend on
the latent variables. Borrowing a name from the reinforce-
ment learning literature we will refer to c and C

 

(x) as
baselines. We will elaborate on this connection in Sec-
tion 3.4.

We implement the input-dependent baseline C
 

(x) using a
neural network and train it to minimize the expected square
of the centered learning signal E

Q

[(l

�

(x, h)�C
 

(x)�c)2].
Though this approach to fitting the baseline does not re-
sult in the maximal variance reduction, it is simpler and in
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our experience works as well as the optimal approach of
Weaver & Tao (2001) which requires taking into account
the magnitude of the gradient of the inference network pa-
rameters. We also experimented with per-parameter base-
lines but found that they did not improve on the global ones.
Finally, we note that incorporating baselines into the learn-
ing signal can be seen as using simple control variates. In
contrast to the more elaborate control variates (e.g. of Pais-
ley et al. (2012)), baselines do not depend on the form of
the model or of the variational distribution and thus are eas-
ier to use.

2.3.2. VARIANCE NORMALIZATION

Even after centering, using l

�

(x, h) as the learning signal
is non-trivial as its average magnitude can change dramat-
ically, and not necessarily monotonically, as training pro-
gresses. This variability makes training an inference net-
work using a fixed learning rate difficult. We address this
issue by dividing the centered learning signal by a running
estimate of its standard deviation. This normalization en-
sures that the signal is approximately unit variance, and can
be seen as a simple and efficient way of adapting the learn-
ing rate. To ensure that we stop learning when the magni-
tude of the signal approaches zero, we apply variance nor-
malization only when the estimate of the standard devia-
tion is greater than 1. The algorithm for computing NVIL
parameter updates using the variance reduction techniques
described so far is provided in the supplementary material.

2.3.3. LOCAL LEARNING SIGNALS

So far we made no assumptions about the structure of the
model or the inference network. However, by taking advan-
tage of their conditional independence properties we can
train the inference network using simpler and less noisy lo-
cal learning signals instead of the monolithic global learn-
ing signal l

�

(x, h). Our approach to deriving a local signal
for a set of parameters involves removing all the terms from
the global signal that do not affect the value of the resulting
gradient estimator.

We will derive the layer-specific learning signals for the
common case of both the model and the inference network
having n layers of latent variables. The model and the vari-
ational posterior distributions then naturally factor as

P

✓

(x, h) =P

✓

(x|h1
)

Y
n�1

i=1
P

✓

(h

i|hi+1
)P

✓

(h

n

), (10)

Q

�

(h|x) =Q

�

1
(h

1|x)
Y

n�1

i=1
Q

�

i+1
(h

i+1|hi

), (11)

where hi denotes the latent variables in the ith layer and �i

the parameters of the variational distribution for that layer.
We will also use hi:j to denote the latent variables in layers
i through j.

To learn the parameters of the the variational distribution
for layer i , we need to compute the following gradient:

r
�iL(x) = E

Q(h|x)[l�(x, h)r�i logQ�i(h
i|hi�1

)].

Using the law of iterated expectation we can rewrite the
expectation w.r.t. Q(h|x) as

r
�iL(x) = E

Q(h1:i�1|x)[

E

Q(hi:n|hi�1)[l�(x, h)r�i logQ�i(h
i|hi�1

)]|hi�1
]],

where we also used the fact that under the variational pos-
terior, hi:n is independent of h1:i�2 and x, given h

i�1. As
a consequence of Eq. 9, when computing the expectation
w.r.t. Q(h

i:n|hi�1
), all the terms in the learning signal that

do not depend on h

i:n can be safely dropped without af-
fecting the result. This gives us the following local learning
signal for layer i:

l

i

�

(x, h) = logP

✓

(h

i�1:n
)� logQ

�

(h

i:n|hi�1
). (12)

To get the signal for the first hidden layer we simply use x

in place of h0, in which case we simply recover the global
learning signal. For hidden layers i > 1, however, the local
signal involves fewer terms than l

�

(x, h) and thus can be
expected to be less noisy. As we do not assume any within-
layer structure, Eq. 12 applies to models and inference net-
works whether or not Q

�

(h

i|hi�1
) and P

✓

(h

i|hi+1
) are

factorial.

Since local signals can be significantly different from each
other, we use separate baselines and variance estimates for
each signal. For layers i > 1, the input-dependent baseline
C

 

(x) is replaced by C

i

 i
(h

i�1
).

In some cases, further simplification of the learning signal
is possible, yielding a different signal per latent variable.
We leave exploring this as future work.

3. Related work
3.1. Feedforward approximations to inference

The idea of training an approximate inference network
by optimizing a variational lower bound is not new. It
goes back at least to Hinton & Zemel (1994), who de-
rived the variational objective from the Minimum Descrip-
tion Length (MDL) perspective and used it to train linear
autoencoders. Their probabilistic encoder and decoder cor-
respond to our inference network and model respectively.
However, they computed the gradients analytically, which
was possible due to the simplicity of their model, and dis-
missed the sampling-based approach as infeasible due to
noise.

Salakhutdinov & Larochelle (2010) proposed using a feed-
forward “recognition” model to perform efficient input-
dependent initialization for the mean field inference algo-
rithm in deep Boltzmann machines. As the recognition
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model is trained to match the marginal probabilities pro-
duced by mean field inference, it inherits the limitations
of the inference procedure, such as the inability to model
structured posteriors. In contrast, in NVIL the inference
net is trained to match the true posterior directly, without
involving an approximate inference algorithm, and thus the
accuracy of the fit is limited only by the expressiveness of
the inference network itself.

Recently a method for training nonlinear models with con-
tinuous latent variables, called Stochastic Gradient Varia-
tional Bayes (SGVB), has been proposed by Kingma &
Welling (2013) and Rezende et al. (2014). Like NVIL, it
involves using feedforward models to perform approximate
inference and trains them by optimizing a sampling-based
estimate of the variational bound on the log-likelihood.
However, SGVB is considerably less general than NVIL,
because it uses a gradient estimator obtained by taking ad-
vantage of special properties of real-valued random vari-
ables and thus is not applicable to models with discrete
random variables. Moreover, unlike NVIL, SGVB method
cannot handle inference networks with nonlinear depen-
dencies between latent variables. The ideas of the two
methods are complementary however, and NVIL is likely
to benefit from the SGVB-style treatment of continuous-
valued variables, while SGVB might converge faster using
the variance reduction techniques we proposed.

Gregor et al. (2013) have recently proposed a related al-
gorithm for training sigmoid belief network like models
based on the MDL framework. They also use a feedfor-
ward model to perform approximate inference, but concen-
trate on the case of a deterministic inference network and
can handle only binary latent variables. The inference net-
work is trained by backpropagating through binary thresh-
olding units, ignoring the thresholding nonlinearities, to ap-
proximately minimize the coding cost of the joint latent-
visible configurations. This approach can be seen as ap-
proximately maximizing a looser variational lower bound
than (2) due to the absence of the entropy term.

An inference network for efficient generation of samples
from the approximate posterior can also be seen as a prob-
abilistic generalization of the approximate feedforward in-
ference methods developed for sparse coding models in the
last few years (Kavukcuoglu et al., 2008; Bradley & Bag-
nell, 2008; Gregor & LeCun, 2010).

3.2. Sampling-based variational inference

Like NVIL, Black Box Variational Inference (BBVI, Ran-
ganath et al., 2013) learns the variational parameters of
the posterior by optimizing the variational bound using
sampling-based gradient estimates, which makes it appli-
cable to a large range of models. However, unlike NVIL,
BBVI follows the traditional approach of learning a sepa-

rate set of variational parameters for each observation and
does not use an inference network. Moreover, BBVI uses a
fully-factorized mean field approximation to the posterior,
which limits its power.

3.3. The wake-sleep algorithm

NVIL shares many similarities with the wake-sleep algo-
rithm (Hinton et al., 1995), which enjoys the same scal-
ability and applicability to a wide range of models. This
algorithm was introduced for training Helmholtz machines
(Dayan et al., 1995), which are multi-layer belief networks
augmented with recognition networks. These recognition
networks are used for approximate inference and are di-
rectly analogous to NVIL inference networks. Wake-sleep
alternates between updating the model parameters in the
wake phase and the recognition network parameters in the
sleep phase. The model parameter update is based on the
samples generated from the recognition network on the
training data and is identical to the NVIL one (Eq. 5). How-
ever, in contrast to NVIL, the recognition network param-
eters are learned from samples generated by the model. In
other words, the recognition network is trained to recover
the hidden causes corresponding to the samples from the
model distribution by following the gradient

r
�

L(x) = E

P✓(x,h) [r� logQ�

(h|x)] . (13)

Unfortunately, this update does not optimize the same ob-
jective as the model parameter update, which means that
the wake-sleep algorithm does not optimize a well-defined
objective function and is not guaranteed to converge. This
is the algorithm’s main weakness, compared to NVIL,
which optimizes a variational lower bound on the log-
likelihood.

The wake-sleep gradient for recognition network parame-
ters does have the advantage of being much easier to es-
timate than the corresponding gradient of the variational
bound. In fact, the idea of training the recognition net-
works using the gradient of the bound was mentioned in
(Hinton & Zemel, 1994) and (Dayan & Hinton, 1996) but
not seriously considered due concerns about the high vari-
ance of the estimates. In Section 4.2 we show that while
the naive estimator of the gradient given in Eq. 6 does ex-
hibit high variance, the variance reduction techniques from
Section 2.3 improve it dramatically and make it practical.

3.4. REINFORCE

Using the gradient (4) to train the inference network can
be seen as an instance of the REINFORCE algorithm
(Williams, 1992) from reinforcement learning (RL), which
adapts the parameters of a stochastic model to maximize
the external reward signal which depends on the model’s
output. Given a model P

✓

(x) and a reward signal r(x),
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REINFORCE updates the model parameters using the rule

�✓ / E

P

[(r(x)� b)r
✓

logP

✓

(x)]. (14)

We can view NVIL as an application of REINFORCE on
the per-training-case basis, with the inference network cor-
responding to the stochastic model, latent state h to the out-
put, and the learning signal l

�

(x, h) to the reward. The term
b in Eq. 14, called a baseline in the RL literature, is a hy-
perparameter that can be adapted to reduce the variance of
the parameter update. Thus it serves the same function as
c and C

 

(x) that we subtract from the learning signal to
center it in Section 2.3.1. The considerable body of work
on baselines and other variance reduction methods done in
the RL community (e.g. Greensmith et al., 2004) is likely
to contain additional techniques relevant for training infer-
ence networks.

4. Experimental results
We performed two sets of experiments, with the first set
intended to evaluate the effectiveness of our variance re-
duction techniques and to compare NVIL’s performance to
that of the wake-sleep algorithm. In the second set of ex-
periments, we demonstrate NVIL’s ability to handle larger
real-world datasets by using it to train generative models of
documents.

4.1. Experimental protocol

We trained all models using stochastic gradient ascent us-
ing minibatches of 20 observations sampled randomly from
the training data. The gradient estimates were computed
using a single sample from the inference network. For each
dataset, we created a validation set by removing a random
subset of 100 observations from the training set. The only
form of regularization we used was early stopping based on
the validation bound, implemented by keeping track of the
parameter configuration with the best validation score seen
so far. We implemented each input-dependent baseline us-
ing a neural network with a single hidden layer of 100 tanh
units.

We used fixed learning rates because we found them to
produce superior results to the annealing schedules we ex-
perimented with. The learning rates we report were se-
lected based on the validation set performance in prelim-
inary experiments with smaller models. We always make
the learning rate for inference network five times smaller
than for the model (which is the one we report), as we found
this to improve performance. We used inference networks
with layered structure given by Eq. 11, without dependen-
cies within each layer except in the experiment with au-
toregressive inference networks. All multi-layer inference
networks were trained using layer-specific learning signals
from Section 2.3.3.

As the models we train are intractable, we cannot compute
the exact log-likelihoods for them. Instead we report the
estimates of the variational bound (2) computed using 10
samples from the inference network, which we found to be
sufficient to get the accurate bound estimates. We expect
this approach to underestimate the log-likelihood consider-
ably, but leave finding more direct and thus less pessimistic
evaluation methods as future work.

4.2. Modelling images of digits

Our first set of experiments was performed on the binarized
version of the MNIST dataset, which has become the stan-
dard benchmark for evaluating generative models of binary
data. The dataset consists of 70,000 28 ⇥ 28 binary im-
ages of handwritten digits, partitioned into a 60,000-image
training set and 10,000-image test set. We used the bina-
rization of Salakhutdinov & Murray (2008), which makes
our scores directly comparable to those in the literature.

We used 3 ⇥ 10

�4 as the learning rate for training mod-
els with NVIL on this dataset. Centering the input vectors
by subtracting the mean vector was essential for making
the inference networks and input-dependent baselines work
well.

To demonstrate the importance of variance reduction tech-
niques, we trained two SBNs using a range of variance con-
trol settings. The first SBN had a single layer of 200 latent
variables, while the second one had two layers of 200 vari-
ables each. Figure 1 shows the estimate of the variational
objective on the validation set plotted against the number
of parameter updates. For both models, it is clear that us-
ing all three techniques – the input-dependent and input-
independent baselines along with variance normalization –
is essential for best performance. However, of the three
techniques, the input-dependent baseline appears to be the
least important. Comparing the plots for the two models
suggests that variance reduction becomes more important
for larger models, with the gap between the best combina-
tion and the others (excluding the very worst one) widen-
ing. For both models, learning with all three variance re-
duction techniques disabled makes barely any progress and
is clearly infeasible.

We found that disabling layer-specific learning signals had
little effect on the performance of the resulting model. The
difference was about 0.4 nats for an SBN with two or three
layers of latent variables.

We next compared NVIL to the wake-sleep algorithm,
which is its closest competitor in terms of scalability and
breadth of applicability, by training a range of models us-
ing both algorithms. Wake-sleep training used a learning
rate of 1 ⇥ 10

�4, as we found this algorithm to be more
sensitive to the choice of the learning rate than NVIL, per-
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Figure 1. Bounds on the validation set log-likelihood for an SBN with (Left) one and (Right) two layers of 200 latent variables. Baseline
and IDB refer to the input-independent and the input-dependent baselines respectively. VN is variance normalization.

Table 1. Results on the binarized MNIST dataset. “Dim” is the
number of latent variables in each layer, starting with the deepest
one. NVIL and WS refer to the models trained with NVIL and
wake-sleep respectively. NLL is the negative log-likelihood for
the tractable models and an estimate of it for the intractable ones.

MODEL DIM TEST NLL
NVIL WS

SBN 200 113.1 120.8
SBN 500 112.8 121.4
SBN 200-200 99.8 107.7
SBN 200-200-200 96.7 102.2
SBN 200-200-500 97.0 102.3
FDARN 200 92.5 95.9
FDARN 500 90.7 97.2
FDARN 400 96.3
DARN 400 93.0
NADE 500 88.9
RBM (CD3) 500 105.5
RBM (CD25) 500 86.3
MOB 500 137.6

forming considerably better with lower learning rates. The
results, along with some baselines from the literature, are
shown in Table 1. We report only the means of the bound
estimates as their standard deviations were all very small,
none exceeding 0.1 nat. We can see that models trained
with NVIL have considerably better bounds on the log-
likelihood, compared to their wake-sleep counterparts, with
the difference ranging from 3.4 to 8.6 nats. Additional lay-
ers make SBNs perform better, independently of the train-
ing method. Interestingly, single-layer fDARN (Gregor
et al., 2013) models, which have autoregressive connec-
tions between the latent variables, perform better than any
of the SBN models trained using the same algorithm. Com-
paring to results from the literature, we see that all the SBN

and fDARN models we trained perform much better than a
mixture of 500 factorial Bernoulli distributions (MoB) but
not as well as the deterministic Neural Autoregressive Dis-
tribution Estimator (NADE) (Larochelle & Murray, 2011).
The NVIL-trained fDARN models with 200 and 500 latent
variables also outperform the fDARN (as well as the more
expressive DARN) model with 400 latent variables from
(Gregor et al., 2013), which were trained using an MDL-
based algorithm. The fDARN and multi-layer SBN mod-
els trained using NVIL also outperform a 500-hidden-unit
RBM trained with 3-step contrastive divergence (CD), but
not the one trained with 25-step CD (Salakhutdinov & Mur-
ray, 2008). However, both sampling and CD-25 training in
an RBM is considerably more expensive than sampling or
NVIL training for any of our models.

The sampling-based approach to computing gradients al-
lows NVIL to handle variational posteriors with complex
dependencies. To demonstrate this ability, we retrained
several of the SBN models using inference networks with
autoregressive connections within each layer. These net-
works can capture the dependencies between variables
within layers and thus are considerably more expressive
than the ones with factorial layers. Results in Table 2 in-
dicate that using inference networks with autoregressive
connections produces better models, with the single-layer
models exhibiting large gains.

4.3. Document modelling

We also applied NVIL to the more practical task of docu-
ment modelling. The goal is to train a generative model
of documents which are represented as vectors of word
counts, also known as bags of words. We trained two sim-
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Table 2. The effect of using autoregressive connections in the in-
ference network. “Dim” is the number of latent variables in each
layer, starting with the deepest one. “Test NLL” is an estimate
of the lower bound on the log-likelihood on the MNIST test set.
”Autoreg” and “Factorial” refer to using inference networks with
and without autoregressive connections respectively.

MODEL DIM TEST NLL
AUTOREG FACTORIAL

SBN 200 103.8 113.1
SBN 500 104.4 112.8
SBN 200-200-200 94.5 96.7
SBN 200-200-500 96.0 97.0

ple models on the 20 Newsgroups and Reuters Corpus Vol-
ume I (RCV1-v2) datasets, which have been used to eval-
uate similar models in (Salakhutdinov & Hinton, 2009b;
Larochelle & Lauly, 2012). 20 Newsgroups is a fairly small
dataset of Usenet newsgroup posts, consisting of about 11K
training and 7.5K test documents. RCV1 is a much larger
dataset of Reuters newswire articles, with about 794.4K
training and 10K test documents. We use the standard pre-
processed versions of the datasets from Salakhutdinov &
Hinton (2009b), which have vocabularies of 2K and 10K
words respectively.

We experimented with two simple document models, based
on the SBN and DARN architectures. Both models had a
single layer of latent variables and a multinomial visible
layer and can be seen as directed counterparts of the Repli-
cated Softmax model (Salakhutdinov & Hinton, 2009b).
We used the same training procedure as on MNIST with
the exception of the learning rates which were 3⇥ 10

�5 on
20 Newsgroups and 10

�3 on RCV1.

The established evaluation metric for such mod-
els is the perplexity per word, computed as
exp

⇣
� 1

N

P
n

1
Ln

logP (x

n

)

⌘
, where N is the num-

ber of documents, L

n

is the length of document n, and
P (x

n

) the probability of the document under the model.
As we cannot compute logP (x

n

), we use the variational
lower bound in its place and thus report an upper bound on
perplexity.

The results for our models, along with ones for the Repli-
cated Softmax and DocNADE models from (Salakhutdinov
& Hinton, 2009b) and (Larochelle & Lauly, 2012) respec-
tively, are shown in Table 3. We can see that the SBN and
fDARN models with 50 latent variables perform well, pro-
ducing better scores than LDA and Replicated Softmax on
both datasets. Their performance is also competitive with
that of DocNADE on 20 Newsgroups. The score of 724 for
fDARN with 50 latent variables on RCV1 is already bet-
ter than DocNADE’s 742, the best published result on that
dataset. fDARN with 200 hidden units, however, performs

Table 3. Document modelling results. “Dim” is the number of
latent variables in the model. The third and the fourth columns
report the estimated test set perplexity on the 20 Newsgroups and
Reuters RCV1 datasets respectively.

MODEL DIM 20 NEWS REUTERS
SBN 50 909 784
FDARN 50 917 724
FDARN 200 598
LDA 50 1091 1437
LDA 200 1058 1142
REPSOFTMAX 50 953 988
DOCNADE 50 896 742

even better, setting a new record with 598.

5. Discussion and future work
We developed, NVIL, a new training method for intractable
directed latent variable models which is general and easy to
apply to new models. We showed that NVIL consistently
outperforms the wake-sleep algorithm at training sigmoid-
belief-network-like models. Finally, we demonstrated the
potential of our approach by achieving state-of-the-art re-
sults on a sizable dataset of documents (Reuters RCV1).

As the emphasis of this paper is on the training method, we
applied it to some of the simplest possible model and in-
ference network architectures, which was sufficient to ob-
tain promising results. We believe that considerable perfor-
mance gains can be made by using more expressive archi-
tectures, such as those with nonlinearities between layers of
stochastic variables. Applying NVIL to models with con-
tinuous latent variables is another promising direction since
binary latent variables are not always appropriate.

We expect NVIL to be also applicable to training condi-
tional latent variable models for modelling the distribution
of observations given some context, which would require
making the inference network take both the context and
the observation as input. This would make it an alterna-
tive to the importance-sampling training method of Tang
& Salakhutdinov (2013) for conditional models with struc-
tured high-dimensional outputs.

We hope that the generality and flexibility of our approach
will make it easier to apply powerful directed latent vari-
able models to real-world problems.
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A. Algorithm for computing NVIL gradients
Algorithm 1 provides an outline of our implementation of
NVIL gradient computation for a minibatch of n randomly
chosen training cases. The exponential smoothing factor ↵
used for updating the estimates of the mean c and variance
v of the inference network learning signal was set to 0.8 in
our experiments.

Algorithm 1 Compute gradient estimates for the model and
the inference network

�✓  0,�� 0,�  0

L 0

{Compute the learning signal and the bound}
for i 1 to n do
x
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 random training case
{Sample from the inference model}
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{Compute the unnormalized learning signal}
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end for
{Update the learning signal statistics}
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end for

B. Inference network gradient derivation
Differentiating the variational lower bound w.r.t. to the in-
ference network parameters gives
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