UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering
and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger
Spring 1998

Lecture Notes #14*

1 Time Complexity

The obvious way to answer to the question “How fast does such-and-such a program run?” is
to use something like the UNIX time command to find out directly. There are various possible
objections to this easy answer. The time required by a program is a function of the input, so
presumably we have to time several instances of the command and extrapolate the result. Some
programs, however, behave fine for most inputs, but sometimes take a very long time; how do we
report (indeed, how can we be sure to notice) such anomalies? What do we do about all the inputs
for which we have no measurements? How do we validly apply results gathered on one machine
to another machine?

The trouble with measuring raw time is that the information is precise, but limited: the time
for this input on this configuration of this machine. On a different machine whose instructions
take different absolute or relative times, the numbers don’t necessarily apply. Indeed, suppose
we compare two different programs for doing the same thing on the same inputs and the same
machine. Program A may turn out faster than program B. This does not imply, however, that
program A will be faster than B when they are run on some other input, or on the same input,
but some other machine.

In mathematese, we might say that a raw time is the value of a function C.,.(I, P, M) for some
particular input 7, some program P, and some “platform” M (platform here is a catchall term
for a combination of machine, operating system, compiler, and runtime library support). We can
make the figure a little more informative by summarizing over all inputs of a particular size

Cw(N,P,M) = lmaj}\(fCr(I, P, M),

where |I| denotes the “size” of input I. How one defines the size depends on the problem: if I is an
array to be sorted, for example, |I| might denote I.length. We say that C,, measures worst-case
time of a program. Of course, since the number of inputs of a given size could be very large (the
number of arrays of 5 ints, for example, is 2159 > 10*®), we can’t directly measure C,,, but we
can perhaps estimate it with the help of some analysis of P. By knowing worst-case times, we
can make conservative statements about the running time of a program: if the worst-case time for
input of size N is T', then we are guaranteed that P will consume no more than time T for any
input of size N.

*Copyright © 1991, 1997 by Paul N. Hilfinger. All rights reserved.

2 P. N. Hilfinger

But of course, it always possible that our program will work fine on most inputs, but take a
really long time on one or two (unlikely) inputs. In such cases, we might claim that C, is too
harsh a summary measure, and we should really look at an average time. Assuming all values of
the input, I, are equally likely, that is

> C(I,P, M)

Ca(N, P, M) = =N

N

Fair this may be, but it is often (usually) very hard to compute. In this course, therefore, T will
say very little about average cases, leaving that to CS170 [plug].

We’ve summarized over inputs by considering worst-case times; now let’s consider how we
can summarize over machines. Just as summarizing over inputs required that we give up some
information—namely, performance on particular inputs—so summarizing over machines requires
that we give up information on precise performance on particular machines. Suppose that two
different models of computer are running (different translations of) the same program, performing
the same steps in the same order. Although they run at different speeds, and possibly execute
different numbers of instructions, the speeds at which they perform any particular step tend to
differ by some constant factor. By taking the largest and smallest of these constant factors, we
can put bounds around the difference in their overall execution times. (The argument is not really
this simple, but for our purposes here, it will suffice.) That is, the timings of the same program
on any two platforms will tend to differ by no more than some constant factor over all possible
inputs. If we can nail down the timing of a program on one platform, we can use it for all others,
and our results will “only be off by a constant factor.”

But of course, 1000 is a constant factor, and you would not normally be insensitive to the
fact that Brand X program is 1000 times slower than Brand Y. There is, however, an important
case in which this sort of characterization is useful: namely, when we are trying to determine
or compare the performance of algorithms—idealized procedures for performing some task. The
distinction between algorithm and program (a concrete, executable procedure) is somewhat vague.
Most higher-level programming languages allow one to write programs that look very much like
the algorithms they are supposed to implement. The distinction lies in the level of detail. A
procedure that is cast in terms of operations on “sets,” with no specific implementation given for
these sets, probably qualifies as an algorithm. When talking about 1dealized procedures, it doesn’t
make a great deal of sense to talk about the number of seconds they take to execute. Rather,
we are interested in what I might call the shape of an algorithm’s behavior: such questions as
“If we double the size of the input, what happens to the execution time?” Given that kind of
question, the particular units of time (or space) used to measure the performance of an algorithm
are unimportant—constant factors don’t matter.

If we only care about characterizing the speed of an algorithm to within a constant factor, other
simplifications are possible. We need no longer worry about the timing of each little statement
in the algorithm, but can measure time using any convenient “marker step.” For example, to do
decimal multiplication in the standard way, you multiply each digit of the multiplicand by each
digit of the multiplier and then add one or two digits for each of these multiplications. Counting
just the one-digit multiplications, therefore, will give you the time within a constant factor, and
these multiplications are very easy to count (the product of numbers of digits in the operands).

Another characteristic assumption in the study of algorithmic complerity (i.e., the time or
memory consumption of an algorithm) is that we are interested in typical behavior of an idealized
program over the entire set of possible inputs. Idealized programs, of course, being ideal, can
operate on inputs of any possible size, and most “possible sizes” in the 1deal world of mathematics

Lecture Notes #14 3

are extremely large. Therefore, in this kind of analysis, it is traditional not to be interested in
the fact that a particular algorithm does very well for small inputs, but rather to consider its
behavior “in the limit” as input gets very large. For example, suppose that one wanted to analyze
algorithms for computing # to any number of decimal places. I can make any algorithm look
good for inputs up to, say, 1,000,000 by simply storing the first 1,000,000 digits of = in an array
and using that to supply the answer when 1,000,000 or fewer digits are requested. If you paid
any attention to how my program performed for inputs up to 1,000,000, you could be seriously
misled as to the cleverness of my algorithm. Therefore, when studying algorithms, we look at their
asymptotic behavior—how they behave as they input size goes to infinity.

The result of all these considerations is that in considering the time complexity of algorithms,
we may choose any particular machine and count any convenient marker step, and we try to
find characterizations that are true asymptotically—out to infinity. This implies that our typical
complexity measure for algorithms will have the form C, (N, A)—meaning “the worst-case time
over all inputs of size N of algorithm A (in some units).” Since the algorithm will be understood in
any particular discussion, we will usually just write Cy,(N) or something similar. So what we need
to describe algorithmic complexity is a way to characterize the asymptotic behavior of functions.

2 Asymptotic complexity analysis and order notation

As 1t happens, there is a convenient notational tool—known collectively as order notation for
“order of growth” —for describing the asymptotic behavior of functions. It may be (and is) used
for any kind of integer- or real-valued function—mnot just complexity functions.
We write
f(n) € O(g(n))

(aloud, this is “f(n) is in big-Oh of g(n)”) to mean that the function f is eventually bounded by
some multiple of |g(n)|. More precisely,

f(n) € O(g(n)) iff |[f(n)] < K -|g(n)|, for all n > M,

for some constants K > 0 and M. That is, O(g(n)) is the set of functions that “grow no more
quickly than” |g(n)| does as n gets sufficiently large. Somewhat confusingly, f(n) here does not
mean “the result of applying f to n,” as it usually does. Rather, it is to be interpreted as the body
of a function whose parameter is n. Thus, we often write things like O(n?) to mean “the set of
all functions that grow no more quickly than the square of their argument.”

Saying that f(n) € O(g(n)) gives us only an upper bound on the behavior of f. Accordingly,
we define f(n) € Q(g(n)) iff for all n > M, |f(n)| > K|g(n)| for n > M, for some constants K > 0
and M. That is, Q(g(n)) is the set of all functions that “grow at least as fast as” g beyond some
point. A little algebra suffices to show the relationship between O(-) and Q(-):

[f(n)| =z Klg(n)| = lg(n)] < (1/K) - [f(n)]

f(n) € Qg(n)) <= g(n) € O(f(n))

Because of our cavalier treatment of constant factors, it is possible for a function f(n) to be
bounded both above and below by another function g(n): f(n) € O(g(n)) and f(n) € Q(g(n)).
For brevity, we write f(n) € ©(g(n)), so that O(g(n)) = O(g(n)) N Q(g(n)).

Just because we know that f(n) € O(g(n)), we don’t necessarily know that f(n) gets much
smaller than g(n), or even (as illustrated in Figure ??a) that it is ever smaller than g(n). We

4 P. N. Hilfinger
f(n) Is contained in Is not contained in

1, 1+1/n 0O(10 000), O(y/n), O(n), O(1/n), O(e™™)
O(n*), O(lgn), O(1 —1/n)
Q(1), Q(1/n), Q(1—1/n) Qn), Q/n), Qlgn), Q(n’)
o(1), 6(1—1/n) O(n), ©(n*), ©(Ign), O(v/n)
o(n), o(y/n), o(n?) o(100 + e~™), o(1)

logy n, [logy n], | O(n), O(n°), O(v/n), O(log;: n) o(1)

[logy, n] O([logy: n]), O(n/logy. n)
Q(1), Q(logy n), Q(|logy n]) Q(n°), Q(v/n)
O(logys n), O([logy n]), O(logj: n), O(logy n + n)
O(log;: n + 1000)
o(n), o(n)

n, 100n + 15 0(.0005n — 1000), O(n?), 0(10000), O(lgn),
O(nlgn) O(n — n?/10000), O(y/n)
Q(50n + 1000), Q(y/n), Q(n?), Qnlgn)
Q(n +1gn), Q(1/n)
©(50n + 100), O(n + Ign) 0(n?), ©(1)
o(n?), o(nlgn) 0(1000n), o(n?sinn)

n?, 10n? +n O(n? + 2n + 12), O(n?), O(n), O(nlgn), O(1)
O(n? + \/n) o(50n? 4 1000)
Q(n? +2n + 12), Q(n), Q(1), Q(n?), Q(n?lgn)
Q(nlgn)
O(n? + 2n + 12), O(n? +1gn) O(n), O(n -sinn)

nP O(p™), O(n? + 1000nP~1) o(nP~1), 0(1)
Q(nP~e), Q(“”) Q(p")
O(n” 4+ n"™) O(n*), O(1)
o(p"), o(n!), o(n?*<) o(p" + nf)

27 2™ 4 np O(n!), O(2™ —nP), O(3™), O(2"*F) | O(n?), O((2 —6)")
Q(n?), Q((2—106)"), Q(n2") Q2+ 6)7), Qn!)
O(2" 4+ n?) e(2%")
o(n2"), o(nl), o(2"*%), o((2+€)")

Table 1: Some examples of order relations. In the above, € > 0, 0 <6§<1,p>1,and k, k' > 1.

occasionally do want to say something like “h(n) becomes negligible compared to g(n).” You
sometimes see the notation h(n) < g(n), meaning “h(n) is much smaller than g(n),” but this
could apply to a situation where h(n) = 0.001g(n). Not being interested in mere constant factors
like this, we need something stronger. A traditional notation is “little-oh,” defined as follows.

h(n) € o{g(n)) <= lim h(n)/g(n) = 0.

It’s easy to see that if h(n) € o(g(n)), then h(n) ¢ Q(g(n)); no constant K can work in the
definition of €(+). It is not the case, however, that all functions that are not in Q(g(n)) must be
in o(g(n)), as illustrated in Figure ??b.

Table 1 gives a few common examples of orders that we deal with and their containment

relations.

Lecture Notes #14)

3 Examples
3.1 Linear search

Let’s apply all of this to a particular program. Here’s a tail-recursive linear search for seeing if a
particular value is in a sorted array:

/**% True iff X is one of A[k]...A[A.length-1]. Assumes A is in
* increasing order, k>= 0. */
static boolean isIn(int[] A, int k, int X)
{
if (k >= A.length)
return false;
else if (A[k] > X)
return false;
else if (A[k] == X)
return true;
else
return isIn(A, k+1, X);
}

This is essentially a loop. As a measure of its complexity, let’s define Cjg1pn(N) as the maximum
number of instructions it executes for a call with £ = 0 and A.length= N. By inspection, you
can see that such a call will execute the first if test up to N + 1 times, the second and third
up to N times, and the tail-recursive call on isIn up to N times. With one compiler!, each
recursive call of isIn executes at most 14 instructions before returning or tail-recursively calling
isIn. The initial call executes 18. That gives a total of at most 14N + 18 instructions. If instead
we count the number of comparisons k>=A.1length, we get at most N + 1. If we count the number
of comparisons against X or the number of fetches of A[0], we get at most 2N. We could therefore
say that the function giving the largest amount of time required to process an input of size N is
either in O(14N +18), O(N +1), or O(2N). However, these are all the same set, and in fact all are
equal to O(N). Therefore, we may throw away all those messy integers and describe Cjg1n(N)
as being in O(N), thus illustrating the simplifying power of ignoring constant factors.

Again, this bound is a worst-case time. For all arguments in which X<=A[0], the isIn function
runs in constant time. That time bound—the best-case bound—is seldom very useful, especially
when it applies to so atypical an input.

Giving an O(+) bound to Cg1n(N) doesn’t tell us that isIn must take time proportional to N
even 1n the worst case, only that it takes no more. In this particular case, however, the argument
used above shows that the worst case 1s, in fact, proportional to V, so that we may also say that
Cistn(N) € Q(N). Putting the two results together, Cig1n(N) € O(N).

In general, then, asymptotic analysis of the space or time required for a given algorithm involves
the following.

e Deciding on an appropriate measure for the size of an input (e.g., length of an array or a
list).

e Choosing a representative quantity to measure—one that is proportional to the “real” space
or time required.

1a version of gce with the -O option, generating SPARC code for a Sun Sparcstation IPC workstation.

6 P. N. Hilfinger

e Coming up with one or more functions that bound the quantity we’ve decided to measure,
usually in the worst case.

e Possibly summarizing these functions by giving O(+), Q(-), or O(-) characterizations of them.

3.2 Quadratic example

Here is a bit of code for sorting integers:

static void sort(int[] 4) {
for (int i = 1; i < A.length; i += 1) {
int x = A[il;

int j;

for (j =1i; j > 0 && x < A[j-1]; j —= 1)
AC§] = ALj-11;

Al3] = x;

}

If we define Cgort(N) as the worst-case number of times the comparison x < A[j-1] is executed
for N = A.length, we see that for each value of i from 1 to A.length-1, the program executes
the comparison in the inner loop (on j) at most i times. Therefore,

Csort(N) = 1424+...4N-1
= N(N-1)/2
€ O(N?

This is a common pattern for nested loops.

3.3 Explosive example
Consider a function with the following form.

static int boom(int M, int X)

{
if (M == 0)
return H(X);
return boom(M-1, Q(X)) + boom(M-1, R(X));
}

and suppose we want to compute Cypoom(M)—the number of times Q is called for a given M in the
worst case. If M = 0, this is 0. If M > 0, then Q gets executed once in computing the argument of
the first recursive call, and then it gets executed however many times the two inner calls of boom
with arguments of M — 1 execute it. In other words,

Cboom(o) =0
Cboom(i) = 2Cboom(i - 1) +1

A little mathematical massage:

Choon(M) = 2Cpoom(M — 1)+ 1, forM > 1

Lecture Notes #14 7
= 2(2Cpoom(M —2)+ 1)+ 1, forM > 2

; 2(...(20+1)+1)...+1

and so Cpoom(M) € O(2M).

3.4 Divide and conquer

Things become more interesting when the recursive calls decrease the size of parameters by a
multiplicative rather than an additive factor. Consider, for example, binary search.

/** Returns true iff X is one of A[L]...A[U]. Assumes A is in
* increasing order, L>=0, U-L < A.length. */
static boolean isInB(int[] A, int L, int U, int X);
{
if (L > U)
return false;
else {
int m = (L+U)/2;
if (A[m] == X)
return true;
else if (A[m] > X)
return isInB(4, L, m-1, X);
else
return isInB(4, m+1, U, X);

}

The worst-case time here depends on the number of elements of A under consideration, U — L+ 1,
which we’ll call N. Let’s use the number of times the first line is executed as the cost, since if
the rest of the body is executed, the first line also had to have been executed?. If N > 1, the
cost of executing isInB is 1 comparison of L and U followed by the cost of executing isInB either
with [(N — 1)/2] or with [(N —1)/2] as the new value of N3. Either quantity is no more than
[V - 1)/2].

If N <1, then in the worst case, there are two comparisons against N.

Therefore, the following recurrence describes the cost, C'jg1ng(?), of executing this function
when U — L4+ 1=1.

Cisnp(l) = 2
Cigtnp(t) = 14 Cigrap([(i—1)/2]), i > 1.
2For those of you seeking arcane knowledge, we say that the test L>U dominates all other statements.

3The notation || means the result of rounding » down (toward —co) to an integer, and [2] means the result
of rounding up to an integer.

8 P. N. Hilfinger

This is a bit hard to deal with, so let’s again make the reasonable assumption that the value of the
cost function, whatever it is, must increase as N increases. Then we can compute a cost function,

C;i.sInB that is slightly larger than Cjg1ng, but easier to compute.
istnB(l) = 2
Sie1np(i) = 14 Cig1np(i/2), i > 1 a power of 2.

Again, this is a slight over-estimate of Cj g1np, but that still allows us to compute upper bounds.
Furthermore, C;i.sInB
increases, we can still bound Cg1pp(V) conservatively by computing C;i.sInB of the next higher

power of 2. Again with the massage:

is defined only on powers of two, but since isInB’s cost increases as N

Letnp(d) = 14 Cig1np(i/2), i > 1 a power of 2.
= 141+ Ci 1yp(i/4), i > 2 a power of 2.

L4+ 142
—_——
lg N

The quantity lg NV is the logarithm of N base 2, or informally “the number of times one can divide
N by 2 before reaching 1.” In summary, we can say Cijgrn(N) € O(lg N). Similarly, one can in
fact derive that Cig1n(N) € O(lg N).

4 Divide and fight to a standstill

Consider now a subprogram that contains fwo recursive calls.

static int mung(int[] A, L, U);

{
if (L >= U)
return false;
else {
int m = (L+U)/2;
mung (4, L, m);
mung (A, m+1, U);
}
}

We can approximate the arguments of both of the internal calls by N/2 as before, ending up with
the following approximation, Cmung (V) to the cost of calling mung with argument N = U — L +1
(we are counting the number of times the test in the first line executes).

Cmung(l) = 3
Cmung(i) = 1+ 2Cmung(i/2), i > 1 a power of 2.
So,
Cmung(N) = 14 2(14 2Cnung(N/4)), N > 2 a power of 2.

= 1+4244+4... +N/24+N-3

Lecture Notes #14 9

This is a sum of a geometric series (1+7+7r%+---+r™), with a little extra added on. The general
rule for geometric series is

S A=) =" = D/ 1)

so, taking r = 2,

Crung(N) = 4N — 1
or Cmung(N) S @(N)

5 Complexity of Problems

So far, I have discussed only the analysis of an algorithm’s complexity. An algorithm, however, is
just a particular way of solving some problem. We might therefore consider asking for complexity
bounds on the problem’s complexity. That is, can we bound the complexity of the best possible
algorithm? Obviously, if we have a particular algorithm and its time complexity is O(f(n)),
where n 1s the size of the input, then the complexity of the best possible algorithm must also
be O(f(n)). We call f(n), therefore, an upper bound on the (unknown) complexity of the best-
possible algorithm. But this tells us nothing about whether the best-possible algorithm is any
faster than this—it puts no lower bound on the time required for the best algorithm. For example,
the worst-case time for isIn is ©(N). However, isInB is much faster. Indeed, one can show that
if the only knowledge the algorithm can have is the result of comparisons between X and elements
of the array, then isInB has the best possible bound (it is optimal), so that the entire problem of
finding an element in an ordered array has worst-case time O(lg V).

Putting an upper bound on the time required to perform some problem simply involves finding
an algorithm for the problem. By contrast, putting a good lower bound on the required time is
much harder. We essentially have to prove that no algorithm can have a better execution time
than our bound, regardless of how much smarter the algorithm designer is than we are. Trivial
lower bounds, of course, are easy: every problem’s worst-case time is (1), and the worst-case
time of any problem whose answer depends on all the data is (/N), assuming that one’s idealized
machine is at all realistic. Better lower bounds than those, however, require quite a bit of work.
All the better to keep our theoretical computer scientists employed.

