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1 Molecular Evolution

1.1 Introduction

The sequencing of DNA and polypeptides has now become easy and fast. As sequence databases
grow, they are not only providing information for biologists, but also introducing new challenges
for computer scientists, mathematicians and statisticians. For example, interesting problems in-
clude locating genes in long strings of nucleotides or determining protein structure from amino acid
sequences.

These databases also provide an opportunity to study the relationship between the sequences in
an evolutionary context. Research in this area will not only give insight into the divergence of
molecules, but also into the process of evolution. These notes will be an introduction to the basic
mathematical and statistical methods behind the study of molecular evolution. See Li (1997) for a
more thorough survey of the different approaches.

1.2 Evolution and Mutations

Before jumping into models about sequences, there will be a brief summary about evolution and
the introduction of mutations at the gene level, called substitutions. The information regarding
the development of an organism is stored in its DNA. DNA is inherited from the parent organisms
more or less unchanged, but mutations are introduced over time in surviving lineages at fairly
steady rates. Mutations occur when there are errors in DNA replication or repair. Although
there are enormous numbers of possible mutations, most are not observed in extant populations
because of natural selection. In population genetics, natural selection means the differential rates
of reproduction. It causes substitution of selectively advantageous genes for less advantageous ones
in the population. Thus, many mutations are not inherited to subsequent populations because they
have affected the lifespan or fertility of the organism. Therefore, molecular evolution is dominated
by mutations that are neutral from the standpoint of natural selection. When a mutant allele of a
gene replaces the predominant allele in a population, this process is called gene substitution.

1.3 Substitution Models

At the simplest level, the proportion of different nucleotides p can be used to measure the evolu-
tionary divergence between two aligned sequences. This proportion can be estimated by,
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where n is the total number of nucleotides in the sequence and ng is the number of different

nucleotides for the pair. If p is small, p is approximately equal to the number of substitutions per



site. If p is large, there may be multiple and back substitutions at a given site, so p will give an
underestimate of the number of substitutions. There are a number of correction methods, based
on probabilistic models, which attempt to give a more accurate estimate for p (Jukes and Cantor
1969; Kimura 1980, 81; Hasegawa et al. 1985; Tamura and Nei 1993).

1.4 Jukes-Cantor Model

The Jukes-Cantor (J-C) model is the simplest of these models. It will be derived by first introducing
a simple Poisson model for substitutions and then extending it to a continuous time Markov process.
The derivation will not be rigorous. Please refer to Jukes and Cantor (1969) and Taylor and Karlin
(1994) for an introduction to stochastic processes.

1.4.1 Derivation

Suppose the distribution of the number of substitutions s is a Poisson random variable with mean
At. The rate of substitutions (relative to the unit of time) at a given site is \. The probability of
s > 0 at a site in a time period ¢ is

exp M(\t)®

Pr(s) = m

(2)

Thus, the mean number of substitutions during ¢ units of time is A\f. The probability of no changes
occurring at a site is

Pr(s=0) = exp(—At) (3)
and the probability for at least one substitution is
Pr(s #0) =1 — exp(—At).

When ¢ is small (so that multiple and back substitutions are rare), these probabilities can be
approximated by,
Pr(s=0)~1- X\ (4)

and
Pr(s #0) =~ At

These probabilities can be seen as the infinitesimal probabilities relating to a Markov process. In
the context of DNA sequences, this process is a 4-state Markov chain. Let p;; be the transition
probability that the next state (nucleotide) is j given that the current state is ¢,

pij = Pr(next state S; | current state S;).

The Markov assumption is that once the state at the current time is specified, no additional
information is needed about the past for predicting the status of the next state.

pij = Pr(next state S; | current state S; & any configuration of states be fore this).

Let P = {P};; denote the matrix of transition probabilities for this Markov process. The following
property holds (for appropriate P)

P(t+ h) = P(t)P(h). (5)



In the J-C model, the rate of substitution of one nucleotide i by another j is constant (A is the
same for all substitutions 7 to j). Extending the results from the simpler Poisson model to the 4
nucleotide case, for h small, the transition probabilities are approximated by,

P(h) ~ I+ Qh (6)

where @ is the infinitesimal matrix for a continuous Markov process and
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By plugging (6) into (5) and taking the limit as h — 0, P solves
P = PQ. (7)

With initial condition, P(0) = I, the solution of this first-order differential equation is

P = exp(Q1). (3)
By simplifying this expression,
1 Q
P=>11- % exp(—Ab).
1 o XP(=AD)
Thus, the chance of a nucleotide ¢ changing into nucleotide j in time ¢ is P;; = i(l — exp(—4At))

and there are 12 different ways this can occur. The chance of the nucleotide staying the same is
P, = i + %exp(—ll)\t). These values for P constitute the J-C Model. One variation of this model,
the Kimura 2-parameter model (Kimura, 1980), takes into account that transitions (A < G, C «
T) occur at a higher rate than transversions (A < T, G <~ T, A < C, C < G).

1.4.2 Examples and Extensions

The following example with just one site will illustrate these concepts. Figure 1 shows the nu-
cleotide of the second position in the sequence of a-globin Alu 1 for both the orangutan and the
human. Assuming the common ancestor has A, G, C and T with probability i, and that time ¢ has
passed from the ancestor, then the chance of the nucleotides differing at this site for both sequences
is P =12(3 x 3(1 — exp(—8At))) = 2(1 — exp(—8At)). If all sites are assumed to be independent,
P is estimated as P = 24 where n is the total number of nucleotides in the sequence and nq is the
number of different nucleotides.

The two parameters A and ¢ are not identifiable. Let k be the number of nucleotide substitutions
of the pair sequences per site for ¢ units of evolutionary time. Then, k = 3\ x 2t = —% log(1 — %P)
and is estimated by plugging in P. This is the corrected or adjusted fraction of differences under
this model.

Although mutations occur at the DNA level, it is also important to study the evolution of proteins.
Changes due to mutation are primarily observed through proteins because they are the molecules
that directly determine the morphological characteristics and the physiological functions of the
organism. The J-C model can also be applied to proteins. The model would specify that the rate of
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Figure 1: Second position in a-globin Alu 1.

amino acid substitutions is constant for all possible substitutions. The corrected distance k would
be estimated as k = —% log(1— %p). See Figure 2 for an example of a pairwise distance matrix for
5 globins. It includes both observed number of differences between the sequences and the corrected
distances based on this model.

The relationship between the corrected differences and divergence times has been studied for some
families of proteins (cytochrome C, hemoglobin). The graph of k against time ¢ for these examples
is approximately linear and the slope, to a scale factor, is an estimate of .

Substitution matrices are often used to query or align sequences. For the most part, there is no
knowledge about A and/or the divergence times ¢ among the sequences. t is convenient to measure
time in terms of the time length for .01 substitutions per site, k = .01. The time ¢ such that
k = .01 is called a PAM unit. PAM is the acronym for point accepted mutations. The PAM(1)
transition matrix is P(t) fort =1 PAM. In the J-C model, ¢t = ﬁ is 1 PAM. In effect, increasing
PAM units is equivalent to increments in time ¢. By using PAM units of time, there is a uniform
measurement of time for all families, regardless of their substitution rate.

Before concluding this section, it is important to clarify that the previous extensions are based on
the truth of the substitution model. These models are overly simplified versions of a very complex
and variable process. They are based on many assumptions, such as the constancy of rates and
uniformity at sites, of which many cannot be tested. Nevertheless, these models and the derived
substitution matrices have served well for exploring the relationship among sequences.

2 Phylogenetic Methods

2.1 Introduction

Determining the evolutionary lineage of organisms is one of the major problems in the study
of evolution. In the past, phylogeny was inferred by examining fossil records and morphological
characters. In the 1960’s, when molecular techniques were introduced to the field, scientists used the
evolution of the organisms’ macro-molecules to reconstruct their evolutionary history. This work
is called molecular systematics. It is based on the assumption that sequences from different species
have descended from some ancestral gene in a common ancestral species. Thus, divergence between
sequences is a result of speciation. These genes are essentially the same and are called orthologues.
The assumption may not hold because of gene duplication, another mode of evolution. Genes which
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Figure 2: § globins: Corrected pairwise distances.

have diverged from a common ancestor by gene duplication are called paralogues. They are different
genes in the same organism. Figure 3 presents a UPGMA tree (see next sections for tree methods)
based on orthologues of the same gene (8 hemoglobin). Figure 4 presents a Neighbor-Joining tree
based on paralogues, the «, 3,, d, ¢ Hemoglobin chains and Myoglobin.

2.2 Constructing Trees

Phylogenetic trees are often used to represent the history of molecules. The root of the tree is re-
garded as the common ancestor of all the sequences. Some tree-building methods infer the location
of the root but others give no information. Internal nodes in the tree represent divergence points.
The length of each edge of the tree is determined by some measurement of distance and represents
the amount of evolutionary divergence between sequences. These lengths may be informative, but
do not necessarily correspond to evolutionary time periods, because proteins evolve at different
rates in different organisms.

There are a number of procedures for building trees. The two main approaches are (i) distance-
based methods, which work from pairwise distances between the sequences (e.g. UPGMA and
Neighbor-Joining), (ii) character-based methods, which work directly from the multiply aligned
sequences (e.g. parsimony methods and likelihood approaches).

2.3 Distance Methods

There are many ways of defining distance, d;;, between a pair of sequences ¢ and j in a data set.
The simplest, when dealing with aligned sequences, takes the number of sites that differ between
the two sequences. Another measure may be defined by a model of substitution of residues over
evolutionary time (see the previous section). In the methods described below, it is also assumed
that the distances are additive. When this is true, the distance between pairs of leaves is the sum
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Figure 3: UPGMA tree of 8 hemoglobin.

of the edges on the path that connects them. Additivity may not hold if multiple substitutions
have occurred at any of the sites.

2.3.1 UPGMA

A simple distance-based clustering procedure is the Unweighted Pair Group Method using Arith-
metic Averages (UPGMA). At each step, sequences which are ‘close’ are clustered together and a
new node is created. It assembles the tree upwards, each new node is added above the others.

The algorithm, as outlined in Durbin et al. (1998), begins with a distance matrix D = {d;;}
between all sequences and each sequence i is assigned to its own cluster C;. At each step, a new
cluster Cy, is formed by the union of clusters C; and C; which minimize d¢;c;. The distance between

pairs of clusters is,
1

de,c; = KAl >, dug (9)
t J 1 peC; qeC;
| C' | is the number of leaves in the cluster C. A new node k is placed in the tree, with daughter
nodes ¢ and j, at height d;;/2. Clusters C; and C; are removed from the set of clusters and Cj,
is added with distances dg; between all other clusters [. This procedure is repeated until only two
clusters remain, C; and C}, and the final node, the root, is placed at height d;;/2. See Figure 3 for
an example of a tree constructed by this method.

2.3.2 Neighbor-Joining

The underlying assumption of the UPGMA method is that the sequences diverge at a constant
rate. The edge lengths can be seen as times measured by a molecular clock. When there are



sequences from organisms with different substitution rates, UPGMA will incorrectly reconstruct
the tree topology. A more recent method called Neighbor-Joining (NJ) (Saitou and Nei, 1987) will
produce a more accurate tree if this assumption does not hold. Figure 4 presents is a tree built by
the NJ method.

The NJ method beings with a starlike tree with no interior nodes. Unlike UPGMA, the algorithm
keeps track of the nodes rather than the clusters of sequences. All sequences i are assigned as leaf
nodes. Pairs i and j are ‘neighbors’ if they minimize,

Dij = dij — (ri +15) (10)
where )

ri=——— di.

PP

L is the set of leaves in the current tree. The number of leaves is | L |. A parent node k, to
neighbors ¢ and j, is added with edges to those leaves with lengths d;;, = %(dij +r; — ;) and
dji = d;; — d;i, respectively. The leaves 7 and j are removed from L and k is added as a leaf. This
procedure continues until there are only two leaves, ¢ and j left. The length of the edge between
them is d;;. The term r is the average distance (scaled by a constant) to all other leaves. Thus,
two sequences may have a relatively large distance between them, but are still neighbors because
both are also ‘far’ from all the other sequences (the r’s are large). By subtracting the r’s, NJ can
reconstruct a tree topology which has different sized edges.

This procedure is closely related to the method of Minimum Evolution. The minimum evolution
criteria is to choose the tree with the smallest sum of branch lengths. The NJ method is a fast
approximate method for finding a tree that satisfies this criteria. It guarantees that a short tree is
found, but not the shortest (Gascuel, 1994).

2.4 Parsimony Methods

Parsimony methods were among the first methods for inferring phylogenies. The central idea is
that the preferred evolutionary tree requires the smallest number of evolutionary changes to explain
the differences observed among the taxa under study. As an example, we will look at the 4 taxa
case, in which there are 3 unrooted trees (Figure 5).

We examine the sequences to look for informative sites, i.e., those sites that will favor one tree over
the other.

Site
1 2 3 4
1 A G G A
2 A G G G
3 A A C A
4 A A C G

Site 1 is uninformative, as there is no change in any of the sequences. At site 2, the most parsi-
monious explanation is that there is a change from G to A which favors the first tree in Figure 5.
At site 3, once again the most parsimonious explanation is one change from G to C and again the
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Figure 4: Neighbor-Joining tree for human globins.

most parsimonious tree is the first tree. For both sites 2 and 3, the other 2 trees would require 2
changes. At site 4, the 2nd tree is the most parsimonious, only requiring once change from A to
G. Based on these sites, the first tree is the most parsimonious with 2 informative sites favoring
it. As the number of taxa being investigated increases, so will the number of trees that must be
considered. Regardless of the complexity, the main idea is still to infer the minimum number of
substitutions/changes for a given tree.

Although parsimony makes no explicit assumptions, there is the critical assumption of the par-
simony criterion that a tree that requires fewer substitutions/changes is better than a tree that
requires more (Li 1997). This can be contrasted with likelihood methods that make explicit as-
sumptions about the rate of evolution and patterns of nucleotide substitution.

2.5 Likelihood Methods

Likelihood methods for phylogenies were first introduced by Edwards and Cavalli-Sforza (1964) for
gene frequency data. Neyman (1971) applied likelihood to molecular sequences and this work was
extended by Kashyap and Subas (1974). Felsenstein (1973,1981) brought the maximum likelihood
framework to nucleotide-based phylogenetic inference. As an example, we will compute the likeli-
hood for a given tree using DNA sequences, but these procedures can be used for other characters
as well. This example is borrowed from Felsenstein (1981).

We have a set of aligned sequences with m sites. To compute the probability of a tree, we must have
a phylogeny with branch lengths and an evolutionary model giving the probabilities of change along
the tree. This model will allow us to compute the transition probabilities P;;(t), the probability
that state j will exist at the end of a branch of length t, if the state at the start of the branch
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Figure 5: In the 4 taxa case, there are 3 possible trees

is i. We must remember the t is a measure of branch length, not time. There are two central
assumptions: (1) evolution at different sites on the tree is independent (and identically distributed)
and (2) evolution in different lineages is independent. This gives us the Markov property down
trees (cf. pedigrees).

The first assumption allows us to express the probability as a product, with one term for each site:

L =Pr(D|T) =[] Pr(DY|T)
=1

where D@ is the data at the i-th site. Therefore, we need to know how to compute the probability
at a single site. If we have the tree and the data at a site, the probability is the sum, over all
possible nucleotides that may have existed at the interior nodes of the tree, of the probabilities of
each scenario. )

Pr(D(i)\T) = ZZ ZZ Pr(A,C,C,C,G,x,y,z,wT)
r Yy z w

Based on the Markov property (2) above, we can decompose the probability on the right side of
the equation into a product:

Pr(A,C,C,C G,x,y,z,w|T) = Pr(z)Pr(y|z,ts)

xPr(Aly,t1) x Pr(Cly,t2) x Pr(z|z,tg) x Pr(C|z,ts3)
X Pr(w|z,t7) x Pr(Clw,ty) x Pr(G|w, ts)



If we assume that evolution has been proceeding for a long time according to the model of sub-
stitution that we are using, then the Pr(x) is the equilibrium probability of base x under that model.

However, there are still a large number of terms in the previous equation, such that for each site
we sum 4% = 256 terms. The number of terms will rise exponentially with the number of species.
On a tree with n species, there are n-1 interior nodes, each of which can have one of 4 states. If we
need 4"~ ! terms, then for 10 taxa, this would be 262,144 terms!

In order to make the computation more realistic, Felsenstein (1973, 1981) introduced a ”pruning”
method, which is a version of the ”peeling algorithm” introduced by Hilden (1970), Elston and
Stewart (1971) and Heuch and Li (1972). As we saw in a previous week, these in turn are analo-
gous to the HMM forward-backward algorithms, and all are special cases of the idea of dynamic
programming over a directed acyclic graph (of Week 14). The method can be derived simply by
trying to move the summation signs as far right as possible and enclose them in parentheses where
possible.

PrDIIT) = Y Pr(x) (Z Pr(yle, t6) Pr(Aly, 1) Pr(Cly, t2)>

X

(Z Pr(z|a, ts) Pr(C|z, t3) (Z Pr(w|z, t7)

X

Pr(Clw, ) Pr(Glw, t5)>>

The pattern of parentheses and terms for tips in this expression is
(4,0)(C,(C,G))

which corresponds exactly to the structure of the tree. The flow of computations is from the inside
of the innermost parentheses outwards, with a flow of information down the tree).

We will utilize the conditional probability of a subtree, Lg) (s), which is the probability of everything
observed from node k on the tree on up, at site i, conditional on node k having state s (cf. HMM
backward probabilities). In the previous equation, the term

(Z Pr(wl|z, t7) Pr(Clw, t4) Pr(G|w, t5)>

is one of these quantities, i.e. it is the probability of everything seen above that node, given that
the node has base w. There will be four such quantities, one for each of the values of w. The key
to the pruning algorithm is that once the four numbers are computed, they don’t need to to be
recomputed again. The algorithm is a recursion that computes L(i)(s) at each node of the tree from
the same quantities in the immediate descendent node. The algorithm is applied starting at the
node which has all of its immediate descendents being tips. Then it is applied successively further
down the tree, not applying it to any node until all of its descendents have been processed. The
result is L(()Z) for the bottom node. The evaluation of likelihood is then completed for this site by
making a weighted average of these over all four bases, weighted by their prior probabilities under
the model:

L) =Y m L (x)

10
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Figure 6: An example tree for Maximum Likelihood

Estimation of branch lengths (¢;) can be done by a form of the EM algorithm adapted to trees in
the same way as the HMM estimation algorithm is adapted to (linear) Markov chains. Forward
(above) and backward (below) probabilities can be combined to give joint probabilities of states at
adjacent nodes given the data, and these become the E-terms in the EM iteration. Details can be
found in Felsenstein (1981) or worked out independently by analogy with the HMM case.
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