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Abstract

Belief revision is the problem of finding the most plausible explanation for an observed set of evidences. It has many applications in
various scientific domains like natural language understanding, medical diagnosis and computational biology. Bayesian Networks (BN)
is an important probabilistic graphical formalism widely used for belief revision tasks. In BN, belief revision can be achieved by finding
the maximum a posteriori (MAP) assignment. Finding MAP is an NP-Hard problem. In previous work, we showed how to find the MAP
assignment in BN using High Order Recurrent Neural Networks (HORN) through an intermediate representation of Cost-Based Abduc-
tion. This method eliminates the need to explicitly construct the energy function in two steps, objective and constraints. This paper builds
on that previous work by providing the theoretical foundation and proving that the resultant HORN used to find MAP is strongly equiv-

alent to the original BN it tries to solve.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction
1.1. Belief revision and higher cognitive processes

Belief revision is the problem of finding the most plausi-
ble explanation for an observed set of evidences. This
involves many higher cognitive processes; such as, search-
ing (the examination of alternative hypotheses), suggestion
and decision making. In fact, looking for the best explana-
tion for observations is an essential everyday activity for
every human being. An obvious example is a mechanic or
a physician who considers all symptoms to reach the best
possible diagnosis.

In Artificial Intelligence, scientists have been trying to
design computational models that resemble the previously
mentioned higher cognitive processes to reach the best
explanation. The most famous categories of those compu-
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tational models are: automated reasoning and inference in
knowledge bases, artificial neural networks and graphical
probabilistic models.

1.2. Probabilistic models and Bayesian Networks

While each computational model or class of models has
its own advocates, limitations and capabilities, all of them
fall under the broader domain of reasoning under uncer-
tainty, where available information is not complete or con-
tradicting; thus, probabilistic handling seems the best
candidate for those tasks. However, probabilistic reasoning
was described as being “epistemologically inadequate”
by McCarthy and Hayes in their basic paper in 1969
(McCarthy & Hayes, 1969). They showed that the number
of parameters needed to compute the joint probability dis-
tribution is exponentially proportional to the size of the
given dataset, which yields the whole mathematical compu-
tations intractable. As a result, researchers avoided using
probabilistic reasoning until the notion of independence
assumption appeared.
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Fig. 1. An illustration for the framework we are proposing. First we convert the BN into an equivalent CBA system; then, we convert this CBA system
into a strongly equivalent HORN. Through a HORN simulator, we can optimize the HORN energy function. HORN variables values at the minimum

energy point will achieve both CBA LCP and BN MAP.

In 1988, Pearl standardized the independence assump-
tion notion and formally presented the Bayesian Net-
work (BN) where each variable is conditionally
independent of its ancestors given its parents (Pearl,
1988). BN is fully specified by two components: a Direc-
ted Acyclic Graph (DAG), whose vertices represent ran-
dom variables, and a set of parameters that describe the
conditional probability distribution of each variable
given its parents. Together, these two components fully
specify a unique joint distribution over all random vari-
ables in the graph. Let G be a DAG, and let X{,..., X,
denote the set of random variables, vertices of G. The
BN encodes the Markov assumption: Each variable is
independent of all its non-descendant variables given its
parents. Thus, the full joint distribution can be composed
of the product form:

P(X1,... . X,) = ﬁP(XAn(X,-)) (1)

n(X;) is the set of parents of X; in G. For a specific assign-
ment 4 over all nodes, Eq. (1) can be rewritten as:

PU) = [T PACOIAGX) @

BN saves a considerable amount of memory and calcu-
lations which enables us to calculate joint distributions
otherwise impossible to calculate. For example, to specify
the full joint distribution for 10 binary random variables
we need 2' = 1024 values to be stored and used during
computation. If we use a BN with each variable depending
on no more than three other variables, we end up having
10 x 2° = 80 parameters only.

Given a BN with an observed set of evidence nodes &, we
are looking for values assignment A4 for the rest of the net-
work nodes, such that P(Ale) is maximized, using Bayes
rule:

P(4)P(e|4)

Because we have observed the values of evidence nodes
&, P(¢) is constant, so it ends up maximizing P(A) that rep-
resents the joint probability distribution in (1) and (2). This
assignment is called the maximum a posteriori assignment
(MAP). Once this assignment is found, we can perform
all kinds of probabilistic inference needed.

P(Ale) =

Finding MAP is shown to be NP-hard (Shimony, 1994).
For multiply-connected BN, existing algorithms suffer
from exponential complexity, so new heuristics and algo-
rithms are always needed. In this work we show how we
can find MAP using strongly equivalent High Order Recur-
rent Network (HORN) through an intermediate represen-
tation of Cost-Based Abduction (CBA); Fig. 1 illustrates
the framework we are proposing. The paper is organized
as follows: The rest of the introduction lays the necessary
foundation needed to understand our methodology. We
will briefly review the Symmetric Connectionist Network
(SCN), HORN and CBA. Then, we will trace and analyze
the algorithm mentioned in Abdelbar (1998) to show how
we can transform a given BN instance into an equivalent
CBA system. Following that, we will illustrate the relation
between SCN energy minimization and propositional logic
satisfiability. We will show how we can transform CBA to
HORN to obtain both CBA least cost proof (LCP) and BN
MAP. HORN has been used before to solve CBA (Abdel-
bar, Andrews, & Wunsch, 2003, 2005). This manuscript
contributes to the CBA to HORN conversions in three
folds: First, we will extend the propositional logic satisfi-
ability using HORN to logical rules with more than three
variables. Second, we will show how we can solve the posi-
tive feedback problem; finally, we will prove that the resul-
tant HORN is strongly equivalent to the system it solves.
The significance and applications of each contribution will
be emphasized in its corresponding section. To be able to
efficiently present our mathematical proofs in Section 4,
Section 3 will shed some light on the relation between logic
satisfiability and SCN energy minimization in general.

1.3. Symmetric connectionist network overview

A symmetric connectionist network (SCN) is character-
ized by a weighted undirected graph whose nodes represent
units and arcs represent weighted connections; there are
two kinds of arcs:

e Pair-wise arcs that link two nodes. Those arcs represent
a weighted connection W); between two nodes 7 and j.

' A multiply-connected Bayesian Network is defined as a network in
which there is more than one directed path connecting at least one pair of
nodes.
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e Monadic arcs, each of which is attached to a single node.
It represents a bias® (a threshold with reversed sign)
(Pinkas, 1995).

The network is symmetric which means that W; = W,
The network is fully specified by an energy function which
each unit is trying to minimize. SCNs possess the following
advantages:

1. SCNs can be characterized by energy functions that
make it easier to specify and follow their behavior.

2. SCNs are used to express and approximate hard
problems.

3. SCNs are capable of representing a large set of symmet-
ric networks; therefore, they are quite powerful, so
restricting ourselves to SCNs will not make us lose
any power.

1.4. High Order Recurrent Networks (HORN)

The Hopfield network is perhaps the best known imple-
mentation of SCNs. Hopfield network is a recurrent net-
work (Hopfield, 1982). A Neural Network (NN) is
recurrent when its underlying inter-neural connections
contain at least one cycle. The underlying topology is a
graph and each weighted connection is either a binary
connection, T}, that connects two neurons (i,j) or a unary
connection /; which is the bias of a single neuron i. Each
neuron is trying to minimize the energy function which is
usually composed of two energy functions:

E = EObj + ﬁEConst (4)

E°% describes the objective function to be either maxi-
mized or minimized while the E““’ ensures the feasibility
of the optimized solution by enforcing a set of the con-
straints. f§ is a problem dependant free parameter to be
experimentally tuned. We can think of f as a tradeoff knob
between solution optimality and solution feasibility.
Depending on the NN order, £ can be either quadratic
or higher order.

HORN is a recurrent network whose underlying topol-
ogy is a hypergraph, allowing weighted hyperedges that
connect more than two neurons. The degree of the edge
is the number of neurons it connects. The order of the net-
work is the highest degree in the topology. In a Kth-order
HORN, a neuron with an activation level #; and an output
V;is governed by:

k
eSS | 7 (5
d=1 seS8y,ics Jes j#Fi

where V; = g(u;) and g is typically a sigmoidal activation
function. k is the order of the network. T'¥) is the weight
of the d'"-degree edge connecting neurons i,. . ., i, S, de-

2 A bias is the neuron self tendency to fire.

notes the set of all neuron sequences J;,..., Jy4 such that
,,,,, << n; where n is the number of neurons and
J,# Jp if a# b (Abdelbar, 1999). Each unit minimizes
the following Kth-order energy function:

_ ®)
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1.5. Cost-Based Abduction (CBA)

CBA was first introduced by Charniak and Shimony
(1990). Formally, a CBA system is a 4-tuple (H, R, ¢, G),
where H is a set of hypotheses or propositions, ¢ is a func-
tion from H to a nonnegative real ¢(/) called the assumabil-
ity cost of he H, R is a set of rules of the form:
R:(p, Npy,---Ap,)—p, forall p,,....p, €H, p, €H
and G C H is the goal or the evidence set (Abdelbar, 1998).

Our objective is finding the Least Cost Proof (LCP) for
the goal. The cost of a proof is the sum of all costs of the
hypotheses needed to be assumed to complete the proof.
Any given hypothesis p; € H can be true either by proving
it or by assuming it to be true and paying its assumability
cost. Hypotheses that can be assumed have assumability
costs less than oo, we call them “assumables”. Consequent
hypotheses that are proven through the assumables are
called “provables”.

Finding the optimal solution for CBA is proven to be
NP-hard (Charniak & Shimony, 1994; Shimony, 1994).
Previous approaches to CBA can be found in Den
(1994), Ishizuka and Matsuo (2002), and Santos (1994).
The only NN approach to CBA was introduced in Abdel-
bar et al. (2003), where the authors found the optimal solu-
tion of CBA by transforming it into HORN through an
intermediate representation of Penalty Logic (PL).

Finding the LCP in CBA is equivalent to finding the
MAP in BN (Charniak & Shimony, 1994; Santos, 1994).
Despite their equivalency, it is believed that finding LCP
is more efficient than finding MAP and it may be easier
to find a heuristic for CBA than finding one for BN (Abdel-
bar, 1998; Charniak & Shimony, 1994). Santos found the
necessary and sufficient conditions under which CBA is
polynomially solvable (Santos & Santos, 1996). On the
other hand, polynomial solvability for finding MAP in
BN is not achievable even with applying restrictions on
the graphical representation (Shimony, 1994) and even
for trying to find an alternative next-best explanation
(Abdelbar & Hedetniemi, 1998).

1.6. Relation to previous work

In Andrews and Bonner (2009), we showed how to find
MAP for BN using HORN through an intermediate
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representation of CBA; in this manuscript, we build on that
method. We first transform BN into CBA system using the
algorithm mentioned in Abdelbar (1998). To our knowl-
edge, this is the only algorithm in the literature that
achieves such a transformation, so it is crucial to analyze
and discuss it step by step. Then, we will fill in the gap
between BN and HORN by solving the resultant CBA sys-
tem using HORN through the method mentioned in
Abdelbar et al. (2003). Besides analyzing the only algo-
rithm that transforms BN to CBA, this work focuses on
providing the mathematical foundation which shows the
strong equivalence between the BN we are trying to solve
and the HORN that we ended up with as a final transfor-
mation product. Also, we will provide the mathematical
framework to build energy functions equivalent to logical
rules that are composed of arbitrary number of hypotheses
and show how to solve the positive feedback problem that
might arise as a consequence of that.

1.7. Literature review

To our knowledge, the only attempt to find MAP using
HORN is in Abdelbar (1999), Abdelbar and Assaggaf
(1999). However, this method requires deriving the energy
function in two steps: E°Y and E™'; then, the two func-
tions need to be combined into one function as in Eq. (4).
That method requires extensive experimentation to set the
network parameter  among other parameters (Abdelbar,
1999; Abdelbar & Assaggaf, 1999). Here, we will create
the strongly equivalent energy function in one step from
the CBA system equivalent to the given BN. That elimi-
nates the need for creating and combining two energy func-
tions and the need for tuning the free parameter f.

P(C=F)

2. Transforming BN into CBA

In this section we will follow and analyze the linear time
transformation algorithm mentioned in Abdelbar (1998) to
transform a given BN into an equivalent CBA system. We
will use the multiply-connected BN in Fig. 2 as an example.
This example can be found in Murphy’s BN tutorial at
Murphy (1998).

Our objective is to explain why the grass is wet. So we
want to reach an assignment A4 for the random variables
such that P(A|W) is maximized. Using Bayesian inference
we can see that:

> PC=c,S=1R=r,W=1)

PS=1W=1)= =T
:%:0.430

P(C=c,S=s,R=1,W =1

P(R:”W:UZZH( CP(Wil) )
=%:O.708

So, the best explanation for the wet grass is because it is
raining rather than because of having the sprinkler on.
Now we will transform this multiply-connected BN to a
CBA system and see whether we can reach the same expla-
nation. The transformation to CBA goes as follows:

1. Transform the CPT of each random variable v to a lin-
ear table P,, Tables 1-4. Each line / € P, is a hypothesis
that the premises of that line are satisfied. V(1) denotes
the probability corresponding to line / in the table. The
cost of the hypothesis /4, that represents each line is:

P(C=T)

0.5

0.5

C | PR=F) PR=T)

C [PS=F) P(S=T)
F 0.5 05 @ 0 F 0.8 0.2
T 0.9 0.1 T 0.2 0.8

S R| PW=F) PW=T)
F 1.0 0.0

T F 0.1 0.9

FT 0.1 0.9

T T 0.01 0.99

Fig. 2. This is an example of a multiply-connected BN, the original example graph can be found at Murphy (1998). The graph is redrawn for better
quality.
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c(h))=—logV(l)+Q where:
0= —logHQE and Q,=min{V(/)|/ € P,}

velV
So:

0p=0.5,0s=0.1,0, =0.2,0, = 0.9

when calculating Q, we ignore the line P(W|S,R) = 0 be-
cause W is our goal and we are trying to explain why the
grass is wet, so Q = 2.0458
2. For every variable v € V, create h, representing that
proposition v is assigned some truth value; c¢(h,) = co.
The result is a set of hypothesis {Ac,hs,hig,hy}
3. For every v € V' and for every ¢ € D(v), where D(v) is
domain of v,
o Construct a hypothesis 4, denoting that proposition
v is assigned a value ¢. Add 4, to the system hypoth-
esis and assign ¢(h,,) = o0;
The result is a set of new
{he,, heys hs,s hs,, e, b, b, }, we ignore hy,.
o Construct a rule R, with R} = {h,} and R} = {h,}

hypothesis:

Table 1

Cloudy , C.

Value P(C) hy c(hy)

0 0.5 hely 2.3468
1 0.5 hchy 2.3468
Table 2

Sprinkler, S.

Value P(S|C) hy c(hy)

C S

0 0 0.5 hsly 2.3468
0 1 0.5 hsly 2.3468
1 0 0.9 hsls 2.0915
1 1 0.1 hsly 3.0458
Table 3

Rain , R.

Value P(R|C) hy c(hy)
C R

0 0 0.8 hrly 2.1427
0 1 0.2 hrl 2.7447
1 0 0.2 hrls 2.7447
1 1 0.8 hgly 2.1427
Table 4

Wet grass, W. (The goal).

Value P(W|S, R) hy c(hy)
S R w

0 0 1 0.0 hwly 00

1 0 1 0.9 hwly 2.0915
0 1 1 0.9 hywls 2.0915
1 1 1 0.99 hwly 2.0501

Where R? refers to the set of R’s antecedents and R
refers to R’s consequent. The result is this set of rules:

Re, the, = he,  Re, : hcf — he
Rs, i hs, — hs, Rs, :hs, — hs
Rg, : hg, — hg, Ry, : hR/, — hp
Ry, : hy, — hw, Ry, : hW/. — hy

4. For every v € V and every / € P,;
o Construct a rule R; where: R} = {h;}
o Forevery {u— ¢} C [, where u € n(v) and ¢ € D(u),
set Rf =R/ U {h,,}
o Let ¢t € D(v) be the value from v’s domain that satis-
fies {v — t} C [, set RS = {h,,}. The result is the fol-
lowing sets of rules:

Rcll : hcl] — hc/
Rclz :
RRll : thl /\hC/ — hR/

RRlz : thz AN hc/ — hR,

RR13 : th3 AN th — hR/

RRZ4 : th4 A hC, — th

Rsl| : hgl] /\th — th

Rslz : hglz N th — th

Rsl3 . hsl3 A hC, — hsf

Rsl4 : hgl4 A\ hC, — hS,

Rwll : hwll A hS,» A\ hR/ — hWr

Ryl : hywly A hS, N hRf — th

Rwl3 : hwl3 AN th A\ /’er — hW,

Rwl4 . hwl4 A hS, N hR, — th

Finally, the goal set G = {hc,hw,hs,hr,hw,} and
RG : hC/\hW/\hS/\hR/\hW, — G.

As discussed above, finding the LCP for this derived
CBA system is the same as finding MAP for the BN in
Fig. 2. In other words, the values assigned to CBA vari-
ables to reach the LCP are the same values that achieve
MAP for the equivalent BN. Section 4 will illustrate how

HORN can be used to find LCP for the CBA which will
be the same as finding MAP for BN.

hcly — hq

3. SCNs energy minimization and propositional logic
satisfiability

The previous section concluded the first step which is
converting BN into an equivalent CBA system in linear
time. However, what does that have to do with SCN? In
other words, is there a relation between logic satisfiability
and SCN energy minimization?

In Pinkas (1990, 1992), Pinkas showed that proposi-
tional logic can be represented efficiently by energy minimi-
zation connectionist networks and thus may give us a fast
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parallel implementation for a propositional inference
engine. He provided a constructive algorithm for trans-
forming the standard propositional logic clauses to equiva-
lent SCN energy functions and vice-versa. He showed a
two-way equivalency between both problems, such that
(Pinkas, 1995):

o For every propositional sentence there is a quadratic
energy function; such that, values of these energy func-
tion variables at the minimum energy point satisfy the
propositional sentence.

o Any quadratic energy minimization problem can be
described as a sustainable propositional sentence for
the same assignments that minimize the function.

He defined a characteristic function that maps every
propositional sentence ¢ into a characteristic algebraic
form H, as follows:

X; if ¢ = x; 1s an atomic
proposition
Ho-: I—HJ/ if 0 =-0
H, x H,, ifo=0 N0y

H, +H,, —H, xH,, ifo=0Vao

(7)

Using this function, the resultant algebraic form H, has
its maximal points at the truth assignments that satisfy the
clause. H, has values of zero or one which map to logical
values of false or true, respectively. For example, the

expression a A b — ¢ will be converted to its equivalent
characteristic function as follows:

H(aNb—c¢)=H(—~(aNb)Vc)=H(-aV-bVc)
=H(—aV -b)+c—H(—aV —b)c
=(l-a)+(1-0b)—(1—-a)(1-0)+c

—c(l—a)—c(1=b)+c(l —a)(l1—-0>b)
=1—ab+ abc (8)

Table 5 shows that this algebraic form has its maximal
points at the truth assignments that satisfy the clause.

The equivalent energy function for a given proposition
sentence ¢ is the characteristic function of the sentence
negation H_,,.

Table 5

Truth table for maximal points.

a b c s H(s)
0 0 0 T 1
0 0 1 T 1
0 1 0 T 1
0 1 1 T 1
1 0 0 T 1
1 0 1 T 1
1 1 0 F 0
1 1 1 T 1

3.1. Penalty logic

Pinkas’s idea illustrated in the previous section serves
satisfiability well, but it does not provide a useful tool for
reasoning under uncertainty because it is based on the
first-order propositional logic (propositional calculus). In
1995, Pinkas presented an extension to the propositional
calculus to be able to express the strength of a given belief.
This extension resulted in the Penalty Logic (PL). Any PL
is mapped to an equivalent SCN through the same charac-
teristic function in Eq. (7). In PL, each rule is associated
with a numeric value, a penalty, which represents the
strength of the belief or the reliability of the rule. PL is
defined in Pinkas (1995) as:

“A Penalty logic well formed formula (PLWFF) V) is a
finite set of pairs. Each pair is composed of a real positive
number, called penalty, and a standard propositional formula
called assumption (or belief); ie., ¥ = {{(p,¢.)|p;, € RT,
@, is WFF, i =1,... n}. The set of beliefs that are in s,
denoted by Uy, is Uy, = {@{(pi,pi) € Y}~

3.2. Penalty logic violation rank

Each well formed formula (WFF) ¢; is associated with a
real-valued penalty p; which represent the credibility of ¢,.
The truth assignment of the atomic propositions in the
PLWEFF is called a model for this PLWFF. If a model vio-
lates ¢;, then this real value p, is paid as a penalty for this
violation. The violation rank of a model is the sum of all
WEFFs penalties violated through this model.

For example, consider the following PL over the set of
propositions {p,q,r,s}:

100,p A —r —s)
75,g AN—rN —q Ar)

(
(
B (500, p)
V= (200, s < —q) ®)
(50, —r Vv —p)

(

120, 4)

The minimum violation rank of this PL is 100 as a result of
violating the first assumption through the model
¥X={p<T,r—F,s—F g« T}. No other model can
give us a lower violation rank (Abdelbar et al., 2003). We
say that Frank,(X) = 100. We can use the characteristic
function in Eq. (7) to derive the energy function which rep-
resents the SCN equivalent to the any PL. The Energy
function which fully specifies the equivalent HORN for
an arbitrary PL pairs yy = Alo; is defined by the general
form.

E =Y H., (10)

In Pinkas (1992), the author defined the characteristic
function of an energy function E, to be:
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“The characteristic function of an energy function E(X,T)
with X visible variables and T hidden variables is the func-
tion: rankp(X) = min_{E(X,T)}.”

Thus, the rank of a model is the energy level obtained by
instantiating the visible units with the truth-values specified
by the model and letting the hidden units be free to settle at
the minimum.

3.3. Strong vs. weak equivalence between PLs and SCNs

In his dissertation (Pinkas, 1992), Pinkas showed that
the equivalence between PLs as an input to the character-
istic function and the SCNs as an output of the character-
istic function can be in two types:

o Strong equivalence: the search space of the violation
rank function of the PL, including both local and global
minimum points, is equivalent to the search space of the
energy function of the resultant SCN.

o Weak equivalence: the global minimum points of the
SCN energy function and the PL violation rank function
are identical, but the local minimum points might differ.

The energy function E will be strongly equivalent to its
PL if:

ranky = Vianky + ¢ (11)

Pinkas has shown that the strong equivalence between PL
and its SCN will always occur as long as each rule in the PL
consists of three different propositions at most. That is why
his method always uses Conjunction of Triples Form
(CTF) for all his logical rules and consequently he never
used HORN and restricted himself to quadratic energy
functions. If HORN to be used; then, strong equivalence
is not guaranteed and needs an explicit proof. In the next
section we will show how we use PL as an intermediate rep-
resentation to solve CBA and BN using HORN. We will
prove that the high order SCN generated by our method
is strongly equivalent to the CBA and its PL despite not
restricting ourselves to neither CTF nor quadratic energy
functions. We are allowing logical rules to be of any length
and consequently we are allowing energy functions to be of
any order, not necessarily limited to quadratic. It is worth
mentioning that this brief introduction to PL and its rela-
tion to SCN is presented here to be able to follow our work
presented in the next section and it is never meant to be
comprehensive. The reader is directed to Pinkas (1990,
1992, 1995) for a fuller explanation.

4. Finding LCP using HORN

This section will show the final step, finding the BN
MAP. We will convert the CBA system into a strongly
equivalent HORN. First, we will summarize how to solve
the CBA system using HORN. Then; we will define what
the positive feedback problem is and how to solve it;
finally, we will prove that the HORN is strongly equivalent

to the system it tries to solve. To solve a CBA system using
HORN, the process is summarized as follows, the reader is
directed to Abdelbar et al. (2003, 2005) for more details:

1. Without loss of generality, we start by processing the
CBA system such that all consequents are provables.
Also, we make sure that each provable appears only
once as a consequent in the system.

2. Given the preprocessed CBA, we reverse the implication

direction of all rules to avoid null antecedent proofs.

. We transform the CBA into PL pairs.

4. We generate the equivalent energy function for all PL
formulas using the characteristic function in Eq. (7).

[98)

4.1. Deriving energy functions for logical rules with more
than 3 variables

As we mentioned before, we are not converting our log-
ical rules into CTF because that will limit us to use only
quadratic energy functions. We allow logical rules with
more than three variables to be mapped as higher order
energy functions. As a result, we need a generic mathemat-
ical form that enables us to convert a logical rule of an
arbitrary length into an equivalent SCN with high order
energy functions. This derivation is of a great significance
because it provides a closed form to generate higher order
energy functions. Without this derivation, all applications
have to be limited to quadratic energy functions only,
which vastly limits the size and complexity of the CBA
problems that can be solved using recurrent NN.

The derivation goes as follows:

We start by OR rules; consider f=x,, — x; VX,V x3V
eV Xp_1-

—f=x, A=(x; VxaVx3V---Vx,_1)
=X, A XA A3 A AX,
SHop=x,](1=x1)(1=x2) (1 —x3) ... (1 —x0-1)]

n—1
Eﬂ x,,x”( (*1)k+l < Z x,»lxiz...x,-k>> (12)
k=1 1<ij < ... <ig<n—1

For AND rules, consider f=x, = x{ AXo A X3 A -+ A
Xn—1

P=x, A AXp AX3 A AXy )
=x,(1 —xx0x3 .. X1)

,',Hﬁ/g =X, — XpX1X2X3 ...X,—1

.',Eﬁzxn—Hx,- (13)
i=1

4.2. The positive feedback problem

Egs. (12) and (13) are generic enough to model logical
rules of an arbitrary length to an equivalent high order
energy function or HORN for short. However, if a certain
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hypothesis in repeated more than once as an antecedent of
the same consequent, we will end up with a positive feed-
back problem. The positive feedback in SCN means that
a certain unit is providing a positive feedback to itself. This
violates the original definition of recurrent SCN where
each unit can be connected to all other units but itself.
For example, consider those two rules:

A
PAr—s (14)
pANu—s

According to our method, we combine them into one
rule to be:

s—=(pAr)V(pAu) (15)

Using the characteristic function in Eq. (7) will result in
the following energy function:

E =s — spr— spu+ sp*ru (16)

In this energy function we have a quadratic powered
variable in the fourth term. The neuron corresponding
to the proposition p appears twice in the same edge.
The edge will look like that “sppru” in the HORN. This
is a positive feedback which, by definition, is not allowed
in HORN.

One way to solve this problem is distributing the
repeated variable, so the logical rule in Eq. (16) will be:

s—=pAFVu) (17)

But this logical formulation does not agree with the
CBA definition mentioned earlier, as we can have disjunc-
tion of conjunctions but not conjunction of disjunctions.
As a result, we applied the distributive law on the charac-
teristic function level instead, so we restricted the power
of any variable to be at most 1. As a result, Eq. (16) can
be re-written as:

E =s — spr— spu—+ spru (18)

Claim 4.1. Applying the distributive law at the characteristic
Sfunction level, by restricting the power of any variable at any
algebraic term to be at most 1, will result in the same energy
function of applying the distributive law on the same variable
at the logic level.

Proof

o We will start by deriving the general energy function for
a conjunction of disjunctions after applying the distrib-
utive law at the logical rule level, i.e. before applying the
characteristic function:Let f§ be the rule:

s—= PAxX)VPAX) V-V (pAX,) (19)
By applying the distributive law,  can be re-written as

“SsVI[pA@X VX VeV, (20)

Then —f is:
S(msVIpAx VX Ve Va,)])

=sA-pAxI VX V-V,
=sA[pVa(x VvV Vi,
=sA[pV (X A A A, (21)

Hence we have:

[(1=p) +[(1=x1)(I = x2)...(1 —xn)])}
L —0 =PI =x)( =x)... (1 = x)]

<(1—p)+1—2(—1)k+]< 2 xnxiz~~-xik>)
k=1 1<ij<.....<ig<n

n
-3 (=) ( S xx, x>:|
k=1 1<i|<...<ig<n

1—p+1—2(—1)k+1< > xilxiz...xl-k)—
1<i<...<ig<n

H =5

—(1-p)

k=1

I
©

l+p+z(l)k+l< > xl-lx,-z...xl-k)
k=1 1<ij<..<ig<n

=s|1 —pZ(—l)k+I ( Z x,-lxiz...xik>:| (22)
k=1 I<ii<....<ix<n

Then, the full energy function E will be:

T WAl () D) B
=1 1<) <....<iy<n

o Now, let us proceed with the same logical rule in Eq.
(19) in its original form without applying the distributive
law; instead, we will apply it after deriving the energy
function:

Using the same f as in (19):
s—=(PAx)V(pAX) V-V (pAX,)
=-sVI[pAx)V(PAX)V--V(pAx,) (24)
Then —f is:
(asVIpAX)V(pPAX) V-V (pAx,)])

=sA-[(pAX)V(PAX) V-V (pAX,)

=sA[PAX)A(PAX) A A(pAx,) (25)
Hence we have:
H,=s[(1—px))(1—pxy)... (1 - px,)] (26)

Thus, the general notation of the energy function E; will
be:

Es—s(Z(—l)kak< Z Xi\ X, ...x,-k>> (27)
I<ij<....<ix<n

k=1

By applying the distributive law at the characteristic
function level, we restrict the power of the variable p to
be at most one; then, E will be:
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k=1

E:s—sp<Z(—1)k+l< Z x,-]x,«z...x,-k>> (28)
I<i<...<ip<n

From the two equations in (23) and (28) we can see that
we have the same energy function, which proves our claim.
As a result, applying the distributive law on the character-
istic function level will result in the same energy function of
applying it at the logic level.

4.3. Proving the strong equivalency

In this subsection we will show that the HORN gen-
erated by our previous method is strongly equivalent to
the CBA and to the BN it tries to solve. Showing the
strong equivalence between the two problems is very
important because that will eliminate any restrictions
on any heuristic that might be used because the two
search spaces will be identical including both local and
global minima. It is even of a special importance to
map local minima when we search for an alternative or
the next-best explanation.

Claim 4.2. The HORN generated by the previous method is
strongly equivalent to the CBA it tries to find its LCP and
hence to the BN it tries to find its MAP.

Proof. For any truth assignment (¥), the ranking function
of the energy function equivalent to the PL  is:

rankyp = iEwl Z E, + Z E,,
i=1

X=¢; ~(¥l=¢;)
When (X) satisfies ¢;, then E, =0 (No penalty is paid,
nothing is added to the energy level)* Then, the energy
function rank will be:

rankpg —ZE(ﬂl =0+ Z E, = Z E,,

~(¥=0;) ~(¥=0;)

On the other hand, when (¥) violates ¢;; then, £, = p,,
where p; is the penalty of the assumption ¢;. Then the
energy function rank will be:

ranky = Z E, =

—(¥=0;)

> p, = Vrank, (29)

~(¥l=¢:)

We can see that Eq. (29) agrees to the strongly equiva-
lence condition in Eq. (11), which means our method will
produce a strongly equivalent high order recurrent SCN
to the CBA and the BN it tries to solve.

* In the original characteristic function, when (¥) satisfies ¢;; then, its
characteristic function (H,,) value is equal to one. In the case of the energy
function (H-,), when (¥) satisfies ¢; H.,=0 to prevent paying the
penalty. On the other hand when (¥) violates ¢;, H_, =1, to pay the
penalty.

5. Solution quality and size complexity

For the example traced in this manuscript, it is clear that
the network reached the LCP and assigned values which
gave the maximum joint probability for the random vari-
ables of the BN in Fig. 2. In general, we judge whether
the network reached the global minima by benchmarking
the solution against the results obtained by the popular
public domain /p-solve engine which solves the CBA system
after converting it to the equivalent Linear Programming
(LP) form.

The example above showed that HORN solved a prob-
lem of size 26-hypothesis, 22-rule. Problem size is not the
only factor which determines a CBA instance difficulty
and its search space complexity. Other factors like solution
depth, rules length, and the ratio between the number of
rules to the total number of hypotheses are also taken into
consideration when considering a CBA instance difficulty
level. Our previous work showed that HORN constantly
found feasible solutions for a CBA system with 300-
hypothesis, 900-rule with particular high difficulty
(Abdelbar et al., 2003, Abdelbar, El-Hemely, Andrews, &
Wunch, 2005).

6. Results summary

Using the previously mentioned transformations, we
constructed the energy function which represents the
CBA system derived in Section 2. Then, we used HORN
simulator to minimize this energy function. The LCP was
found through the following assignments {C—
T.R—T, S— F, W— T}. The total cost is 8.6725 by
assuming the following hypotheses hcl, hslh, hr I4 and
hyls. This is the same solution we reached using Bayesian
inference for the BN in Fig. 2. Table 6 summarizes the
results of the HORN which solved this example.

We can also find the LCP by backtracking the rules
starting from the goal rule. We only need to calculate
towards hy, because all other hypotheses in the goal rule
are provables with assumability cost of co. By backtracking
rules Ry,’s, it is clear that we cannot use Ry, as it costs us
o0, because it explains that the grass is wet while there is
neither rain nor sprinkler on. That leaves us with rules
Ryl,, Ryls and Ryl, with costs: 8.9278, 8.6725 and
9.4884, respectively. That means the best explanation for
the observation that the grass is wet is Ry/3 which assumes
that the sprinkler is off and there is rain. The LCP
assignment of the constructed CBA system is the same
assignment for the variables in the BN to achieve MAP.

Table 6

Results summary.

Rg Network Network Cost
order iterations

hc A ]’lW A hR A hs A hW/ — G 9 98489 86725

hy, — G 9 136128 8.6725
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7. Concluding remarks and future work

In this paper we showed how to find MAP in BN using
HORN through an intermediate representation of CBA.
This method creates the full integrated energy function
directly without explicitly deriving separate objective and
constraint functions. We traced and analyzed the only
algorithm in literature that transforms BN to CBA. We
derived a general framework to transform logical rules of
any length to strongly equivalent energy functions and
showed how to solve the positive feedback problem that
might arise when using this framework. Future work would
be to invent new algorithms that transform BN to CBA
while taking care of the size ratio between both systems.
Finding MAPs for BN with continuous probability distri-
bution will be an interesting follow up for this work. Also,
studying which classes of BN can create polynomially solv-
able CBA systems can be a very interesting research
problem.
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