
CSC 2417 Algorithms in Molecular Biology
PS2: Due March 18 in Class

Don’t Panic

This is an individual assignment. While you may discuss this assignment with classmates,
please do not give away answers. You are NOT allowed to use the internet, besides to
look up things not directly related to the assignment, such as a generic formula or a well-
known algorithm. This homework may have bugs. If you spot something that looks
wrong or is not clear please contact me.

1. More Alignment

Recall the LCS to LIS reduction discussed in class. Here we will modify it in order to
build the local alignment chaining algorithm used in LAGAN and similar tools. A local
alignment can be thought of as a rectangle defined by its start and end points. It also has a
score which show how well it is conserved. The requirement that we need to enforce is
that the starting (top right) point of the next rectangle always has to be be below and to
the right of the end point of the previous one.

(a) Given two sequences, A, B with n matches between them as well as a score for every
match show how to use a variation on the Longest Increasing Subsequence (LIS)
algorithm to find the highest scoring common subsequence in time O(n log n). Assume
the LIS algorithm is know to the reader.

(b) Now consider the case of a multiple alignment, where we are aligning k sequences,
each local alignment is a k-tuplet with coordinates from all sequences, and our goal is to
construct the longest chain that is strictly increasing in all k sequences. Demonstrate an
algorithm for this problem (algorithms faster than O(n2) will get a bonus).

Now let X be a sequence of length L1 and Y be a sequence of length L2. Let AX and AY be two
sequences of (n ! 1) anchors that will be used to align X and Y. Anchors in AX and AY are
ordered from left to right (anchor i of AX will match anchor i of AY , and is located to the left of
anchor j of AX if and only if i < j).

Assume the lengths of the anchors themselves are negligible. Let xi be the distance between
anchors i!1 and i in AX, and similarly for yi. We also include the distances between the beginning
of the sequence and the first anchor, and between the last anchor and the end; therefore, the sets
Xd = x1, . . . , xn and Yd both have cardinality n, 1 greater than the number of anchors.

We will globally align X and Y by fixing the alignments of corresponding anchors to each other,
and using NW to align the portions of X and Y between neighboring anchors.

(c) Describe the locations of the n points on the alignment matrix that give the worst case
running time, and how many cells in the Needleman-Wunsch algorithm will examine.
locations of the n points on the alignment matrix that give the best case running time, and
how many cells in the Needleman-Wunsch algorithm will examine.

(d) Derive the general formula for the running time in terms of the lengths of the
sequences, the number of anchor points and the covariance of the occurrences of the
anchor points:

Definition. Given sequences of numbers Xd = x1,…, xn, Yd = y1,…, yn, the covariance of Xd,
Yd is:

cov(Xd, Yd) = 1/n Σ{i=1,…,n}(xi – xmean)(yi – ymean)

2. Evolutionary Trees & Breakpoints
(a) Given the correct rooted evolutionary tree for a set of organisms and the value that a
nucleotide has now for all extant species, we may ask what base pair did the ancestor of
all of these have. The internal nodes of the tree correspond to ancestral sequences –
organisms that are no longer alive but that lead to the current organisms. Develop an
algorithm that for each internal node of the tree (labeled with “?”) determines which
nucleotides could have been in that particular ancestor under the “minimally
parsimonious” scenario – that is the scenario that has the fewest overall mutations. If an
ancestor could have had more than one letter at this position it should be labeled with all
the possibilities. For example consider the two trees below. In case (I) both internal nodes
must be labeled “C” under maximum parsimony, as this allows for only one mutation (C-
>A on the lower left branch). In case (II) the lower node is (A/C) and the root is (A/C/T).

?

A C C

?

?

A C T

?

I II

(b) Multiple alignment algorithms which use the progressive technique often construct
the phylogenetic tree using UPGMA rather than Neighbor Joining algorithms, and several
studies claim that this gives better results. Speculate why this may be so.

(c) One way to measure rearrangement distances between genomes that we mentioned in
class is by counting breakpoints. In the breakpoint median problem, given a set of 3
signed permutations we want to design a 4th signed permutation such that the total
number of breakpoints between it and the other three is minimal. Show how to reduce
this problem to the Traveling Salesman Problem. (Although TSP is NP-hard, it is very
widely studied and there are many effective heuristics for it).

3. Multiple Alignment
(a) Consensus multiple alignment versus sum-of-pairs multiple alignment.

Definition. (1) Given a multiple alignment M of a set of strings S, the consensus
character of column i of M is the character that minimizes the summed score between the
character and all the characters in column i. (In case of ties, say by convention that we
prefer A over C over G over T over ‘gap’). The score of (gap, gap) is 0. Let d(i) denote
that minimum sum in column i. (2) The consensus string SM derived from alignment M is
the concatenation of the consensus characters for each column of M. (3) The alignment
score of SM equals to the sum of column scores d(SM) = d(1) + … + d(m), where M has
m columns. (4) The optimal consensus multiple alignment is a multiple alignment M for
input set S whose consensus string SM has smallest alignment error over all possible
multiple alignments of S. (Definitions are adapted from Gusfield, p. 352.)

Example: S = {AGCC, ACC, TCC}, and match, mismatch, gap = +2, -2, -3. Consider the
following alignments:

M1: {AGCC, A-CC, T-CC}; SM1 = A-CC, and d(SM1) = (+2) + (-3) + (+6) + (+6) = 11.

M2: {AGCC, A-CC, -TCC}; SM1 = AGCC, and d(SM1) = (+1) + (-3) + (+6) + (+6) = 10.

Show an example with three or more sequences where their optimal multiple alignment
according to the above model is different from the one according to a SP model. Assume
a match, mismatch, and gap penalty of +2, -2, -3. Let the alphabet be {A,C,G,T}.

(b) Phylogenetic-tree–based alignment.

Definition (1) Given an input rooted binary tree T with a distinct string (from a set of
strings S) written at each leaf, a phylogenetic alignment for T is an assignment of one
string to each internal node of T. Note that the strings assigned to internal nodes need not
be distinct and need not be from the input string S. (2) If strings S and S’ are assigned to
the endpoints of an edge (i, j), then that edge has edge distance D(S, S’), which is simply
the edit distance between the two strings S and S’. The distance of a phylogenetic
alignment is the total of all edge distances in the tree. (3) The phylogenetic alignment

problem for T is to find an assignment of strings to internal nodes of T (one string to each
node) that minimizes the distance of the alignment.

Note: it is also possible to define the problem where T is unrooted. If you prefer that
definition, please go ahead and use it instead.

Example: S = {x = AGCC, y = ACC, z = TCC}, and match, mismatch, gap = +2, -2, -3.
Let T = [V = {x, y, z, vyz, vxyz}; E = {(x, vxyz), (vxyz, vyz), (vyz, y), (vyz, z)}, root = vxyz],
with leafs {x, y, z} and root vxyz

Here is a phylogenetic alignment, which is just a labeling of the internal nodes: Label vyz
with “ACC”, and vxyz with “ACC”. Then, the alignment score is D(x, vxyz) + D(vxyz, vyz)
+ D(vyz, y) + D(vyz, z) = (+3) + (+6) + (+6) + (+2) = 17.

Show an example with three or more sequences where their optimal phylogenetic
alignment, the optimal consensus multiple alignment, and the optimal sum-of-pairs
multiple alignment all differ from one another. Assume a match, mismatch, and gap
penalty of +2, -2, -3. Let the alphabet be {A,C,G,T}.

