UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering
and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger
Summer 1998

C++ for Java Programmers*

Reference Materials. Any serious would-be C++ programmer should own the third edition
of the The C++ Programming Language by Bjarne Stroustrup (Addison-Wesley, 1997, ISBN 0-
201-88954-4). You may find Stanley Lippman’s C++ Primer useful as an introduction.

1 Program Structure

C++ allows functions that are not part of any class (non-member functions). Thus,

bool isPrime(int x)

{
if (x < 2)
return false;
for (int i = 0; i < x/2; i += 1)
if (x % 1 ==0)
return false;
return true;
}

This function may be called, without any qualification—as in if (isPrime(x))—from anywhere
in the program (including from code written in other files). If we change the first line to

static bool isPrime(int x)

We have a function that is local to the compilation unit that contains it (a compilation unit is a
single item submitted to a C4++ compiler to translate).
Variables may also be defined outside any class or function, as in

int numberO0fTasks;
int size = 42;
static double Foo = 3;

These are all like static fields in Java, except that the variable Foo above (like a function declared
static) is local to the compilation unit.

C++ has no packages as such, but a new feature, namespaces, get a similar effect. I refer you
to the reference manual.

The main program in a C++ program is a non-member function called main, usually declared

main (int argc, char* argv[]) // Or char**x argv

{...%

—that is, without a return type. The two parameters together serve the purpose of the single
parameter to Java main programs. Two are needed because C++ arrays do not carry their length
along with them.

*Copyright © 1991, 1997, 1998 by Paul N. Hilfinger. All rights reserved.

C++ for Java Programmers 2

2 Declarations vs. Definitions, Header Files

In Java, a function’s parameter types, return type, name, and body are all specified together. In
C++, this is called a function definition. C++ also has related constructs called declarations,
which do not include the bodies (or in general, the values) of the entities being introduced. For
example, corresponding to isPrime above, we have either of the declarations

extern bool isPrime (int x);
/* or *x/
static bool isPrime (int x);

(depending on whether the corresponding definition specifies static).
Declarations of outer-level variables (outside of any class or function) look like this:

extern int numberOfTasks;
extern int size;
static double Foo;

(Actually, the externs can be left off, but T consider that bad (actually, old) style. Variable
declarations have no initializers (i.e., ‘= 42’ and the like).

Good style in C/C++ is to use both declarations and definitions of each function and global
variable, and to gather them into header files, whose names typically end in .h. Here’s a typical
example, a file IntList.h that declares a type IntList, a function reverse, and a global variable,
totallListElements.

/* IntList.h: List of integers */

#ifndef _INTLIST_H
#define _INTLIST_H

extern int totalListElements;

class IntList {
public:
int head;
IntList* tail;

IntList (int head, IntList* tail) {
this—->head = head; this->tail = tail;
totalListElements += 1;

¥

int sum ();

};
extern IntList* reverse (IntList* L);

#endif
A program that wished to use these definitions would have, near the front,
#include "IntList.h"

which means “remove this #include line and, in its place, substitute the contents of the file
IntList.h.”

C++ for Java Programmers 3

The strange statements beginning with ‘#” are known as preprocessor statements. These par-
ticular ones are a standard C/C++ idiom (or kludge, if you prefer) that prevent the same set of
declarations from being processed twice (a given program may need several header files, each of
which includes a common header file whose definitions it uses).

In the IntList example, the constructor is defined, but the member function sum is only
declared (no body). One would typically put the body of sum in another file, such as IntList.cc:

/* IntList.cc: Implementations of IntList. */
#include "IntList.h"

IntList* reverse (IntList* L) {

}

IntList* IntList::sum (IntList* L) {

}

Where F' is a class and X is something defined in that class, the notation F'::X means “the
X declared in F'.” Thus, the definition of sum here means “The sum function declared in class
IntList is defined as....”

3 Memory Model

In Java, one can write

int x; // A
Foo y = new Foo (); // B
Foo z = y; // C

and the meaning is that x is a box (variable) that can contain integers, y is a box that can contain
pointers to Foos, and z is a different box that is initialized to contain the same pointer that y has
at that moment. It is not possible to have something that points to an int directly, and it is not
possible to have a variable that actually contains a Foo (without going through a pointer to get
to it).

In C/C++, all these things are possible, requiring more syntax.

int x; // A

x = 3;

int* xp; // xp contains pointers to ints

Xp = new int; // xp is set to point to a new int box.
Xp = &x; // xp is set to point to x.

Foo* y = new Foo; // B. y contains pointers to Foo

Foo* z = y; // C. z and y now point at the same thing
Foo q; // q contains Foos directly

We also need more syntax to get at these things:

*xp = 42; // Set the thing pointed to by xp to 42
// (so x is now 42).
(*y).print (); // Print the Foo pointed to by y

y->print (); // Shorthand for preceding statement

C++ for Java Programmers 4

Syntax warning. In C/C++,
int* x,y;

means “x is a pointer to an int; y is an int.” You need
int *x, *y;

to make them both ints. The spacing doesn’t matter; I prefer the star against the type when
possible, but it is confusing when multiple things are defined. End of warning.

3.1 Arrays

In C/C++, arrays do not carry bounds information and are closely allied with (though not identical
to) pointers. Given the declaration

int A[4];

A is an array of 4 ints. Whenever the name A appears, it is implicitly converted to a pointer to
A[0]. Thus,

Af0] = 3;
/* is the same as */
int* Ap = A; // or int* Ap = & A[0];
*Ap = 3;
/* and now */
A[2] = 4;
/* is the same as */
Ap[2] = 4;

That is, a pointer is always taken to be (potentially) a pointer to some element in the middle of an
array. If pointer p points to element 7 of an array, then p+k is also a pointer, for k£ an integer, and
it points to element 7 + k of the same array. In fact, the syntax A[i] is by definition equivalent to
*(A+1).

On the one hand, this makes it easy to pass a sub-array to a function. If sum(4, N) adds
elements A[0],...,A[N-1], then sum(A+1, N-1) adds elements A[1],...,A[N-1]. On the other
hand, since there is no bounds information carried around with arrays, it 1s easy to make errors,
and these errors are not typically caught by C/C++ systems. That is, very few systems will catch

int* A = new int[4];
Al4] = 3; // But there is no A[4]!

3.2 References

In C/C++, it is possible to do something that was impossible in Java. The following function in
Java does not do what it says:

/** Increment x (?7) */
void incr (int x) { x += 1; }

The call incr(y) does not increment y, only a (useless) copy of it. In C/C++, on the other hand,
you may write

void incr (int* x) { *x += 1; }

and call 1t with, e.g., incr(&y). That is, a pointer to y is passed by value, which gives the effect
of passing y by reference, as for Pascal’s var parameters.

C++ provides an additional shorthand in the form of the reference type. A reference type is
essentially a pointer type whose values are always automatically deferenced (*) or references (&)
as needed. For example,

C++ for Java Programmers 5

void incr (int& x) { x += 1; }
incr (y);
essentially passes a pointer to y as the parameter x, and all uses of x in the body of the function
are, in effect, “starred.”
4 Classes and Inheritance
The Java declaration

class A extends B implements C {
public declaration 1

protected declaration 2
public declaration 3
public declaration 4

private declaration 5

¥
becomes

class A : public B, public C {
public:
declaration 1

protected:
declaration 2

public:
declaration 3

declaration 4

private:
declaration 5

};

in C++4. There is no distinction between ‘extends’ and ‘implements’ and a C++ class can extend
any number of base classes.
A C++ member function declared

virtual void £ () { ... }

Is like an ordinary Java member function. Functions in other classes that override this declaration
need not say virtual (and as a stylistic matter, generally don’t). To get the effect of an abstract
member function:

virtual void £ () = 0;

(C++ classes are not declared to be abstract; they just are if they contain abstract methods).
Non-overriding functions declared without the virtual keyword are somewhat like Java’s final
functions, except that Java allows its final functions to be virtual, whereas C++ does not (that

C++ for Java Programmers 6

is, Java final methods can’t be overridden, but they may themselves override something in their
parent). You can hide the declaration of a non-virtual £ in a child, but you can’t override it to
get the effects of dynamic dispatching of methods based on their run-time types.

5 Templates

The designer of C++ is against the instanceof operator and also against “downcasting,” which
is what happens in Java when you write (String) (myVector.elementAt(k)). Although C++
recently introduced these features, that’s clearly not where its heart is. Instead, C++ handles
problems such as the definition of the Vector class with templates. The declaration

template <class T>
class Vector {
public:
Vector (int N) { vals = new T[N]; this->N = N; }
int size () { return N; }
T elementAt (int k) {
if (k < 0 || k >= N) abort ();
return vals[k];
}
private:
T* vals;

};
allows you to define new Vectors containing values of a single type, as in

Vector< int > q(10);
Vector< Vector<int>* >* P = new Vector< Vector<int>* >(100);

Here, q is a Vector containing 10 ints, and P is a pointer to a Vector of pointers to Vectors
of ints, initialized to point to a new Vector of 100 integers. (By the way, this example also
illustrates the placement of the parameters to the constructor in cases where one does not use
new.)

One can also templatize non-member functions:

template<class T, class U>
U £(U r0, T x) {
Ur = r0;
for (int i = 0; i < x.size (); i += 1) {
r += x[i];
return r;

}

As you can see, multiple arguments are possible. This function is called just like an ordinary
one—f (V). It 1s overloaded on all possible types U and T.

6 Strings

C/CH+ represent primitive strings as arrays of char (which, therefore, get passed around as values
of type char#). Since you really need the length of a string and C/C++ arrays don’t carry such
information, they use the convention of putting a null (?\000?) character after the last character
of the string. Thus, after

char Hello[6] = { ’H’, ’e’, ’1’, ’1’, ’0’, >\000’ };
char* hi = Hello;

C++ for Java Programmers 7

The array Hello and the pointer hi both represent the string "Hello". Indeed, the string syntax in
C/C++, as in "foo", represents an anonymous array of characters, ending with a null. The stan-
dard C library function strlen computes the length of a string and there is also stremp(S0,S1)
(like the compareTo method in Java), strcpy(S0,S1) (move the string in S1 into the array pointed
to by S0, causing unutterable random catastrophe if there isn’t room), and strcat(S0,81) (find
the end of S0 and append S1 to it, again with the same potential for disaster), among others.
These functions come from the standard header file included by

#include <string.h>
// < ... > here is for standard library headers

The C++ library has a distinct standard type string, which you get by putting
#include <string> // No .h

at the beginning of your program. The string type knows about primitive C strings, generally
converting them to type string when needed. It is like Java’s StringBuffer, and supports + and
+= for concatenating strings. Like the primitive strings, S[i] for S a string, is character number
i

7 1/0

Standard C has a header file, stdio.h (cstdio when used in C++) that defines functions printf
and fprintf like the ucb.io packages .format method. Where in our Java programs, you can
write

stdout.format ("(%d, %d)\n").put (left).put (right);
outfile.format ("%s %s").put (Name).put (Title);

in C, you can write

printf ("(%d, %d)\n", left, right);
fprintf (outfile, "%s %s'", Name, Title);

and where in our programs you can write

stdin.scan ("%d %d ");
X = stdin.intItem(0); y
inp.scan ("%d %d ");

X = stdin.intItem(0); y = stdin.intItem (1);

stdin.intItem (1);

in C, you can write:

scanf ("%d %d ", &x, &y); // Returns -1 on EOF.
fscanf (inp, "Ud %d ", &x, &y);

In C+4++4, there is a library, iostream.h, that provides for something closer to System.out in
Java:

cout << "(" << left << ", " << right << ")" << endl;
is like Java’s

System.out.println ("(" + left + ", " + right + ")");
Input is rather nice; you can write

int x, y;
string z;
cin >> x >> y >> z;

and input integers into x and y and a string (delimited by whitespace) into z (which automatically
expands to receive it).

