
CSC 2417 Algorithms for Genome Analysis 
PS1:  Due February 11th in class 

 
Don’t Panic 

 
This is an individual assignment. While you may discuss this assignment with classmates, 
please do not give away answers. You are NOT allowed to use the internet, besides to 
look up things not directly related to the assignment, such as a generic formula or a well-
known algorithm. This homework may have bugs. If you spot something that looks 
wrong or is not clear please contact me, or post to the newsgroup.  
 
1. Assembly & Overlaps 
(a) There are 4n different RNA molecules of length n. How many different DNA 
molecules of length n are there? Recall that a DNA molecule is double stranded. So a 
DNA molecule of length n will have 2n nucleotides in it, with n Watson-Crick base pairs. 
 
(b) Assume that some genome has length G, and that N reads, each of length L, will be 
assembled to get this genome. The coverage of the genome is NL/G. Assume that G is 
much larger than L. The reads are assumed to be taken at random from the genome so 
that, ignoring end-effects, the position of the left-hand end of any read is uniformly 
distributed in [1,G]. A contig is a maximal covered subsequence in the genome.  
i. What is the mean proportion of the genome covered by contigs? How much should the 
coverage be for 99% of the genome to be covered? How much should the coverage be for 
99.9% of the genome to be covered? 
ii. What is the mean number of contigs, in terms of N,L and G? 
iii. What is the mean contig size? 
 
(c) Finding overlaps: 
Because in reality sequenced reads can have sequencing errors, we must allow for non-
exact matches between reads. We may, for example, say that two reads overlap if they 
fewer than D discrepancies (substitutions, insertion or deletions, not counting any initial 
and final gap). This is typically done using a simple variation on the standard 
Needleman--Wunsch algorithm where we do not penalize the initial or final gap, with 
running time O(n2) for two reads of length n. Demonstrate an algorithm that is 
asymptotically faster than this approach for a small constant D. 
 
2.  Linear Space Alignment 
Recall Hirschberg’s linear-space global alignment algorithm. In this problem, you will be 
asked to consider possible extensions of it to other alignments. For each part below, 
either extend the linear-space algorithm to the version of the problem, or discuss why this 
is not possible. 
 
(a) Local alignment (Smith-Waterman), where you are asked to find a single optimal 
highest scoring local alignment. 
 



(b) In the linear space alignment, the original problem of size mn is reduced to two sub-
problems of sizes km/2 and (n-k)m/2. In a fast, parallel implementation of sequence 
alignment, it is desirable to have a balanced partitioning that breaks the original problem 
into sub-problems of equal sizes. Design a linear space alignment algorithm with 
balanced partitioning. 
 
3.  Variations  
(a) The score of a local alignment is not normalized over the length of the matching 
region. As a result, a local alignment with score 100 and length 100 will be chosen over a 
local alignment with score 99 and length 10, although the latter one is probably more 
important biologically. To reflect the length of the local alignment in scoring, the score 
F(I,J) of local alignment involving substrings I and J may be adjusted by dividing F(I,J) 
by the total length of the aligned regions: F(I,J)/(|I|+|J|). The normalized local alignment 
problem is to find substrings I and J that maximize F(I,J)/(|I|+|J|) among all substrings I 
and J with |I|+|J| >= k, where k is a threshold for the minimum overall length of I and J. 
Devise an algorithm for solving the normalized local alignment problem. 

 
(b) Two sequences of length n & m may have more than one optimal alignment. Give an 
algorithm to compute the number of optimal alignments between two such strings in 
O(mn) time. 
 
(c) Since the biological significance of the optimal alignment is sometimes uncertain, and 
optimality depends on the choice of (often disputed) weights, it is useful to efficiently 
produce or study a set of suboptimal (but close) alignments in addition to the optimal one. 
Given two strings X and Y (of lengths n and m) and a parameter !, show how to construct 
the following matrix in O(nm) time: M(i,j) = 1 if and only if there is an alignment of X 
and Y in which characters X[i] and Y[j] are aligned with each other and the value of the 
alignment is within ! of the maximum value alignment of X and Y. That is, if F(n,m) is 
the is the value of the optimal alignment, then the best alignment that puts X[i] opposite 
Y[j] should have value at least F(n,m) – !.  
 
(d) Bacterial DNA is often organized into circular molecules. Given two strings x and y 
of length n and m, respectively, there are n circular shifts of x, and m circular shifts of y; 
therefore, there are nm pairs of circular shifts. 
Build an efficient algorithm to find the best global alignment among the nm different 
pairs of circular shifts. The trivial O(n2m2) algorithm is not good enough. A cubic time 
solution (i.e. O(n2m)) will only get partial credit. 
 
4.  Longest & Shortest Paths 
In alignments, it is common to give matches a positive score, and substitutions and gaps a 
negative score (penalty). If one converts the cells of the alignment matrix to nodes, and 
adjacencies to edges, the optimal alignment corresponds to the longest path in the graph. 
It is possible to convert the longest path problem to a shortest path by negating all of the 
scores (edge lengths). However it is often preferable to not have any negative edge 
lengths when computing shortest paths. Show how to modify the edge weights so that the 
best alignment corresponds to the shortest path but all of the edge lengths are positive. 


