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ABSTRACT

Biological sequence classification (such as protein remote homology detection) solely based

on sequence data is an important problem in computational biology, especially in the

current genomics era, when large amount of sequence data are becoming available. Support

vector machines (SVMs) based on mismatch string kernels were previously applied to

solve this problem, achieving reasonable success. However, they still perform poorly on

difficult protein families. In this paper, we propose two approaches to solve the protein

remote homology detection problem: one uses a convex combination of random-walk kernels

to approximate the random-walk kernel with the optimal random steps, and the other

constructs an empirical-map kernel using a profile kernel. Both resulting kernels make

use of a large number of pairwise sequence similarity information and unlabeled data;

and have much better prediction performance than the best profile kernel directly derived

from protein sequences. On a competitive Structural Classification Of Proteins (SCOP)

benchmark dataset, the overall mean ROC50 scores on 54 protein families we obtained

using both approaches are above 0.90, which significantly outperform previous published

results.
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1. INTRODUCTION

CLASSIFYING BIOLOGICAL SEQUENCES is an important and challenging problem in both computa-

tional biology and machine learning. On the biological side, it helps to identify interesting sequence

regions and protein domains that are related to a particular biological function; on the computational side,

it motivates many novel and efficient new classification approaches specifically for sequence data. This

problem has being addressed using different methods, including generative models (e.g., profile HMMs

[Baldi et al., 1994; Krogh et al., 1994]), discriminative models (e.g., kernel SVMs [Jaakkola et al., 2000;

Leslie et al., 2002, Liao and Noble, 2002]), and graph-based approaches (Tsuda et al., 2005).
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It has been shown elsewhere (Jaakkola et al., 2000; Kuang et al., 2005; Leslie et al., 2002; Weston

et al., 2005; Liao and Noble, 2002), that kernel support vector machines (SVMs) have better prediction

performance on biological sequence data than other methods. Moreover, it was shown in Weston et al.

(2005) that random-walk kernels (Szummer and Jaakkola, 2001) and empirical-map kernels (Scholkopf

and Smola, 2002) produced promising results on protein remote homology detection. However, the process

of deciding the optimal number of random steps in a random-walk kernel and the process of deciding the

scaling parameter in an empirical-map kernel remain as challenging problems (Weston et al., 2005). In

this paper, we present two approaches to address these problems that improve prediction accuracy. In the

first approach, we use label information of training data and a positive linear combination of random-walk

kernels to approximate the random-walk kernel with the optimum steps of a random walk, thereby obtaining

a convex combination of random-walk kernels with different random-walk steps which achieves the best

classification confidence on the labeled training set. In the second approach, we construct an empirical

kernel map using profile kernels. The scaling parameter of the empirical map is decided by minimizing

the Leave-One-Out (LOO) nearest neighbor classification error.

Section 2 gives a brief introduction to SVM classification based on mismatch-string kernels. Section 3.1

describes our first approach, a convex combination of random-walk kernels. Section 3.2 describes our

second approach, empirical-map kernels based on profile kernels. Section 4 present experimental results of

protein homology detection on the Structural Classificaion Of Proteins (SCOP) dataset. Section 5 concludes

the paper with a discussion on the proposed methods and provides some ideas for future research.

2. SVM FOR BIOLOGICAL SEQUENCE CLASSIFICATION

USING MISMATCH STRING KERNELS

A SVM (Scholkopf and Smola, 2002; Vapnik, 1995) is a discriminative model proposed especially for

classification. Consider a two-class training set, fX; yg and a test set U , where X is a matrix whose i th

column, Xi , is the feature vector of data point i in the training set, U is a matrix whose j th column, Uj ,

is the feature vector of data point j in the test set, and y, a column vector whose i th component yi is the

label of data point i in the labeled set, yi 2 f�1; 1g, Xi ; Uj 2 Rd , i D 1; : : : ; N; j D 1; : : : ; M .

A linear SVM gives a separating hyper-plane that maximizes the margin between the sample data points

of the two classes. The dual problem of a soft-margin SVM can be formulated as follows:

max
˛

2˛T 1 � ˛T .Ktr ˝ yyT /˛;

s.t. ˛T y D 0; 0 � ˛ � C 1;

(1)

where 1 and 0 are column vectors containing all ones and zeros respectively, ˝ is the component-

wise matrix multiplication operator, K D ŒX jU �T ŒX jU �, is the dot product between feature vectors of

pairwise data points, Ktr is the training part of K where Ktr D XT X , and, C is the penalty coefficient

penalizing margin violations. As the above dual problem is only dependent on dot-products between

feature vectors, we can discard the original feature vectors of data points and calculate a kernel matrix K

directly to represent the relationship between the original data points. As discussed in Scholkopf and Smola

(2002), any symmetric positive semi-definite matrix can be used as a valid kernel matrix K. Therefore by

constructing a kernel, K, we can map every data point, Xi , to a high-dimensional feature space, in which

a SVM can be used to generate a separating hyper-plane.

For biological sequences, a kernel function can be used to map these sequences consisting of characters

representing amino acids to a higher dimensional feature space on which a max-margin classifier is trained.

All the computations of a SVM are performed on the dot products of the pairwise feature vectors stored

in the kernel matrix. For example, suppose A is an alphabet of ` symbols (` D 20 for protein sequences),

then k-mer string kernel maps every sequence in A to a `k-dimensional feature space in which coordinates

are indexed by all possible sub-sequences of length k (k-mers). Specifically, the feature map of a k-mer

string kernel is given by

ˆk.x/ D .ˆ˛1 .x/; ˆ˛2.x/; : : : ; ˆ˛
lk

.x//T ; (2)
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where ˛1; ˛2; : : : ; ˛`k is an ordering of all the `k possible k-mers, and ˆ˛.x/ is the number of occurrences

of k-mer ˛ in sequence x. The corresponding kernel matrix is

Kk.x; y/ D ˆk.x/T ˆk.y/: (3)

The mismatch string kernel extends this idea by accommodating mismatches when counting the number

of occurrences of a k-mer in an input sequence. In particular, for any k-mer, ˛, let N.˛;m/ be the set of

all k-mers that differ from ˛ by at most m mismatches. The kernel mapping and kernel matrix are then

defined as follows:

ˆ.k;m/.x/ D .ˆ.k;m/;˛1 .x/; : : : ; ˆ.k;m/;˛
`k

.x//T ; (4)

ˆ.k;m/;˛.x/ D
X

ˇ2N.˛;m/.x/

ˆˇ.x/; (5)

K.k;m/.x; y/ D ˆ.k;m/.x/T ˆ.k;m/.y/: (6)

A profile of a protein sequence is a sequence of multinomial distributions. Each position of a protein

sequence’s profile is a multinomial distribution on 20 amino acids, representing the emission probabilities

of the 20 amino acids at each position in that sequence. A Profile Kernel (Kuang et al., 2005) extends

the mismatch-string kernel by using additional profile information of each sequence. Instead of treating all

k-mers with less than m mismatches similarly as the mismatch-string kernel described above, the profile-

kernel examines these k-mers further by looking at the emission probabilities (profiles) at the mismatched

positions and only accepts those mismatches that pass a certain threshold. The work-flow for constructing a

profile kernel as described in Kuang et al. (2005) is shown in Figure 1. Each sequence has a profile, which

FIG. 1. The work-flow of constructing a profile kernel in Kuang et al. (2005).
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is obtained by iteratively aligning each sequence to the sequences in an unlabeled set using PSI-BLAST

(Altschul et al., 1997). Suppose we have a sequence x D x1x2 : : : xN of amino acids of length N , then

P.x/ D fpx
i .a/; a 2 †gN

iD1 is the profile of sequence x, where † is the set of 20 amino acids and px
i .�/

is the multinomial distribution on the 20 amino acids at the i th position of the profile of sequence x. For

example, px
i .a/, is the emission probability of amino acid a at position i , such that

P

a2† pi.a/ D 1 at

each position i . In the Profile Kernel, the neighborhood of a k-mer xŒj C1 W j Ck� D xj C1xj C2; : : : ; xj Ck

in sequence x is defined as:

M.k;�/.P.xŒj C 1 W j C k�// D

(

ˇ D b1 : : : bk W �

k
X

iD1

log px
j Ci .bi / < �

)

; (7)

where the free parameter � controls the size of the neighborhood, and px
j Ci .b/ for i D 1; : : : ; k is obtained

from the profile of sequence x, 0 � j � jxj � k. Further, px
j Ci .b/ can be smoothed using the background

frequency of amino acid b. The feature vector of sequence x in the Profile Kernel is defined as the

following:

ˆ.k;�/.x/ D

jxj�k
X

j D0

.�ˇ1.P.xŒj C 1 W j C k�//; : : : ; �ˇ
`k

.P.xŒj C 1 W j C k�///T ; (8)

where ˇ1; : : : ; ˇ`k is an ordering of all possible k-mers, and the coordinate �ˇ.P.xŒj C 1 W j C k�// is

1 if ˇ 2 M.k;�/.P.xŒj C 1 W j C k�//, and 0 otherwise. The profile kernel uses the profile to measure

the mismatch information between different letters at each position of each sequence. Therefore, it’s more

accurate than the mismatch string kernel. In this paper, we will use the profile kernel discussed above as

the base kernel in the derivation of the random-walk kernel and empirical-map kernel.

3. METHODS

3.1. Improved random-walk kernel for biological sequence classification

In this section, we will describe our improved random-walk kernels. Our motivation for using a random-

walk kernel is its ability to coerce data points in the same cluster to stay closer while making data points

in different clusters to stay farther apart by propagating similarity on both labeled data and unlabeled data

(Szummer and Jaakkola, 2001; Weston et al., 2005). If we view a set of data points as a complete (or

sparse) graph, in which the weights between data points are viewed as similarity scores, then we can make

use of unlabeled data to help propagate similarity information through the whole graph. For example, we

have a graph containing two labeled data points, i and j , and two unlabeled data points, s and t , i is

highly similar to s, s is highly similar to t , and t is highly similar to j , but i and j are not very similar

to each other in the given graph. After two steps of similarity propagation, i and j will become similar in

a new similarity graph. When the similarity-propagation process is over, we hope that data points in

the same class (having the same label) will stay relatively closer while data points in different classes

(having different labels) will stay relatively farther apart (Chapelle et al., 2002; Szummer and Jaakkola,

2001; Weston et al., 2005). However, when the weight matrix connecting data points is not completely

consistent with the labels of data points, excessive similarity propagation through the graph will harm the

classification; therefore, we use label information to guide the similarity-propagation process on the graph.

This motivated us to use the label information of training data to optimize the parameter in a random-walk

kernel.

A t-step random-walk kernel is generally derived from a transition matrix with a t-step random walk

by normalization and symmetrization. Given a base kernel K with positive entries (in this paper, we use

profile kernels), the transition matrix P of a one-step random walk is defined as follows: let Pij be the

probability P.xi ! xj /, then after t steps of a random walk, the transition probability can be calculated

as P t D .D�1K/t , where D is a diagonal matrix with Di i D
P

k Kik . Ideally, we want to use P t as the

kernel matrix for SVM classification. However, a kernel matrix must be a symmetric positive semi-definite

matrix, therefore, we do the following manipulations to derive a kernel matrix from P t . As described in
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Weston et al. (2005), let L D D� 1
2 KD� 1

2 , with its eigen-decomposition, L D UƒU T , and QL D Uƒt U T ,

where, t denotes the exponent, and, T , denotes the transpose. Then, the new kernel corresponding to a

t-step random walk is calculated as QK D QD� 1
2 QL QD� 1

2 , where QD is a diagonal matrix with QDi i D QLi i . We

can see that the derived kernel QK relates to the transition matrix after t-steps of a random walk P t as

follows: QK D QD� 1
2 D

1
2 P t D� 1

2 QD� 1
2 .

A random-walk kernel based on PSI-BLAST E-values has been tried in Weston et al. (2005) for protein

remote homology detection. The challenge in random-walk kernels is how to decide the optimal number of

random steps. Since random walks exploit both labeled data and unlabeled data to estimate the manifold

structure of data, performing too many steps of a random walk can lead to the possibility of nearby clusters

joining together, resulting in data points in different classes come closer. On the other hand, if the number

of steps is too small, it can lead to a separation of data points in the same class. Our goal is to find the

optimum number of steps that is most consistent with the class memberships of the data points. Using

the label information of training data to learn the parameters of kernel functions has been successfully

adopted by researchers. Related research can be found in elsewhere (Lanckriet et al., 2004; Min et al.,

2007; Zhu et al., 2005).

Here, we need to learn the parameters of the random-walk kernel that achieves the goal of max-margin

classification using the label information of training data. A brute-force solution to this problem results

in a non-convex optimization problem, therefore, we propose using a positive linear combination of the

base kernel and random-walk kernels from one step to m steps to calculate a new kernel to approximate

the kernel with the optimum number of random steps by optimizing the dual objective function of the

resulting SVM. We call the resulting kernel “improved random-walk kernel.” Since every t-step random-

walk kernel has trace n, if the base kernel also has trace n, by restricting the learned kernel to have trace

n too, a positive linear combination of the base kernel and the random-walk kernels leads to a convex

combination of these kernels, where n is the total number of training data and test data points. The result

is the following optimization problem:

min
�

max
˛

2˛T 1 � ˛T .Ktr ˝ yyT /˛;

s.t. ˛T y D 0

0 � ˛ � C 1;

K D �0
QK0 C

m
X

kD1

�k
QKk ;

m
X

kD0

�k D 1;

�k � 0; k D 0; : : : ; m; (9)

where QK0 is the base kernel for deriving the improved random-walk kernel, QKk is the random-walk

kernel with a k-step random walk, and m is the maximal number of random steps performed. The above

optimization problem is a special case of the optimization problem discussed in Lanckriet et al. (2004).

We follow the framework as shown in Lanckriet et al. (2004), and show that the above problem is

equivalent to the following quadratically constrained convex optimization problem (for detailed derivations,

see Appendix):

min
˛;t

t;

s.t. t � ˛T . QKk
tr ˝ yyT /˛ � 2˛T 1; k D 0; : : : ; m;

˛T y D 0

0 � ˛ � C 1; (10)
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where t r denotes the training part of the corresponding kernel. The optimal values of parameters �k; k D

0; : : : ; m are exactly the dual solution to the above quadratic constrained convex optimization problem.

They can be found using the standard optimization software SeDuMi (Sturm, 1999) or MOSEK (Andersen

and Andersen, 2000) which solve the primal and dual of an optimization problem simultaneously. For huge

datasets, we can use SMO-like gradient-based algorithms (Platt, 1999) to solve the above problem. In this

work, all the optimization problems were solved using MOSEK.

As described in Kondor and Lafferty (2002), the ideas of random walks and diffusion are closely

related. Given a kernel matrix K, we can view it as a similarity matrix and compute the graph Laplacian

as Q D D � K, where D is a diagonal matrix described in this section. Instead of taking the form of the

t th power of the transition matrix P as in random-walk kernels, a diffusion kernel Kdiffuse takes a form of

the matrix exponential of Q:

Kdiffuse D eˇQ D lim
n�>1In2N

�

I C
ˇQ

n

�n

D I C ˇQ C
ˇ2

2
Q2 C � � � C

ˇt

t Š
Qt C � � �

D
X

i

vi e
ˇ�i vT

i ; (11)

where ˇ is a real parameter to control the diffusion, which is analogous to the minus inverse squared

variance parameter in Gaussian kernels, I is an identity matrix, N is the integer set, and, vi and �i are the

i th eigenvalue and eigenvector of K, respectively. The first line in the above equation can be interpreted as

a random walk with an infinite number of infinitesimally small steps. In this paper, we compute diffusion

kernels based on profile kernels, and compare their performance to that of improved random-walk kernels

shown in the experimental results section.

The computation of both a random-walk kernel and a diffusion kernel requires the eigen-decomposition

of a base kernel, which has a worst-case time complexity O.n3/. Computing the improved random-walk

kernel described above requires solving in addition, the quadratically constrained convex optimization

problem in equation 10, which has a worst-case time complexity O.mn3
tr / using an interior-point method,

where ntr is the number of training data points.

3.2. Empirical-map kernel

An empirical-map kernel based on PSI-BLAST E-values has been applied in the analysis of biological

sequence data with reasonably good performance (Weston et al., 2005). We compared the LOO nearest

neighbor classification errors on protein sequence classification produced using PSI-BLAST E-values to

those produced using a normalized profile kernel, and found that the normalized profile kernel captures

the neighborhood similarity much better than the PSI-BLAST E-values. This motivated us to use the

normalized profile kernel to derive an empirical-map kernel for biological sequence classification. In

Weston et al. (2005), the authors report their best result after tuning a scaling parameter; however, they

do not provide a method for calculating this parameter. In contrast, here we propose three approaches for

calculating the scaling parameter in the empirical-map kernel.

Given a similarity matrix S where Sij is the similarity score between data points Xi and Xj , the

empirical map for data point x is defined as:

ˆemp.x/ D .e��S.x;X1 /; e��S.x;X2/; : : : ; e��S.x;XP //T ; (12)

where P is the number of available data points, including both labeled data points and unlabeled data

points. The empirical-map kernel is defined as K�;ij D ˆemp.Xi /
T ˆemp.Xj /. The key to deriving the

optimal empirical-map kernel is calculating the scaling parameter �.

In this paper, we use the normalized profile kernel matrix as the similarity matrix. Given a profile

kernel matrix Kprof , we normalize it such that every sequence has a unit feature vector (the norm is 1)
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as follows:

Kprof ;norm D �� 1
2 Kprof �� 1

2 ; (13)

where � is a diagonal matrix and �i i D K
prof

i i . Then the empirical-map kernel is given by:

K
emp

�;ij
D

P
X

kD1

e
��.K

prof ;norm

ik
CK

prof ;norm

jk
/
: (14)

We normalize Kemp again so that every sequence has a unit feature vector, giving the following normalized

empirical-map kernel:

K
emp;norm

�;ij D

P
X

kD1

e
��.K

prof ;norm

ik CK
prof ;norm

jk /

v

u

u

t

P
X

kD1

e�2�K
prof ;norm

ik

P
X

kD1

e
�2�K

prof ;norm

jk

: (15)

One way to calculate � is by cross validation; however, it is computationally expensive to search over a

long list of candidate values and often this method fails to produce good values of �. Alternatively, we can

substitute K with K
emp;norm

� in Equation (1), perform the maximization with respect to ˛, and then perform

the minimization with respect to �. However, this problem is non-convex with respect to �, and each

iteration for calculating the optimal value of ˛ with � fixed involves a quadratic programming problem.

Instead, in this paper, we propose three different approaches to calculate �. The first approach calculates

� by maximizing the Kernel Alignment Score (KAS) (Cristianini et al., 2001). Given the labels of training

data, the optimal kernel is given by Kopt D Y Y T . We calculates � by maximizing the alignment score as

follows:

KAS D Trace.Kemp;normT

Kopt/=

q

Trace.Kemp;norm2
/Trace.Kopt2/: (16)

The second approach calculates � in a way that encourages the similarities between data points within

a class to be as large as possible. Given a kernel matrix K, we calculate the probability of sequence i

and sequence j being in the same class as, Pij D
Kij

P`
kD1 Kik

, where ` is the size of the labeled training

set. We calculate the probability matrix P
emp;norm

�
using K

emp;norm

�
, and ,P opt using Kopt. To enforce the

class-dependent constraint, we minimize the following KL-divergence between P opt and P
emp;norm

�
:

KL D
X

ij

P
opt

ij logŒP
opt

ij =P
emp;norm

�;ij
�: (17)

In the third approach, � is chosen such that the normalized empirical-map kernel in Equation (15)

corresponds to a good metric for defining a neighborhood consistent with the labels of the labeled data,

i.e., we choose � to minimize the LOO Nearest Neighbor classification error over the labeled dataset. To

limit the search space, we use the optimal �s found by the first approach and the second approach as

reference values, and we always take the smallest � when there are several local minima of � achieving

equally good classification error.

All the three approaches of computing � described above have a worst-case time complexity O.n2
tr /.

The third approach is often the most stable and often works best in practice, therefore, we suggest using

this approach as the default approach for computing � in the empirical-map kernel for possible future

applications. Once � is decided, the worst-case time complexity for computing an empirical-map kernel

is O.n3/ using traditional matrix multiplications, but this time complexity is reduced to O.n2:376/ using

advanced matrix multiplication algorithms in Cohn et al. (2005). In contrast, computing an improved

random-walk kernel has a worst-case time complexity O.n3/ dominated by the eigen-decomposition of

the base kernel matrix.
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4. EXPERIMENTAL RESULTS ON PROTEIN REMOTE

HOMOLOGY DETECTION

We determine the classification performance of the improved random-walk kernels and the empirical-

map kernels against the profile kernels by comparing their ability to detect protein remote homology.

We used the benchmark dataset, derived by Jaakkola from the SCOP database for this purpose (Jaakkola

et al., 2000; Murzin et al., 1995). In SCOP, protein sequences are classified into a three-level hierarchy:

Fold, Super-family, and Family, starting from the top. Remote homology is simulated by choosing all the

members of a family as positive test data, some families in the same super-family of the test data as positive

training data, all sequences outside the fold of the test data as either negative training data or negative test

data, and sequences that are neither in the training set nor in the test set as unlabeled data. This data splitting

scheme has been used in several previous papers (Jaakkola et al., 2000; Liao and Noble, 2002; Weston

et al., 2005). We used the same training and test data split as that used in Liao and Noble (2002) and

Weston et al. (2005). We used version 1.59 of the SCOP dataset (http://astral.berkeley.edu), in which no

pair of sequences share more than 95% identity.

In the data splits, of most experiments, there are only a few positive test cases but, hundreds, or even

thousands of negative test cases. The maximum number of positive test cases is usually below 30, but the

maximum number of negative test cases is above 2600. The minimum number of positive test cases is 1,

but the minimum number of negative test cases is still above 250. In the experiments with a very limited

number of positive test cases and a large number of negative test cases, we can almost ignore the ranking

of positive cases below 50 negative cases. In such situations, we consider the ROC50 score much more

informative of prediction performance of different methods than the ROC score. Here, a ROC curve plots

the rate of true positives as a function of the rate of false positives at different decision thresholds. The

ROC score is the area under the curve. The ROC50 score is the ROC score computed up to the first 50 false

positives. Thus, in our experiments, we only compare the ROC50 scores corresponding to different kernels.

Since the optimization procedure for calculating the convex combination coefficients for combining

random-walk kernels is highly dependent on labels, we adopted the following approach: prior to training

the SVM, we added to the positive training set labeled as positive, close homologs of the positive training

data in the unlabeled set found by PSI-BLAST with E-value less than 0.05. When training the SVM based

on random-walk kernels with a fixed number of random steps, diffusion kernels, and empirical-map kernels,

we also used unlabeled data as discussed above. The improved random-walk kernel and the empirical-map

kernel are based on the two profile kernels which produced the top two results on SCOP in Kuang et al.

(2005). Both profile kernels were obtained by setting the k-mer length to 5 and the parameter � to 7.5.

However, the best profile kernel was obtained using the PSI-BLAST profile trained up to five search

iterations while the second best profile kernel was obtained using the PSI-BLAST profile trained up to two

search iterations. The profile kernels were cosinely normalized to have trace n as in Equation (13) before

they were used for the SVM classification and the calculation of improved random-walk kernels. In Kuang

et al. (2005), Leslie et al. (2002), and Weston et al. (2005), it has been shown that cosinely normalized

mismatch string kernels including the profile kernels are very effective for protein classification. And in

the experiments, the maximum number of steps m of random walks for the improved random-walk kernel

was set to 6 (when it was set to 7, 8, 9, or 10, we saw an increasing computational time but no significant

improvement in the results over that of m D 6). To compare improved random-walk kernels to diffusion

kernels, the free parameter ˇ in Kdiffuse was decided by five-fold cross validation. When using LOO Nearest

Neighbor classification error to decide �, we used the values found by the first and the second approaches

as reference and limit the search space to regions around the reference values. We used a hard-margin

SVM to identify protein remote homology; the free parameter C in the SVM was set to infinity, which

has been shown to be very effective for protein classification (Weston et al., 2005).

Table 1 shows the ROC50 scores produced by the random-walk kernels with the best fixed number

of random steps, the scores produced by the improved random-walk kernels, and, the scores produced

by the diffusion kernels based on the best and second best profile kernels. It clearly shows that the

improved random-walk kernels have much better performance than the profile kernels and the diffusion

kernels. Moreover, based on the best profile kernel, the random-walk kernel with the best fixed number of

random steps (two steps) has a worse performance than the base kernel; and based on both profile kernels,

the diffusion kernels have a worse performance than the two base kernels. The poor performance of the
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TABLE 1. OVERALL MEAN ROC50 SCORES OVER 54 PROTEIN FAMILIES

CORRESPONDING TO DIFFERENT RANDOM-WALK KERNELS AND

DIFFUSION KERNELS
a

Random-walk kernel (RWK) Overall mean ROC50

2-step RWK using the second best profile kernel 0.847

Improved RWK using the second best profile kernel 0.867

Diffusion kernel using the second best profile kernel 0.746

Second best profile kernel (base kernel) 0.824

2-step RWK using the best profile kernel 0.862

Improved RWK using the best profile kernel 0.901

Diffusion kernel using the best profile kernel 0.790

Best profile kernel (base kernel) 0.874

a2-step random-walk kernels work best on the SCOP dataset among all the random-walk

kernels with a fixed number of random steps. We see that improved random-walk kernels

outperform random-walk kernels with the best fixed number of random steps and diffusion

kernels.

diffusion kernels here is probably due to the very limited positive labeled data and the non-optimality of

the parameter ˇ decided by cross validation. From Table 1, we conclude that the convex combination

of random-walk kernels is an effective way of using random walks. Table 2 lists the ROC50 scores by

the empirical-map kernels with � calculated using three different approaches. From Table 2, we see that the

first and the second approaches have similar performance, while the third approach outperforms these two.

In the remainder of this paper, the empirical-map kernel is taken in reference to the kernel with � calculated

using the third approach except where explicitly stated.

Table 3 gives the overall mean ROC50 scores over 54 protein families obtained by several previous

representative approaches and our improved random-walk kernels and empirical-map kernels. It can be

clearly seen that previous approaches except for the profile kernels have low ROC50 scores, below 0.70.

The two profile kernels produce ROC50 scores above 0.80. In contrast, our improved random-walk kernels

and empirical-map kernels produce ROC50 scores above 0.90. Because we have only a few positive test

cases, but hundreds or even thousands of negative test cases in most of the 54 experiments, the mean

ROC50 score produced by a random predictor is close to 0. We can see that all the approaches listed in

the table have much better performance than a random predictor.

TABLE 2. OVERALL MEAN ROC50 SCORES OVER

54 PROTEIN FAMILIES CORRESPONDING TO DIFFERENT

EMPIRICAL-MAP KERNELS WITH � CALCULATED

USING THREE DIFFERENT APPROACHES
a

Empirical-map kernels Overall mean ROC50

Using the second best profile kernel [1] 0.862

Using the second best profile kernel [2] 0.866

Using the second best profile kernel [3] 0.878

Second best profile kernel (base kernel) 0.824

Using the best profile kernel [1] 0.904

Using the best profile kernel [2] 0.900

Using the best profile kernel [3] 0.911

Best profile kernel (base kernel) 0.874

a[i] denotes the empirical-map kernel with � calculated using the i th approach,

i D 1, 2, or 3. From this table, we find that the third approach for deciding � is the

best. In contrast, the cross validation procedure (Min et al., 2007) to choose � gives

overall mean ROC50 scores 0.848 based on the second best profile kernel and 0.891

based on the best profile kernel, and the searching procedure is very slow.
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TABLE 3. OVERALL MEAN ROC50 SCORES OVER 54 PROTEIN FAMILIES

CORRESPONDING TO DIFFERENT KERNELSa

Methods Overall mean ROC50

eMOTIF (Ben-Hur and Brutlag, 2003; Kuang et al., 2005) 0.247

SVM-pairwise [PSI-BLAST] (Liao and Noble, 2002; Kuang et al., 2005) 0.533

Spectrum-kernel [PSI-BLAST] (Leslie et al., 2002) 0.545

Neighborhood (Weston et al., 2005) 0.699

Second best profile kernel (the second best result) 0.821

Best profile kernel (the best result) 0.874

Improved RWK using the second best profile kernel 0.867

Empirical-map kernel using the second best profile kernel 0.878

Improved RWK using the best profile kernel 0.901

Empirical-map kernel using the best profile kernel 0.911

aHere the empirical-map kernels refer to the kernels with � calculated using the third approach. In this table, the

top rows show the results produced by several previous representative approaches and the best published results;

the middle rows show our results using the improved Random-Walk Kernel (RWK) and the empirical-map kernel

based on the second best profile kernel; and the bottom rows show our results using the improved Random-Walk

Kernel (RWK) and the empirical-map kernel based on the best profile kernel.

Table 4 shows the ROC50 scores for the most difficult protein family Glutathione S-transferases,

N-terminal domain on which all the previous approaches produced very poor performance while our

approaches performed well. In the experiment for this protein family, we have 13 positive test proteins

and 927 negative test proteins, therefore, the ROC50 score produced by a random predictor should be

close to 0, while the profile kernels and our proposed kernels performed much better than a random

predictor.

Figures 2–8 show our results in detail. Figures 2 and 3 show the number of protein families that score

above the different ROC50 threshold values for our kernels and the top two profile kernels (note that they

are not ROC50 curves but the summarization of all the ROC50 scores). Figures 4–7 show the 10 largest

improvements in ROC50 scores for our kernels over the top two best profile kernels. Figure 8 compares

the SVM classification scores calculated using the best profile kernel and the scores calculated using the

empirical-map kernel based on the best profile kernel on the most difficult protein family Glutathione

S-transferases, N-terminal domain. On this special family, we tried to find the obvious changes of cluster

patterns by visualizing the kernel matrices, but it turned out that the improvements of ROC50 scores were

TABLE 4. ROC50 SCORES ON THE MOST DIFFICULT PROTEIN FAMILY GLUTATHIONE S-TRANSFERASES,

N-TERMINAL DOMAIN CORRESPONDING TO DIFFERENT KERNELS
a

Methods ROC50 on the hardest protein family

eMOTIF (Ben-Hur and Brutlag, 2003; Kuang et al., 2005) 0.000

SVM-pairwise [PSI-BLAST] (Liao and Noble, 2002; Kuang et al., 2005) 0.000

Spectrum-kernel [PSI-BLAST] (Leslie et al., 2002) 0.000

Neighborhood (Weston et al., 2005) 0.000

Second best profile kernel (the second best result) 0.045

Best profile kernel (the best result) 0.122

Improved RWK using the second best profile kernel 0.454

Empirical-map kernel using the second best profile kernel 0.455

Improved RWK using the best profile kernel 0.509

Empirical-map kernel using the best profile kernel 0.903

aHere the empirical-map kernels refer to the kernels with � calculated using the third approach. In this table, the top rows show

the results produced by several previous representative approaches and the best published results; the middle rows show our results

using the improved Random-Walk Kernel (RWK) and the empirical-map kernel based on the second best profile kernel; and the

bottom rows show our results using the improved Random-Walk Kernel (RWK) and the empirical-map kernel based on the best

profile kernel.
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FIG. 2. The number of protein families with ROC50 scores above different thresholds for different kernels using the

second best profile kernel.

FIG. 3. The number of protein families with ROC50 scores above different thresholds for different kernels using the

best profile kernel.
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FIG. 4. The results obtained using the second best profile kernel: the top 10 largest improvement in ROC50 scores

out of 54 protein families for the improved random-walk kernel based on the second best profile kernel over the base

kernel. In each group (for one protein family), the left black bar corresponds to the improved random-walk kernel

based on the second best profile kernel, and the right white bar corresponds to the base kernel.

due to subtle changes of some kernel entries, which are hard to capture by eyes. Besides, we found that,

based on the best profile kernel, the empirical-map kernel resulted in much more support vectors than the

improved random-walk kernel and the base kernel. Out of 1943 training protein sequences, the empirical-

map kernel with the learned � D 3 resulted in 1901 support vectors, while the random-walk kernel and the

base kernel resulted in 1026 and 1083 support vectors, respectively. In the empirical-map kernel, � D 3

allows a lot of weak pairwise sequence similarities contributing to the construction of the kernel; moreover,

almost every training sequence for this protein family was learned to be a support vector using this kernel.

Therefore, the drastic improvement given by the empirical-map kernel for this protein family is probably

due to the combination of a lot of weak pairwise sequence similarities, which might correspond to the

combination of a lot of short sequence motifs. In our future work, we plan to extract sequence motifs that

are crucial for determining each positive test protein’s superfamily membership using the random-walk

kernel and the empirical-map kernel to rank protein sub-sequences, and, we hope that we would be able

to identify biologically meaningful motifs for the protein family Glutathione S-transferases, N-terminal

domain and other families.

To determine whether the improvements obtained by the improved random-walk kernels and the empirical-

map kernels are statistically significant, we performed Wilcoxon Matched-Pairs Signed-Ranks Tests on the

differences between paired kernels. All the resulting p-values were below 0.05. The resulting p-value for

the ROC50 score difference between the improved random-walk kernel based on the second best profile
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FIG. 5. The results obtained using the second best profile kernel: the top 10 largest improvement in ROC50 scores

out of 54 protein families for the empirical-map kernel based on the second best profile kernel over the base kernel.

In each group (for one protein family), the left black bar corresponds to the empirical-map kernel based on the second

best profile kernel, and the right white bar corresponds to the base kernel.

kernel and the base kernel was 1:52 � 10�4. The p-value for the pair between the improved random-

walk kernel based on the best profile kernel and the base kernel was 3:30 � 10�3. The p-value for the

pair between the empirical-map kernel based on the second best profile kernel and the base kernel was

1:67�10�4, and the p-value for the pair between the empirical-map kernel based on the best profile kernel

and the base kernel was 3:05 � 10�2.

However, based on both the profile kernels, the p-values for the ROC50 score differences between the

empirical-map kernels and the improved random-walk kernels are both greater than 0.15, which are not

statistically significant. Since the empirical-map kernels produced higher mean ROC50 scores and have a

lower order of computational time complexity than the improved random-walk kernels, we prefer to use

the empirical-map kernels for future protein sequence classification tasks. We might consider the improved

random-walk kernels to be better choices than the empirical-map kernels for some special problems in the

special problem contexts there.

5. DISCUSSION

In this paper, we proposed two kernel learning approaches for protein remote homology detection based

solely on protein sequence data. One approach approximates the optimal number of random steps in a
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FIG. 6. The results obtained using the best profile kernel: the top 10 largest improvement in ROC50 scores out of

54 protein families for the improved random-walk kernel based on the best profile kernel over the base kernel. In each

group (for one protein family), the left black bar corresponds to the improved random-walk kernel based on the best

profile kernel, and the right white bar corresponds to the base kernel.

random-walk kernel by calculating a convex combination of random-walk kernels with different numbers

of random steps, and, the other approach uses profile kernels to derive empirical-map kernels with the

scaling parameter � calculated using a principled approach. The first approach scales down to a convex

optimization problem avoiding concerns of local minima. The second approach initializes the value of � in

the empirical-map kernels by minimizing the KL divergence and maximizing the Kernel Alignment Score,

and, then refining the value of � by minimizing the Leave-One-Out nearest neighbor classification errors.

It is a robust approach. We ran the procedure for calculating � several times, each time obtaining the same

refined value of � on each protein family.

Both approaches make use of a large number of pairwise sequence similarities and unlabeled data

to derive new kernels, which corresponds to new similarity metrics for pairwise sequences. In the first

approach, pairwise sequence similarities contribute to defining the transition probability matrix for the

random walks. The convex optimization procedure induces the new kernel to reflect the manifold structure

of the sequences that is optimally consistent with the labeled training sequences.

In the second approach, the scaling parameter � plays the role of selecting features in a soft way

for the empirical-map kernel. When � is small, small pairwise sequence similarities contribute weakly

to the construction of the kernel based on the empirical map. When � is large, only large pairwise

sequence similarities contribute to the construction of the new kernel. Figure 9 illustrates how the feature

component in the empirical map varies with distance between pairwise sequences for different � values
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FIG. 7. The results obtained using the best profile kernel: the top 10 largest improvement in ROC50 scores out of

54 protein families for the empirical-map kernel based on the best profile kernel over the base kernel. In each group

(for one protein family), the left black bar corresponds to the empirical-map kernel based on the best profile kernel,

and the right white bar corresponds to the base kernel.

(note that the distances between pairwise sequences based on the normalized profile kernels are between 0

and 2). All three procedures in the second approach make use of the label information of training

sequences to calculate � in order to achieve good separability between positive sequences and negative

sequences.

The experimental results on protein remote homology detection show that the improved random-walk

kernels and the empirical-map kernels proposed here produce strikingly better results than previous

methods, including the best approaches for solving this problem proposed to date. Out of 54 protein

families, the best profile kernel produced ROC50 scores above 0.90 for 30 families, while the empirical-

map kernel based on the best profile kernel produced ROC50 scores above 0.90 for 41 families. On one

hand, this shows the effectiveness of the empirical map kernel, and on the other hand, it shows that the

base kernel (the best profile kernel) has very good performance producing almost perfect results on more

than half of the protein families. From Figures 4–7, we see that our approaches give more than 10%

improvement over the base kernels on many difficult protein families. In particular, on the most difficult

protein family Glutathione S-transferases, N-terminal domain on which all the previous approaches failed

to produce useful results (ROC50 scores of zero or close to zero), our approaches produced very good

results.

Our approaches are general and are readily applicable to other biological classification problems such

as Transcription Factor Binding Site prediction and gene function prediction. The approaches described



472 MIN ET AL.

FIG. 8. The SVM classification scores calculated using the best profile kernel and the empirical-map kernel based

on the best profile kernel on the most difficult protein family Glutathione S-transferases, N-terminal domain. (Top

plot) Best profile kernel. (Bottom plot) Empirical-map kernel. In both plots, the stars represent all positive test proteins,

and the circles represent some negative test proteins. In each plot, the horizontal line sits at the smallest value of the

classification scores for all the positive test proteins. The top plot shows that if we want to classify most of the positive

test proteins correctly by setting an appropriate threshold, there will be a lot of false positives; however, the bottom

plot clearly shows that we can almost classify all the positive test proteins correctly by setting an appropriate threshold

while only introducing a very small number of false positives.

FIG. 9. This figure shows how the feature component exp.��d/ in the empirical-map varies with the distance d

between pairwise sequences for different � values. When the normalized profile kernels are used to calculate the

distances between pairwise sequences, the distances are always between 0 and 2.
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here can also be applied to non-biological problems such as document classification, handwritten digit

classification, and face recognition, where kernels are constructed on texts and images instead of on

biological data.

6. APPENDIX

We now prove that the optimization problem in Equation (9) is equivalent to the optimization problem

in Equation (10). It’s easy to see that all the constraints in Equation (9) are linear thus convex with respect

to ˛ and �. Let ` D 2˛T 1 � ˛T .Ktr ˝ yyT /˛, since only Ktr appears in ` in Equation (9), Ktr is the

only part we need from K to solve Equation (9). ` is linear, thus convex with respect to �. The Hessian

of ` with respect to ˛ is �.Ktr ˝ yyT /, which is negative semi-definite, hence, ` is concave with respect

to ˛. Therefore, we have the following equations:

min
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D max
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˛;tW˛T yD0;0�˛�C 1;t�˛T . QKk

t r ˝yyT /˛�2˛T 1;kD0;:::;m

t (18)

The first equality holds due to the special property of ` described above according to Boyd and

Vandenberghe (2003). The second and third equalities hold due to the properties of the simplex defined

by �. The last two equalities hold due to the rewriting of the optimization problems in different formats.

The last equality shows that the optimization problem in Equation (9) is equivalent to the optimization

problem in Equation (10).
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