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Dimensionality Reduction

We have some data X € RV*P
D may be huge, etc.

We would like to find a new representation 7 - pNxK
where K << D.

® For computational reasons.

® To better understand (e.g., visualize) the data.
® For compression.
L

We will restrict ourselves to linear transformations
for the time being.



Example

* |n this dataset, there are only 3 degrees of
freedom: horizontal and vertical translations, and

rotations.

® Yet each image contains 784 pixels, so X will be
/84 elements wide.
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Setup: Multivariate Inputs

o Setup: Given an ii.d. dataset D = {x1) ... x™} c RP.

e N instances/observations/examples
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Multivariate Gaussian Model

o x(V) ~ N(p,X), a Gaussian (or normal) distribution defined as
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Mean and Covariance Estimators

o Observed data: D = {xV), ..., xM)},

@ Recall that the MLE estimators for the mean p and X under the
multivariate Gaussian model is given by (previous lecture)

N
1 :
Sample mean: 1 = ~ E x (%)

N
. 1
Sample covariance: X = I Z X(Z) —p)( X(Z) i)'

e [+ quantifies (approximately) where your data is located in space.

°o ¥ quantifies (approximately) how your data points are spread.



Low Dimensional Representation

e Sometimes in practice, even though data is very high dimensional,
its important features can be accurately captured in a low
dimensional subspace.
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Euclidean Projection

%y

..................... e Here, S is the line along the unit
= vector u (1-dimensional subspace)

» uis a basis for §: any point in §
can be written as zu for some z.

e Projection of x on § is denoted by Projg(x)

o Recall: x"u = ||x]|||ul| cos(#) = ||x]| cos()
: B T ' _ 15
e Projs(x)= x'u u |x||u

length of proj direction of proj



General Subspaces

e In general, S is not one dimensional (i.e., line), but a (linear)
subspace with a dimension K.

o In this case, we have K basis vectors u;, us,--- ,ux € R”: any
vector y in S can be written as y = Zfil z;u; for some z1, ..., zk.
, )

e Projection of x € R” on this subspace is given by

K
Projs(x) = E zu; where z; =x'u,.
i=1



Projection onto a Subspace

o Let {u} | be an orthonormal basis of the subspace S (a
K-dimensional linear subspace of R”).

o Approximate each data point x € RY as:
1. Center (subtract the mean)

2. Project onto §
3. Add the mean back

We also know: z, = u} (x — fu)

o
o Let U € RP*E be a matrix with columns {ug}* ;.
o Then z = Ul (x — 1) (Note that z € R¥).

o Also: x =1+ Uz = i+ UU!(x — 1) (Note that x € RP).
o Here, UUY is the projector onto S, and UTU = I.



Projection onto a Subspace

:Uz{ﬁ:zlu1+zzu2+ﬁ

2=U (x - i)

e In machine learning, x is also called the reconstruction of x.

@ z Is its representation or code.



Learning a Subspace

e How to choose a good subspace &7
» Need to choose D x K matrix U with orthonormal columns.
e T'wo criteria:

» Minimize the reconstruction error: Find vectors in a subspace that
are closest to data points.

1 N 9
min E 1 Hx X

» Maximize the variance of reconstructions: Find a subspace where
data has the most variability.

m{&}tX%Z

» The data and its reconstruction has the same means (exercise)!
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PCA In General

® We can compute the entire PCA solution by just
computing the eigenvectors with the top-k
eigenvalues.

® These can be found using the singular value
decomposition of 3



Example: PCA

* Let our data matrix X be the score of three subjects :

Studont | Hath | Englsn | Ari
1 90 60 90

2 90 90 30
3 60 60 60
. 60 60 90

5 30 30 30



Example: PCA

 We can write then X as:
90 60 90

90 90 30
X=|60 60 60
60 60 90

.30 30 30-
* Let’s then Compute the mean of every dimension:

u=166 60 60]




Example: PCA

 Compute the covariance matrix of the whole dataset:

v
. § ‘«\2) 7 (z2) -~ T

504 360 180]
=360 360 O
180 0 720




Example: PCA

* Compute Eigenvectors and corresponding Eigenvalues:
* The eigenvalues of X are the roots of the characteristic equation:

det(Z—AI) =0
504 — A 360 180
det| 360 360 — A 0 =0
130 0 720 — A

—13 4+ 15841% — 6415201+25660800=0



Example: PCA

» After solving the previous equation for 4, we get:
A =44.82,1, = 629.11,4; = 910.07

* And the corresponding orthonormal basis corresponding to the above
values:

—(0.649] —0.386] 0.656]
u, =1 0.742 |, u, = 1-0.516{, uz =10.429
. 0.173 . . 0.765 10.621.




Example: PCA

e Let’s reduce the dimension of X =

90
90
60
60

-30

60
90
60
60
30

90
30
60
90

30-

from 3 to 2.

* We have to chooses two basis that corresponds to the highest

eigenvalues.

0.656
0.429

10.621

—0.386
—0.516
0.765 .




Example: PCA

* We know z is the representation or the projection onto the new

subspace.
i z=U"(x - f1)

- 34.374 13.686 1
9984 —47.694

Z =] -3.936 2.316
14.694 25.266

—55.116  6.426 -




Example: PCA

e Let’s reconstruct X from Z and U:
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- 83.266
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65.886
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67.684
88.893
57.116
53.266
33.039

91.816 1
29.714
59.327
88.454
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X =+ Uz
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Applying PCA to digits




