
CSC413 Neural Networks and Deep Learning

Lecture 9

March 15/18, 2021



Generative Models



Generating Images

How to generate new data of certain types
I generate text that looks like our training data
I generate images that look like our training data

Models:
I Generative RNNs
I Autoencoder
I Variational Autoencoder (VAE)
I Generative Adversarial Networks

We’ll talk about autoencoders and VAEs today



Autoencoders

There are two ways of thinking of an image autoencoder:
I a model that will eventually help us generate new images
I a model that finds a low-dimensional representation of

images

Both are considered unsupervised learning tasks, since no labels
are involved.

However, we do have a dataset of unlabelled images.



Image Autoencoder

Idea: In order to learn to generate images, we’ll learn to
reconstruct images from a low-dimensional representation.

An image autoencoder has two components:

1. An encoder neural network that takes the image as input, and
produces a low-dimensional embedding.

2. A decoder neural network that takes the low-dimensional
embedding as input, and reconstructs the image.

A good, low-dimensional representation should allow us to
reconstruct everything about the image.
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The components of an autoencoder

Encoder:
I Input = image
I Output = low-dimensional embedding

Decoder:
I Input = low-dimensional embedding
I Output = image



Why autoencoders?

I Dimension reduction:
I find a low dimensional representation of the image

I Image Generation:
I generate new images not in the training set
I (Any guesses on how we can do this?)



Image Encoder Architecture

What would the architecture of the encoder look like?
I We could use a MLP, but there are some issues (recall: what

are these issues?)
I But we can also use a convolutional neural network!

We can use downsampling to reduce the dimensionality of the data



Image Decoder Architecture

What would the architecture of the decoder look like?

We need to be able to increase the image resolution.

We haven’t learned how to do this yet!



Transpose Convolution



Transpose Convolution

Used to increase the resolution of a feature map.

This is useful for:
I image generation problems
I pixel-wise prediction problems



Pixel-wise prediction
A prediction problem where we label the content of each pixel is
known as a pixel-wise prediction problem

Figure 1: http://deeplearning.net/tutorial/fcn_2D_segm.html

Q: How do we generate pixel-wise predictions?



What we need:

We need to be able to up-sample features, i.e. to obtain
high-resolution features from low-resolution features
I Opposite of max-pooling OR
I Opposite of a strided convolution

We need an inverse convolution – a.k.a a deconvolution or
transpose convolution.



Architectures with Transpose Convolution



Architectures with Transpose Convolution 2



Inverse Convolution

>>> x = torch.randn(2, 8, 64, 64)
>>> conv = nn.Conv2d(in_channels=8,
... out_channels=8,
... kernel_size=5)
>>> y = conv(x)
>>> y.shape

>>> convt = nn.ConvTranspose2d(in_channels=8,
... out_channels=8,
... kernel_size=5)
>>> x = convt(y)
>>> x.shape

should get the same shape back!
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Transpose Convolution Layer

Figure 2: https://www.mdpi.com/2072-4292/9/6/522/htm

More at https://github.com/vdumoulin/conv_arithmetic



Output Padding

nn.ConvTranspose2d(in_channels=8,
out_channels=8,
kernel_size=5,
stride=2,
output_padding=1) # +1 to output

# width/height



Autoencoder



Let’s get back to the autoencoder

Recall that we want a model that generates images that looks like
our training data

Idea:
I In order to learn to generate images, we’ll learn to reconstruct

images from a low-dimensional representation.
I A good, low-dimensional representation should allow us to

reconstruct everything about the image.



The components of an autoencoder

Encoder:
I Input = image
I Output = low-dimensional embedding

Decoder:
I Input = low-dimensional embedding
I Output = image



Why autoencoders?

I Dimension reduction:
I find a low dimensional representation of the image

I Image Generation:
I generate new images not in the training set

Autoencoders are not used for supervised learning. The task is
not to predict something about the image!

Autoencoders are considered a generative model.



How to train autoencoders?

I Loss function:
I How close were the reconstructed image from the original?
I Mean Square Error Loss: look at the mean square error

across all the pixels.
I Optimizer:

I Just like before!
I Commonly used for other network architectures too

I Training loop:
I Just like before!



Let’s train an autoencoder for MNIST



Structure in the Embedding Space

The dimensionality reduction means that there will be structure in
the embedding space.

If the dimensionality of the embedding space is not too large, similar
images should map to similar locations.



Interpolating in the Embedding Space



Generating New Images

Q: Can we pick a random point in the embedding space, and decode
it to get an image of a digit?

A: Unfortunately not necessarily. Can we figure out why not?



Autoencoder Overfitting

Overfitting can occur if the size of the embedding space is too large.

If the dimensionality of the embedding space is small, then the
neural network needs to map similar images to similar locations.

If the dimensionality of the embedding space is too large, then the
neural network can simply memorize the images!



Blurry reconstructions

Q: Why do autoencoders produce blurry images?

Hint: it has to do with the use of the MSELoss.
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