A Very Elementary Presentation of the
Hannenhalli-Pevzner Theory

Anne Bergeron

LACIM, Université du Québec a Montréal,
C.P. 8888 Succ. Centre-Ville, Montréal, Québec, Canada, H3C 3P8.

bergeron.anne@uqgam.ca

Abstract. In 1995, Hannenhalli and Pevzner gave a first polynomial
solution to the problem of finding the minimum number of reversals
needed to sort a signed permutation. Their solution, as well as subsequent
ones, relies on many intermediary constructions, such as simulations with
permutations on 2n elements, and manipulation of various graphs.

Here we give the first completely elementary treatment of this problem.
We characterize safe reversals and hurdles working directly on the origi-
nal signed permutation. Moreover, our presentation leads to polynomial
algorithms that can be efficiently implemented using bit-wise operations.

1 Introduction

In the last ten years, beginning with [8], many papers have been devoted to the
subject of computing the reversal distance between two permutations. A reversal
p(i,j) transforms a permutation

T=(m ...T Tig1 ... Tj ... Ty)

/I
to ' =(m .. .W ... Wig1 WL,).

and the reversal distance between two permutations is the minimum number of
reversals that transform one into the other.

From a problem of unknown complexity, it graduated to an NP-Hard problem
[3], but an interesting variant was proven to be polynomial [5]. In the signed
version of the problem, each element of the permutation has a plus or minus
sign, and a reversal p(i, j) transforms 7 to:

= (7. =W T — T . T).

Permutations, and their reversals, are useful tools in the comparative study
of genomes. The genome of a species can be thought of as a set of ordered
sequences of genes — the ordering devices being the chromosomes —, each gene
having an orientation given by its location on the DNA double strand. Different
species often share similar genes that were inherited from common ancestors.
However, these genes have been shuffled by mutations that modified the content

of chromosomes, the order of genes within a particular chromosome, and/or
the orientation of a gene. Comparing two sets of similar genes appearing along a
chromosome in two different species yields two (signed) permutations. Tt is widely
accepted that the reversal distance between these two permutations provides a
good estimate of the evolutionary distance between the two species.

Computing the reversal distance between signed permutations is a delicate
task, since some reversals unexpectedly affect deep structures in permutations. In
1995, Hannenhalli and Pevzner proposed the first polynomial algorithm to solve
it [5], developing along the way a theory of how and why some permutations
were particularly resistant to sorting by reversals. It is of no surprise that the
label fortress was assigned to specially acute cases.

Hannenhalli and Pevzner relied on several intermediate constructions that
have been simplified since [6,2, 1], but grasping all the details remains a chal-
lenge. All the criteria given for choosing a safe reversal involve the construction
of an associate permutation on 2n points, and the analysis of cycles and/or
connected component of graphs associated with this permutation.

In this paper, we present an elementary treatment of the sorting of the orien-
ted components of a permutation, together with a new definition of the concept
of hurdle, that further simplifies the definition given in [6]. Our first algorithm is
so simple that, for example, sorting a permutation of length 20, by hand, should
be easy and straightforward.

The next section presents the basic algorithms. Section 3 contains the neces-
sary links to the Hannenhalli-Pevzner theory, and the proofs of the claims of the
Section 2. Finally, in the last section, we discuss complexity issues, and we give a
bit-vector implementation of the sorting algorithm that runs in @(n?) bit-vector
operations.

2 Basic Sorting

The problem of computing the distance between two permutations is often recast
as the problem of computing d(), the reversal distance between a permutation
7 and the identity permutation (1 2... n). In this paper, we focus on the
reconstruction of one possible sequence of reversals that realizes d(), also called
the sorting by reversals problem. As usual, we will assume that the permutation
is framed by 0 and n + 1, and that those extra elements are always positive:

7=(0m ma...myn+1).

An oriented pair (m;, ;) is a pair of consecutive integers, that is |m;| — |7;] =
+1, with opposite signs. For example, the oriented pairs of the permutation:

(03 165-24T7)

are (1,—2) and (3,-2).
Oriented pairs are useful, in the sense that they indicate reversals that create
consecutive elements of the permutation that are also consecutive integers. For

example, the pair (1, —2) induces the reversal:
(00316 5 —=2417)
(031 2-5-64 T7),

creating the consecutive integers 1 2.
In general, the reversal induced by an oriented pair (m;, m;) will be,

p(i,j—1), if m;j +m; =+1, and
p(i+1,j), if mj4+m; =—1.
Note that reversals that create consecutive integers are always induced by
oriented pairs. Such a reversal is called an oriented reversal. We define the score

of an (oriented) reversal as the number of oriented pairs in the resulting permu-
tation. For example, the score of the reversal:

(003 1 6 5 —2 4 7)

(0 -5 —6 -1 -3 —2 4 T7)

is 4, since the resulting permutation has 4 oriented pairs. Computing the score
of a reversal is tedious but elementary, and we will discuss efficient algorithms
to do so in Section 4. The fact that oriented reversals have a beneficial effect on
the ordering of a permutation suggests a first sorting strategy:

Algorithm 1 As long as m has an oriented pair, choose the oriented reversal
that has maximal score.

For example, the scores of two oriented pairs (1,—2) and (3, —2) of the per-
mutation:

(0316 5-24T7)
are respectively 2 and 4. So we choose the reversal induced by (3, —2), yielding
the new permutation:

(0 =5 =6 —1 -3 —2 4 7).

This permutation has now four oriented pairs (0, —1), (—3,4), (=5,4) and (-6, 7),
all of which have score 2, except (—3,4). Acting on this pair yields:

(0 -5 —6 -1 2 3 4 7).

which has four oriented pairs. Note here that the score of the pair (0, —1) is 0. The
corresponding oriented reversal would produce a permutation with no oriented
pair, and the algorithm would stop, in this case with an unsorted permutation.
Fortunately, the pair (—1,2) has a positive — and maximal — score, and we get,

in a similar way, the last two necessary reversals to sort the permutation:

(0-5 -6 1 2 3 4 7)

(0 -5 —4 =3 -2 -1 6 T7)

(001 2 3 4 5 6 7)

Interestingly enough, this elementary strategy is sufficient to optimally sort
most random permutations and almost all permutations that arise from biologi-
cal data. The strategy is also optimal, and we will prove in the next section the
following claim.

Claim 1: If the strategy of Algorithm 1 applies k reversals to a permutation m,
yielding a permutation 7/, then d(7) = d(7’) + k.

The output of Algorithm 1 will be a permutation of positive elements. Most
reversal applied to such permutations will create oriented pairs, but the choice
of an optimal reversal is delicate. We discuss this problem in the next paragraph.

2.1 Sorting positive permutations

Let 7 be a signed permutation with only positive elements, and assume that =
is reduced, that is m does not contain consecutive elements. Suppose also that 7
is framed by 0 and n + 1 and consider, as in [6], the circular order induced by
setting 0 to be the successor of n + 1.

Define a framed interval in m as an interval of the form:

1 Tjt1 Tj42 - Tjpk—1 1+ k,

such that all integers between 7 and i 4+ k belong to the interval [i...7+ k]. For
example, consider the permutation:

(00254361 7).

The whole permutation is a framed interval. But we have also the interval:
254 3 6, which can be reordered as 2 3 4 5 6, and, by circularity, the interval
6 170 2, which can be reordered as 6 7 0 1 2, since 0 is the successor of 7.

Definition 1 If 7 is reduced, a hurdle in 7 is a framed interval that contains no
shorter framed interval.

Claim 2 Hurdles as defined in Definition 1 are the same hurdles that are defined
in [5] and [6].

When a permutation has only one or two hurdles, one reversal is sufficient to
create enough oriented pairs in order to completely sort the permutation with

Algorithm 1. Two operations are introduced in [5], the first one is hurdle cutting
which consist in reversing the segment between 7 and 7z 4+ 1 of a hurdle:

i7l'j+17l’j+2 R | ...7Tj+k_1i+k.

This reversal is sufficient to sort all the interval using Algorithm 1. For example,
the following permutation contains only one hurdle:

(002 43 15).

The reversal of elements 2, 4 and 3 cuts the hurdle, and the resulting permuta-
tion,
(0 =3 —4-2 1 5),
can be sorted with 4 reversals by Algorithm 1.
The second operation is hurdle merging, which acts on the end points of two
hurdles:
i+ k.o A A+

and does the reversal p(i+ k,4’). If a permutation has only two hurdles, merging
them will produce a permutation that can be completely sorted by Algorithm 1.
Thus, for example, merging the two hurdles in the permutation:

(00254361 7),
yields the permutation:
(0025 43-61T7),

which can be sorted in 5 reversals using Algorithm 1.

Merging and cutting hurdles in a permutation that contains more than 2
hurdles must be managed carefully. Indeed, cutting some hurdles can create new
ones!

Definition 2 A simple hurdle is a hurdle whose cutting decreases the number
of hurdles. Hurdles that are not simple are called super hurdles.

For example, the permutation (0 2 5 4 3 6 1 7) has two hurdles.
Cutting and sorting the hurdle 2 5 4 3 6 yields the permutation,

(023456 1 7),
which, by collapsing the sequence 2 3 4 5 6, reduces to:
(021 3),

which has only one hurdle.

However, the permutation (0 2 4 3 5 1 6 8 7 9) also contains two
hurdles, and when one cuts the hurdle 2 4 3 5, the resulting reduced permutation
is:

(002135 4 6),

which still has two hurdles.
The following algorithm is adapted from [6], and is discussed originally in [5].

Algorithm 2 If a permutation has 2k hurdles, ¥ > 2, merge any two non-
consecutive hurdles. If a permutation has 2k + 1, k > 1, then if it has one simple
hurdle, cut it; If it has none, merge two non-consecutive hurdles, or consecutive
ones if k = 1.

Together with Algorithm 1, Algorithm 2 can be used to optimally sort any
signed permutation. This completes the first part of the paper, and, in the next
section, we turn to the task of proving our various claims.

3 Selected Results from the Hannenhalli-Pevzner Theory

The exposition of the complete results of the Hannenhalli-Pevzner theory is
beyond the scope of this paper, and the reader is referred to the original paper
[5], or the book on computational molecular biology by Pevzner [7]. Instead, we
will show the soundness of our algorithms by directly using the arc overlap graph
introduced in [6].

The first construction is the breakpoint graph associated with 7. Each positive
element x in the permutation 7 is replaced by the sequence 2z — 1 2x, and each
negative element —z by the sequence 2z 2z — 1. For example,

7=(0-13546-2T7)

becomes:

”=(021569107811 124 3 13)

Reversals p(i, j) of m are simulated by unsigned reversals p(2i — 1,2j) in 7’
The elements of 7' are the vertices of the breakpoint graph. Straight edges

join every other pair of consecutive elements of 7/, starting with 0, and curved

edges, called arcs, join every other pair of consecutive integers, starting with

0,1).

Fig. 1. The Breakpoint Graph of r=(0 —1 3 54 6 —2 7)

Every connected component of the breakpoint graph is a cycle, which is a
consequence of the fact that each vertex has exactly two incident edges. The
graph of Fig. 1 has 3 cycles.

The support of an arc is the interval of elements of 7’ between, and inclu-
ding, its endpoints. Two arcs overlap if their support intersect, without proper
containment. An arc is oriented if its support contains an odd number of ele-
ments, otherwise it is unoriented. In Fig. 1, the oriented arcs are (0, 1) and (4, 5).
Note that an arc is oriented if and only if its endpoints are images of an oriented
pair of the original permutation.

The arc overlap graph is the graph whose vertices are arcs of the cycle graph,
and whose edges join overlapping arcs. The overlap graph corresponding to the
breakpoint graph of Fig. 1 is illustrated in Fig 2, in which each vertex is labeled
by an arc (2z,2z + 1). Oriented vertices — those for which the corresponding
arc i1s oriented — are marked by black dots. Orientation extends to connected
component in the sense that a connected component with at least one oriented
vertex 1s oriented. It is easy to show that a vertex is oriented if and only if its
degree 1s odd.

(O
(12, 13) (2.3
(10, 11) (4,5)
8.9 (6,7)

Fig. 2. The Arc Overlap Graph of r=(0 —1 3 54 6 —2 7)

There is a natural bijection between the vertices of the overlap graph and
pairs of (unsigned) consecutive integers z and z + 1 in the original permutation.
Indeed, a pair of consecutive integers will generate four consecutive integers in
the unsigned permutation: 2z — 1, 2z, 22+ 1, and 2z +2. The vertex (2z,2z+1)
is associated with the pair and z + 1. For example, the oriented pair (3,—2)
in 7 corresponds to the vertex (4,5) in the overlap graph. We will refer to the
reversal induced by a verter meaning the reversal induced by the corresponding
oriented pair of the original permutation. The following facts, mostly from [6],
pinpoint the important relations between a signed permutation and its overlap
graph.

Fact 1: A vertexr has an odd degree if and only if it is oriented.

Proof. Let 2z — 1, 2z, 2z + 1, and 2z + 2, be the four integers associated with
the oriented pair (m;, m;). Since m; and m; have different signs, the positions of
2z and 2z 4+ 1 will not have the same parity in the unsigned permutations. Thus,
the interval between 22 and 2z + 1 has an odd length, implying that it overlaps
an odd number of other intervals. On the other hand, any interval that overlaps

an odd number of intervals must have an odd length. Therefore the positions of
its endpoints must have different parities, implying that the corresponding pair
of consecutive integers is oriented.]

Fact 2: If one performs the reversal corresponding to an oriented verter v, the
effect on the overlap graph will be to complement the subgraph of v and its adja-
cent vertices.

Proof. The reversal corresponding to an oriented vertex v has the effect of col-
lapsing the associated interval, thus v will become isolated. Let u and w be two
intervals overlapping v, meaning that exactly one of their end points lies in the
interval spanned by v. The reversal induced by v will reverse these two points.
Here, a picture is worth a thousand words:

w w
becomes f\.

Reversed interval

w w
v u v u
becomes §) /\.
Reversed interval

Fig. 3. Complementation of Sub-Graphs

|
Fact 3: If one performs the reversal corresponding to an oriented verter v, each
verter adjacent to v will change its orientation.

Proof. Since v is oriented, it has an odd number 2k 4+ 1 of adjacent vertices.
Let w be a vertex adjacent to v, with j neighbors also adjacent to v. With the
reversal, w will loose j 4 1 neighbors, and gain 2k — j new ones. Thus the degree
of w will change by 2k — 2j — 1, changing its orientation.]

Fact 4: The score of the oriented reversal corresponding to an oriented vertezr v
s qiven by:

T+U-0-1
where T 1s the total number of oriented vertices in the graph, U is the number
of unoriented vertices adjacent to v, and O s the number of oriented vertices
adjacent to v.

Proof. This follows trivially from the preceding facts. [|

We now state a basic result that is proved, in different ways, in [5] and [6].
Define an oriented component of the overlap graph as a connected component
that contains at least one oriented vertex, otherwise the component is unoriented.

A safe reversal is a reversal that does not create new unoriented components,
except for 1solated vertices.

Theorem 1 (Hannenhalli and Pevzner, 1995). Any sequence of oriented
safe reversals is optimal.

The difficulties in sorting oriented components lie in the detection of safe
reversals. Hannenhalli and Pevzner deal with the problem by computing several
statistics on cycles and breakpoints of various graphs. Kaplan et al. [6] solve
it by searching for particular cliques in the overlap graph. The next theorem
argues that the elementary strategy of choosing the reversal with maximal score
is optimal, thus proving Claim 1.

Theorem 2. An oriented reversal of maximal score is safe.

Proof. Suppose that vertex v has maximal score, and that the reversal induced
by v creates a new unoriented component C' containing more than one vertex.
At least one of the vertices in C' must have been adjacent to v, since the only
edges affected by the reversal are those between vertices adjacent to v. Let w be
a vertex formerly adjacent to v and contained in C, and consider the scores of v
and w:

score(v) =T+U-0-1

score(w) =T+U' -0 -1

All unoriented vertices formerly adjacent to v must have been adjacent to w.
Indeed, an unoriented vertex adjacent to v and not to w will become oriented,
and connected to w, contrary to the assumption that C' is unoriented. Thus,
U >U.

All oriented vertices formerly adjacent to w must have been adjacent to v. If
this was not the case, an oriented vertex adjacent to w but not to v would remain
oriented, again contradicting the fact that C' is unoriented. Thus, O’ < O.

Now, if both O’ = O and U’ = U, vertices v and w have the same set of
adjacent vertices, and complementing the subgraph of v and its adjacent vertices
will isolate both v and w. Therefore, we must have that score(w) > score(v),
which is a contradiction.]

3.1 Hurdles

In this section, we assume that 7 is a positive and reduced permutation. These
assumptions are equivalent to say that the overlap graph has no oriented com-
ponents — all of which can be cleared by Algorithm 1 — and no isolated vertices.

Consider again the circular order, this time on the interval [0..2n—1], induced
by setting 0 to be the successor of 2n — 1. The span of a set of vertices X in the
overlap graph is the minimum interval that contains, in the circular order, all
the intervals of vertices in X. For example, consider the permutation:

7=(02465738129),

whose breakpoint graph and arc overlap graphs are illustrated in Fig. 4 and
Fig. 5. The three connected components of its arc overlap graph have spans:

[4,15] = [4781112910 13 145 6 15]
[8,13] = [8 11129 10 13]
[16,3] = [16 1217 0 3].

bl

6

LR T

0 3 4 7 8 11129 1013145 6 1516 1 2 17

Fig.4. The Breakpoint Graphof r=(0 2 4 6 57 3 8 1 9)

0, 1)

(16,17) o (23

(14, 15) \j (4, 5)

(12, 13)& (6,7)
(10, 11) (8.9)

Fig.5. The Arc Overlap Graph of r=(0 24 6 57 3 8 1 9)

Hurdles are defined in [5] as unoriented components which are minimal with
respect to span inclusion. Moreover, in [6], it is shown that the span of a connec-
ted component is always of the form [2i,2j — 1]. The following Lemmas and
Theorem detail the relationships between connected components and framed
intervals, substantiating the second claim of Section 1.

Lemma 1. Framed intervals of the form [i,j] in a permutation on n elements
are in one-to-one correspondence with framed intervals of the form [21,2j — 1]
in the corresponding unsigned permutation on 2n elements.

Proof. The end points i and j of a framed interval [z, j] will be mapped, respec-
tively, to the pairs 22 — 1, 27, and 25 — 1, 25. All integers between ¢ and j appear
in the interval [7, 5], if and only if all the integers between 27 and 2j — 1 appear
in the interval [27,2j — 1].

10

Lemma 2. Any framed interval [2i,2j — 1] is the span of a union of connected
components.

Proof. If [2i,2j — 1] is a framed interval, it contains exactly the integers bet-
ween 2i and 2j — 1, thus the only arcs in this interval are: (24,2i + 1), (2i +
2,2i+3),...,(2j—2,2j — 1), and no other arc intersects this set. Therefore, the
corresponding set of vertices is not connected to any other vertex.]

Lemma 3. The span [2i,2j — 1] of a connected component is always a framed
nterval.

Proof. Tf vertex (2i,2i + 1) is connected to (25 — 2,2j — 1), there must be a
sequence of intersecting arcs linking 27 to 25 — 1.

2i 2i+1 2j-2 2j-1

Any arc with only one end point between 27 and 2j — 1 would therefore
intersect one of the arcs in the sequence, so there are none. Thus, if integer 2k
is in the interval, then 2k 4+ 1 is also in the interval, and if i < k < j, then 2k +2
is also in the interval.]

Theorem 3. If m is reduced, an unoriented component is minimal if and only
if its span 1s a framed interval that contains no other.

Proof. By Lemma 3, the span of a connected component is always a framed
interval. If the component is minimal with respect to span inclusion, by Lemma
2, its span cannot contain properly another framed interval.

On the other hand, a framed interval [27, 2j—1] that contains no other yields a
single connected component C' whose vertices endpoints are exactly the integers
between 2i and 25 — 1. Thus the vertices of C' are consecutive on the circle, and
component C' is minimal.]

The main consequence of Theorem 3 is to give an elementary characterization
of the concept of hurdles, that does not rely on the construction of the overlap
graph.

4 Settling Scores

We now turn to the problem of computing efficiently the score of a reversal.
Performing a reversal, or computing its score, are “local” operations on the
graph, and this locality suggests the possibility of a parallel algorithm to keep
the scores and to compute the effects of a reversal.

The parallelism of the algorithm will exploit the inherent parallelism of basic
operations of a processor. We will work with bit-vectors, and use only three

11

operations on these vectors: the exclusive-or operator @; the conjunction A; and
the negation —.

Subsets of vertices of the arc overlap graph will be represented by characte-
ristics bit-vectors: If s is a subset of the {0,...,n}, then the bold symbol s is
the bit-vector:
1if 7 € s,

0 otherwise.

8 =(80,...8,) where s; = {

4.1 The Data Structure

Given an arc overlap graph, we first construct a bit-matrix in which each line
v; is the set of adjacent vertices to arc (24,27 4+ 1). For example, consider the
permutation (0 3 1 6 5 —2 4 7), whose arc overlap graph is illustrated in
Fig. 6.

©.1)
(12, 13) (2.3
(10, 11) (4,5)
8.9 (6, 7)

Fig. 6. The Arc Overlap Graph of (0 3 1 6 5 —2 4 7)

The bit-matrix associated to this graph is the following:

Vo V1 V2 U3 V4 U5 Vg
vol0 0 1 1 0 0 O
v1/0 0 1 0 1 0 1
vo{1 1 0 1 1 0 1
vyl 01 01 01
ve/0 1 1 1 0 1 0
v5|0 0 0 0O 1 0 1
vgl0 1 1 1 0 1 0
pl0 1 100 00
s|01 3 20 20

The last two lines contain, respectively, the parity p , or orientation, of the
vertex, and the score s of the associated reversal. We will discuss efficient ways
to initialize the structure and to adjust scores in Sections 4.2 and 4.3.

Given the vectors p and s, selecting the oriented reversal with maximal score
is elementary. In the above example, vertex 2 would be the selected candidate.

12

The interesting part 1s how a reversal affects the structure. These effects are
summarized in the following algorithm, which recalculates the bit-matrix », the
parity vector p, and the score vector s, following the reversal associated to ver-
tex 7, whose set of adjacent vertices is denoted by w;.

l.s ¢+ s+w;
2. Vi; 1
3. For each vertex j adjacent to ¢

4. If j is oriented

5. s+ s+ v;
6. vjj «~1

7. v — U5 D v;
8. s+ s+ v;
9. Else

10. S 8 — vy
11. vj; «~1

12. v — U5 D v;
13. 8¢ 8 —vj
14. p < p & v;

The logic behind the algorithm is the following. Since vertex i will become
unoriented and isolated, each vertex adjacent to 7 will automatically gain a point
of score in step 1. Next, if j is a vertex adjacent to i, vertices adjacent to j after
the reversal are either existing vertices that were not adjacent to ¢, or vertices
that were adjacent to 7 but not to j. This is the definition of the exclusive-or
operator @.

The exceptions to this rule are ¢ and j themselves, and this problem is solved
by setting the diagonal bits to 1 before computing v; ® v; in step 6.

If 5 is oriented, each of its former adjacent vertices will gain one point of
score, since j will become unoriented, and each of its new adjacent vertices will
gain one point of score. We thus add these points of score with two instructions
sandwiching step 6. Note that a vertex that stays connected to w will gain a
total of two points. For unoriented vertices, the gains are converted to losses.

The amount of work done to process a reversal corresponding to vertex i,
in terms of vector operations, is thus proportional to the number of adjacent
vertices to vertex i.

4.2 Representing the Scores

The additions and subtractions to adjust the score vector are the usual arith-
metic operations performed component-wise. In order to have a truly bit-vector
implementation, we represented the score vector as a [log(n)] x n bit-matrix,
each column containing the binary representation of a score. With this represen-
tation, component-wise addition of a bit-vector v to s can be realized with the
following:

13

For k from 1 to [log(n)]

t <o
v — UvASg
Sp — tPsg

Subtraction is implemented in a similar way. A side benefit of this structure is
that the selection of the next reversal can be also done in parallel, by “sifting” the
score matrix through the parity vector. The set ¢ of candidates contains initially
all the oriented vertices. Going from the higher bit of scores to the lower, if at
least one of the candidates has bit i set to 1, we eliminate all candidates for

which bit 7 1s 0.

cC<p

i « [log(n)]

While ¢ > 0 do
While (eA s;) =0

1—1—1
Ifi >0

cé—chs;

1—1—1

At the end of the loop, ¢ is the set of oriented vertices of maximal score.

4.3 Initializing the Data Structure

We saw, in Section 3, that the overlap graph of a signed permutation ©m =
(my mg...m,) contains n + 1 vertices corresponding to the arcs joining 2z and
2z + 1 in the equivalent unsigned permutation. In this section, we will construct
a representation of the overlap graph without explicitly referring to the unsigned
permutation, thus removing one more step between the actual algorithm, and
the original formulation of the problem.

The construction is based on the following simple lemma. Let I be a set of
intervals with distinct endpoints in an ordered set S. Denote an interval z € T
by the ordered pair (b;,e;) of its endpoints. Define the sets l; and r; as follows:

T,'I{jEI | bj<6i<€j}
L={jel | bj<bi<6j}

The set r; is the set of intervals j in I that contains the right endpoint
of interval i, and the set I; is the set of intervals j in I that contains the left
endpoint of interval 7. We have the following:

Lemma 4. The set v; of intervals that overlap 1 in I 1s given by: v; = l; ® r;.
|

14

Starting with a signed permutation 7 = (m w2 ...7,), we first read the
elements from left to right. Let a represent the set of arcs for which exactly
one endpoint has been read. Initially, a is the set {0}, corresponding to the arc
(0,1). When element m; is read, we have to process two arcs: (2m; — 2,2m; — 1)
and (2m;,2m; 4+ 1). In increasing order, if m; is positive, and decreasing order,
otherwise. Processing an arc (27,2j + 1) is done by the following instructions:

If a; = 0
Then a; + 1 (* First endpoint of arc (25,25 + 1) *)
Else (* Second endpoint *)
a; 0
vj —a (* ais the set r; *)

We then repeat the process in the reverse order, reading the permutation
from right to left, initializing a to the set {n}, and changing the last instruction
tov; < v; @ a.

4.4 Analysis

The formal analysis of the algorithm of Section 4.1 raises interesting questions.
For example, what is an elementary operation? Except for a few control sta-
tements, the only operations used by the algorithm are very efficient bit-wise
logical operators on words of size w — typically 32 or 64, depending on imple-
mentation. The most expensive instructions in the main loop are additions and
subtractions, such as

s <+ s+ vy,

where s is a bit matrix of size nlog(n), and v; is a bit vector of size n. Such an
operation requires a total of (2nlog(n))/w elementary operations with the loop
described in Section 4.2. Hopefully, log(n) is much smaller than w, and, in the
range of biologically meaningful values, n 1s often a small multiple of w. In the
actual implementation, the loop is controlled by the value of log(maximal score)
which tends to be much less than log(n). We thus have a, very generous, O(n)
estimate for the instructions in the main loop.

The overall work done by the algorithm depends on the total number v
of vertices adjacent to vertices of maximal score. We can easily bound it by
n?, noting that the number d of reversals needed to sort the permutation is
bounded by n, and the degree of a vertex is also bounded by by n. We thus
get an O(n?) estimate for the algorithm, assuming that logn < w. However,
in practical applications, such as [4], this algorithm outperforms consistently
classical algorithms with smaller theoretical complexity.

References
1. Bader, D., Moret, B., Yan, M. (2001). A Linear-Time Algorithm for Computing

Inversion Distance Between Signed Permutations with an Faperimental Study. J.
Comput. Biol. 8, 5: 483-491.

. Piotr Berman, Sridhar Hannenhalli, Fast Sorting by Reversal. CPM 1996, LNCS
1075: 168-185.

. Alberto Caprara, Sorting by reversals is difficult. RECOMB 1997, ACM Press: 75-
83.

. Adam Siepel, An algorithm to find all sorting reversals. To appear in RECOMB’02,
2002.

. Sridhar Hannenhalli, Pavel A. Pevzner, Transforming Cabbage into Turnip: Poly-
nomial Algorithm for Sorting Signed Permutations by Reversals. JACM 46(1): 1-27
(1999).

. Haim Kaplan, Ron Shamir, Robert Tarjan, A Faster and Simpler Algorithm for
Sorting Signed Permutations by Reversals. SIAM J. Comput. 29(3): 880-892 (1999).
. Pavel Pevzner, Computational Molecular Biology, MIT Press, Cambridge, Mass.,
314 p., (2000).

. David Sankoff, Edit Distances for Genome Comparisons Based on Non-Local Ope-
rations. CPM 1992, LNCS 644,: 121-135, (1992)

16

